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Transformers 
• A deep learning model  

• Introduced in 2017 (Google researchers) 

• Quickly adopted for modelling sequential data 
(text and images)—architecture behind LLMs 

• Uses the attention mechanism 
 
 
* Most of the slides/figures/narrative are from David 
Berger (you might see them again in ML #2).
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Today’s plan

• Refresh our understanding of RNNs and bidirectional 
ones  

• Introduce attention 

• Transformer block 

• Examples of transformers in practice 
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• For concreteness, I will think of our data as a 
sequence of words 

• And I use words and tokens synonymously  

• In practice, tokens are sub-words (e.g., a few letters)  

• Tokenization is a topic beyond today’s class
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RNNs
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Bidirectional RNNs
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- The hidden state h_t must contain all  
useful information from  to t 

- The hidden state g_t must contain all  
useful information from the end (T) to t. 

 

- Difficulties:  
- Exploding & vanishing gradients 

- Predictions will tend to use  
information from close neighbours 
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• What if the output is a different length than the input? E.g., 
translation 

•  must contain (“summarize”) information from the input 

• It’s a bottleneck. Its size (num. neurons) is an important 
hyperparameter

h4

Encoder-Decoder 
(Also known as Sequence to Sequence — Seq2Seq)
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Problem

9

Encoder

Decoder

William Shakespeare (c. 23[a] April 1564 – 23 April 1616)[b] was an English playwright, poet and actor. 
He is widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist.[3][4][5] 
He is often called England's national poet and the "Bard of Avon" (or simply "the Bard"). 
His extant works, including collaborations, consist of some 39 plays, 154 sonnets, 
three long narrative poems and a few other verses, some of uncertain authorship.
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Problem

• Challenging to encode vast amounts of information 

9
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Problem

• Challenging to encode vast amounts of information 

• Could try to divide your input (e.g. sentence by sentence)

9
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Problem
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Problem

• Challenging to encode vast amounts of information 

• Could try to divide your input (e.g. sentence by sentence)

• Tasks (e.g., translation) have to local and global coherence

• Instead, decode word by word by focusing on the relevant different parts of the input

9

Encoder

Decoder
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He is often called England's national poet and the "Bard of Avon" (or simply "the Bard"). 
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(Soft) Attention
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Advantages:	
•No more bottleneck	
•The decoder can consider different 
representations (information)	
•The latent representation is now 
proportional to the length of the 
sequence.	
•Shortcuts between the encoder and 
decoder	
•Can model longer dependencies 
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Mathematical details:

ℙ(ot ∣ o1:t−1, x1:T) = f(st, ct),

where

ct =
Tx

∑
j=1

at,j ⋅ [gj, hj]

Attention 
- Timestep t (output) 
- Hidden representation j (input)
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Mathematical details:

The attention weights are 
obtained as follows: 

Showing for the third output S3
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,

Where
etj = α(st−1, hj, gj) .

Function models the similarity 
between input and output 
representations
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Mathematical details:

The attention weights are 
obtained as follows: 

at,j = (softmax(etj))j
,

Where
etj = α(st−1, hj, gj) .

The function  can be, for example, an MLP:α( ⋅ )

α(st−1, hj, gj) = v⊤
a tanh(Wαst−1 + Uα[hj, gj]) .

Function models the similarity 
between input and output 
representations

Showing for the third output S3
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Visualizing attention 
Translation task  (EN -> FR)

at,j at,j+1
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Visualizing attention 
Translation task (EN -> FR) 
(attention matrix) 
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Visualizing attention 
Translation task (EN -> FR) 
(attention matrix) 
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Soft Attention summary

• Dynamically weights the different contexts. 

