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Introduction to
Reinforcement Learning




Brief recap

e Markov Decision Processes (MDP)
o Offer a framework for sequential decision making
(A,S,P,R,7)
e Goal: find the optimal policy

« Dynamic programming and several algorithms (e.g., VI,Pl)
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Figure 3.1, RL: An introduction
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Laurent Charlin — 80-629 3



From MDPs to RL

e INn MDPs we assume that we know



From MDPs to RL

e INn MDPs we assume that we know

1. Transition probabilities: P(s’| s, a)

Laurent Charlin — 80-629 4



From MDPs to RL

e INn MDPs we assume that we know
1. Transition probabilities: P(s’| s, a)

2. Reward function: R(s)

Laurent Charlin — 80-629 4



From MDPs to RL

e INn MDPs we assume that we know
1. Transition probabilities: P(s’| s, a)
2. Reward function: R(s)

e RL is more general

Laurent Charlin — 80-629 4



From MDPs to RL

e In MDPs we assume that we know
1. Transition probabilities: P(s’| s, a)
2. Reward function: R(s)

e RL is more general

 In RL both are typically unknown

Laurent Charlin — 80-629 4



From MDPs to RL

e In MDPs we assume that we know
1. Transition probabilities: P(s’| s, a)
2. Reward function: R(s)

e RL is more general
e In RL both are typically unknown

e RL agents navigate the world to gather this
information
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Experience

A. Supervised Learning:

e Given fixed dataset

o Goal: maximize objective on test set (population)
B. Reinforcement Learning

e Collect data as agent interacts with the world

e Goal: maximize sum of rewards
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Example

Supervised Learning

Don’t touch your

tongue will get
stuck.

Slide adapted from Pascal Poupart

https://cdn.dribbble.com/users/3907/screenshots/318354/tounge-stuck-on-pole-shot.jpg
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RL applications

o Key: decision making over time, uncertain environments
e Robot navigation: Self-driving cars, helicopter control

e Interactive systems: recommender systems, chatbots

e Game playing: Backgammon, go

e Healthcare: monitoring systems
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Reinforcement learning
and recommender systems

« Most users have multiple interactions with the system of time

« Making recommendations over time can be advantageous (e.g., yy—
you could better explore one’s preferences) Recommender

System

o States: Some representation of user preferences (e.g., previous

) Reward: Action: Iltem
Iitems they consumed) Consume or not Recommendation
o Actions: what to recommend (item 1, item 2, item 3, ...)

e Reward:

e + User consumes the recommendation

e - User does not consume the recommendation
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Challenges of
reinforcement learning

e Credit assignment problem: which action(s) should
be credited for obtaining a reward

e A series of actions (getting coffee from cafeteria)

« A small number of actions several time steps ago
may be important (test taking: study before, getting
grade long after)
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Challenges of
reinforcement learning

e Credit assignment problem: which action(s) should
be credited for obtaining a reward

e A series of actions (getting coffee from cafeteria)

« A small number of actions several time steps ago
may be important (test taking: study before, getting
grade long after)

« Exploration/Exploitation tradeoff: As agent interacts
should it exploit its current knowledge (exploitation)
or seek out additional information (exploration)
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Algorithms for
Reinforcement
Learning



Algorithm



Algorithm

e INnput: an environment
e actions, states, discount factor

e starting state, method for obtaining next state
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Algorithm

e Input: an environment

e actions, states, discount factor

e starting state, method for obtaining next state
o« Output: an optimal policy

e |In practice: need a simulator or a real environment for
your agent to interact

Laurent Charlin — 80-629 I



Algorithms for RL

e Two main classes of approach



Algorithms for RL

e Two main classes of approach
1. Model-based

e Learns a model of the transition and uses it to P(s' | s, a)
optimize a policy given the model

Laurent Charlin — 80-629 12



Algorithms for RL

e Two main classes of approach
1. Model-based

e Learns a model of the transition and uses it to P(s' | s, a)
optimize a policy given the model