• Empirically: Works for length of up to ~100 time steps

16
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Toward Transformers
• A mix of sequential (  ) 

and parallel (attention) 
processing 

• Expensive computationally 

• Could a parallel architecture 
model sequential data?  

hi, gj, St

17
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Transformer Block

18

MLP

Self-attention

William Shakespeare (c. 23[a] April 1564 – 23 April 1616)[b] was an English playwright, poet and actor. 
He is widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist.[3][4][5] 
He is often called England's national poet and the "Bard of Avon" (or simply "the Bard"). 
His extant works, including collaborations, consist of some 39 plays, 154 sonnets, 
three long narrative poems and a few other verses, some of uncertain authorship.
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Word embedding
• Words are categorical and can be encoded using a 1-

of-K encoding (i.e., dummies) 

• This fails to capture the semantics of words between 
words (e.g., foot/feet/toe)  

• In RNNs/Transformers/etc. words are represented 
using a vector (of size D) 

• The representation is learned 

• Smaller-dimensional representation (D << K) 

19
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Self-attention

MLPEncoder

Le chat boit du lait
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Self-attention
• The representation of each word (token) will be a 

combination of the representation of other words 

• The procedure is unsupervised (self)

21
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Self-attention
• The representation of each word (token) will be a 

combination of the representation of other words 

• The procedure is unsupervised (self)

21

Example:



Self-Attention

at,j = (softmax(eij))j
,

eij = v⊤
a tanh (Wαsi−1 + Uα[hi, gi]) .

(Recall) Soft attention

Mathematical Details

Input Representation

Linear projection 
(Helps remove  

unnecessary information)

Context Representation

Linear projection
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Self-Attention

at,j = (softmax(eij))j
,

eij = v⊤
a tanh (Wαsi−1 + Uα[hi, gi]) .

(Recall) Soft attention

Mathematical Details

Self attention

Input Representation

Linear projection 
(Helps remove  

unnecessary information)

Context Representation

Linear projection

eij = ((xiWk)(xjWq))

ai,j = (softmax(eij))j
,

where

Calculate its output 

ct =
Tx

∑
j=1

at,j ⋅ [gj, hj]

Calculate its output 

X: la représentation en entrée des mots (NxD) 
: la représentation en sortie du j’ème mot (1xD) zj

zj = (xiWk)

Value

softmax((xiWk)

Key

(xjWq)

Query

)

Often referred to as “Key-Query-Value” attention



Self-Attention

https://jalammar.github.io/illustrated-transformer/ 

Visual representation  
N=2, D=4

Un
Arbre

*: in practice the value of attention pre-softmax ( ) is often 
 normalized by  for optimisation stability

QK⊤

D

https://jalammar.github.io/illustrated-transformer/
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Multi-Head 
Self-Attention (MHSA)

• Attention captures the similarity between two words 

• One may wish to capture several different similarities 
(e.g., whale and humans are both mammals, whales 
and sharks live in the water)  

• You can learn the parameters for multiple attention 
mechanisms. Each mechanism is called an attention 
head: 
 
      x′￼j = [z1

j z
2
j ⋯zH

j ]W0

24

 the representation of word j after self-attention (D) 

: the representation of word j from attention head h (D’) 
H: the number of heads 

 weight matrix (D’H x D)

x′￼j :
zh
j

W0 :



Example:

One head Two heads

Multi-Head 
Self-Attention (MHSA)
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Demo

• https://poloclub.github.io/transformer-explainer/ 

• Shows attention  

• Sub-word tokens 

26

https://poloclub.github.io/transformer-explainer/
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Transformer Block

27

MLP

Self-attention

William Shakespeare (c. 23[a] April 1564 – 23 April 1616)[b] was an English playwright, poet and actor. 
He is widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist.[3][4][5] 
He is often called England's national poet and the "Bard of Avon" (or simply "the Bard"). 
His extant works, including collaborations, consist of some 39 plays, 154 sonnets, 
three long narrative poems and a few other verses, some of uncertain authorship.

(Mostly) Operates across tokens (N)

Operates across features (D)
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Transformers…
transform? 

• Transformer blocks rely on attention heads followed by an 
MLP  

• How can we use them for language tasks (e.g., 
translation)?  

• Transformer blocks can be combined and refined 

• Transformer blocks can be used as encoders & decoders 

• For decoding, a few changes are required

28
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A few other 
characteristics

• Word embeddings 

• Words are categorical and can be encoded using a 
1-of-K encoding (i.e., dummies) 

• This fails to capture the semantics of words 
between words (e.g., foot/feet/toe)  

• In RNNs/Transformers/etc. words are represented 
using a vector (of size D)

29
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A few other 
characteristics

• Positional embedding 

• Attention looses the position of words into account 

• In many tasks, position is essential 

• “cat eats plant” is different from “plant eats cat” 

• As a remedy, transformers also learn positional 
representations 

• Vectors that are specific to the position (can be 
absolute or relative) 

30
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Word + Positional 
embeddings 

31

Self-attention

MLP

z1 z2 z3 z4 z5

Le chat boit du lait

x1 x2 x3 x4 x5Word embedding

t1 t2 t3 t4 t5Positional embedding

x1 x2 x3 x4 x5

= = = = =

Combination 

31

Encoder
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A few other 
characteristics

• Normalization  

• Layer normalization is often applied. It helps to learn by 
normalizing each token’s dimensions to have 0-mean 
and 1 standard deviation.  

• Residual connections 

•   

• Biases learned functions to be “simple”, helps to learn  

• Can be used for self-attention & MLP 

zi = Self-Attention(X)+xi

32

MLP

Self-attention
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What about decoding? 

33
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What about decoding? 

• Transformers transform word representations 

• Decoding requires using these words representations 
to obtain the following word 

• Add a “softmax”-layer at the end:  

• You can only attend to previous words  

• Attention matrix is constrained to be (upper) 
triangular

34

P(on ∣ o1:n−1) =
exp(g⊤

wxn−1)

∑W
w exp(g⊤

wxn−1)

: parameters  
W: number of words in the vocabulary 
gw



Laurent Charlin — 60629

Encoder-Decoder 
Transformer

35

Self-attention

Decoder

Encoder-decoder	
self-attention

MLP

Self-attention

MLP

Encoder

Input Words 

Output Words  
(Shifted inputs for next-word prediction)



Putting it all together



Putting it all together
• Self-Attention  

• Positional embedding  

• Encoder 

• Decoder 

• Softmax-layer  

• Multiple transformer 
blocks (Nx)



Putting it all together
• Self-Attention  

• Positional embedding  

• Encoder 

• Decoder 

• Softmax-layer  

• Multiple transformer 
blocks (Nx)



Putting it all together
• Self-Attention  

• Positional embedding  

• Encoder 

• Decoder 

• Softmax-layer  

• Multiple transformer 
blocks (Nx)



Putting it all together
• Self-Attention  

• Positional embedding  

• Encoder 

• Decoder 

• Softmax-layer  

• Multiple transformer 
blocks (Nx)



Laurent Charlin — 60629

Objective
• Often in two (or more) stages: 

• First stage 

• Next-word prediction 

• Random-word prediction (mask some words in the input/output) 

• Other tasks:  

• Next-sentence prediction  

• Second stage 

• Preference and/or downstream task fine-tuning 

37
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One of many 
transformers 

• Partial list: https://huggingface.co/docs/transformers/en/index  

• Encoder-only models:  

• BERT (RoBERTa), ALBERT 

• Encoder-Decoder models: 

• BART 

• Decoder-only models:  

• Generative pre-trained transformer (GPT), BLOOM (for code), Llama 

• *Most of the above transformers refer to a system that was trained not only an 
architecture. Many of these models now have tens of billions of parameters 
(Llama-7B -> 7 billion parameters) 

• Also used for image modelling, audio, multi-modalities, etc. 

38

https://huggingface.co/docs/transformers/en/index
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Summary
• Self-attention is the key ingredient  

• Efficient and provides good results 

• Recent LLMs can attend to very long contexts (some 
refinements of attention) 

• Enables training transformers on much larger-scale 
datasets (internet size) 

• Transformers has become the standard model often 
surpassing the performance of RNNs/CNNs when 
trained on enough data

39
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