2. Model-free

e Learns an optimal policy without explicitly T
learning transitions
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Monte Carlo Methods

e Model-free

e Assume the environment is episodic
o Think of playing a card game (like poker). An episode is a hand.
o« Updates the policy after each episode
e Intuition
e Experience many episodes
« Play many hands (of poker)
o Average the rewards received at each state

e What is the proportion of wins given your curent cards
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Prediction vs. control

1. Prediction: evaluate a given policy
2. Control: Learn a policy
e Sometimes also called

e passive (prediction)

e active (control)
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First-visit Monte Carlo

e« Given a fixed policy (prediction)

o Calculate the value function V(s) for each state

First-visit MC prediction, for estimating V ~ v,

Initialize:
 +— policy to be evaluated
V « an arbitrary state-value function
Returns(s) + an empty list, for all s € 8

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
GG + the return that follows the first occurrence of s
Append G to Returns(s) [Sutton & Barto,
V (s8) «+ average(Returns(s)) RL Book, Ch 3]

e Converges to V;(s) as the number of visits to each
state goes to Iinfinity

15



First-visit Monte Carlo

e« Given a fixed policy (prediction)

o Calculate the value function V(s) for each state

First-visit MC prediction, for estimating V =~ v,

Initialize:
 +— policy to be evaluated
V « an arbitrary state-value function
Returns(s) + an empty list, for all s € 8

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
Append G to Returns(s) [Sutton & Barto,
V (s8) «+ average(Returns(s)) RL Book, Ch 3]

e Converges to V;(s) as the number of visits to each

state goes to infinit
d Y L/(St) = max R(St) + 7y Z P(St_|_'| ‘ St, at)V(st+1)

dt

St+1
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Example: grid world

First-visit MC prediction, for estimating V = v,

. . Initialize:

e Start state Is top-left (start of episode) 7 « policy to be evaluated

V « an arbitrary state-value function
Returns(s) + an empty list, for all s € 8

e Bottom right is absorbing (end of episode) et e

Generate an episode using
For each state s appearing in the episode:
G + the return that follows the first occurrence of s

o« Policy TT is given (gray arrows) Append G to Returns(s)

V(s) + average(Returns(s))

Episode: (1, —»)
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Example: grid world

First-visit MC prediction, for estimating V = v,

. . Initialize:

e Start state Is top-left (start of episode) 7 « policy to be evaluated
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Forstate . return(7) = yR(6) + v*R(7) + v*R(10) + v*R(13) + v>R(17) + v°R(18)
6
= ~-10
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Example: grid world

First-visit MC prediction, for estimating V = v,

. . Initialize:

e Start state Is top-left (start of episode) 7 « policy to be evaluated

V « an arbitrary state-value function
Returns(s) + an empty list, for all s € 8

e Bottom right is absorbing (end of episode) et e

Generate an episode using
For each state s appearing in the episode:
G + the return that follows the first occurrence of s

o« Policy TT is given (gray arrows) Append G to Returns(s)

V(s) + average(Returns(s))

Episode: n,—» — 2, — @G l) — (7 l) — (6, —) — (7, l) — (10,l) — (13,l) — (17, =)

Forstate . return(7) = yR(6) + v*R(7) + v*R(10) + v*R(13) + v>R(17) + v°R(18)
6
= ~-10

V(7) =~° %10
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Summary

e Introduced terminology:

e model based, model-free
e First algorithm for policy evaluation (First-visit MC)
e« Compared to MDPs

e We the agent nhow has to explore the world to
evaluate its value function
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Algorithms for
RL Control




Q-value function for
control

e We know about state-value functions V(s)



Q-value function for
control

e We know about state-value functions V(s)

o If state transitions are known then they can be used to
derive an optimal policy [recall value iteration]:

a

mM*(S) = arg max {R(s) + VZ P(s'|s,a)V” (s’)} Vs

Laurent Charlin — 80-629 19



Q-value function for
control

e We know about state-value functions V(s)

o If state transitions are known then they can be used to
derive an optimal policy [recall value iteration]:

'IT*(S)argmaX{ +72P 's,a)Vi(s )} Vs

e When state transitions are unknown what can we do?
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Q-value function for
control

e We know about state-value functions V(s)

o If state transitions are known then they can be used to
derive an optimal policy [recall value iteration]:

'IT*(S)argmaX{ +72P 's,a)V(s )} Vs
e When state transitions are unknown what can we do?

e Q(s,a) the value function of a (state,action) pair

m*(S) = arg max {Q*(s,a)} Vs
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Monte Carlo ES (control)

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

First-visit MC prediction, for estimating V

Initialize, for all s € 8, a € A(3):

Q(s,a) + arbitrary Initialize:
m(8) + arbitrary m 4 policy to be evaluated
Returns(s,a) + empty list V + an arbitrary state-value function

Returns(s) + an empty list, for all s € 8
Repeat forever:

Choose Sp € 8§ and Ap € A(Sp) s.t. all pairs have probability > 0 Repeat forever:

Generate an episode starting from Sy, Ao, following 7 Generate an episode using 7

For each pair s,a appearing in the episode: For each state s appearing in the episode:
G + the return that follows the first occurrence of s,a G « the return that follows the first occurrence
Append G to Returns(s,a Append G to Returns(s)

Q(s,a) + average(Returns(s,a)) V(s) + average(Returns(s))
For each s in the episode:

[Sutton & Barto,
RL Book, Ch.5]

m(8) + argmax, Q(s,a)
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Monte Carlo ES (control)

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

First-visit MC prediction, for estimating V

Initialize, for all s € 8, a € A(3):

Q(s, a) « arbitrary Initialize:
m(8) + arbitrary m 4 policy to be evaluated
Returns(s,a) + empty list V + an arbitrary state-value function

Returns(s) + an empty list, for all s € §
Repeat forever:

Choose Sy € § and Ap € A(Sp) s.t. all pairs have probability > 0 Repeat forever:

Generate an episode starting from Sy, Ao, following 7 Generate an episode using 7

For each pair s,a appearing in the episode: For each state s appearing in the episode:
G + the return that follows the first occurrence of s,a G < the return that follows the first occurrence
Append G to Returns(s,a Append G to Returns(s)

Q(s,a) «+ average(Returns(s,a)) V(s) + average(Returns(s))
For each s in the episode:

[Sutton & Barto,
RL Book, Ch.5]

m(8) + argmax, Q(s,a)

e« Strong reasons to believe that it converges to the
optimal policy

o “Exploring starts” requirement may be unrealistic
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Learning without
“exploring starts”

o “Exploring starts” insures that all states can be visited
regardless of the policy

e (Specific policy may not visit all states)

e Unrealistic in real-world settings
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Learning without
“exploring starts”

o “Exploring starts” insures that all states can be visited
regardless of the policy

e (Specific policy may not visit all states)
e Unrealistic in real-world settings

e Solution: inject some uncertainty in the policy
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[Sutton & Barto,
RL Book, Ch.5]
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Monte Carlo without
exploring starts (on policy)

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ ,

Initialize, for all s € 8, a € A(s):
Q(s, a) + arbitrary
Returns(s,a) + empty list
m(a|s) + an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
G + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
(c) For each s in the episode:
A" + arg max, Q(s,a)
For all a € A(s):
l1—e+¢e/|A(s)] ifa=A"
m(ale) < { e/ A(s)| if a # A°

(with ties broken arbitrarily)

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

Initialize, for all s € §, a € A(3):
Q(s,a) + arbitrary
m(8) + arbitrary
Returns(s,a) + empty list

Repeat forever:
Choose Sy € 8§ and Ap € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ao, following 7
For each pair s,a appearing in the episode:
GG + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
For each s in the episode:
m(8) + argmax, Q(s,a)
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[Sutton & Barto,
RL Book, Ch.5]
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Monte Carlo without
exploring starts (on policy)

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ ,

Initialize, for all s € 8, a € A(3):
Q(s, a) + arbitrary
af= ns(s, a eIMD

m(a|s) + an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
G + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
(c) For each s in the episode:
A" + arg max, Q(s,a)
For all a € A(s):
l1—e+¢e/|lA(s)] ifa= A"
m(ale) < { e/|A(s)| if a # A°

(with ties broken arbitrarily)

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

Initialize, for all s € §, a € A(3):
Q(s,a) + arbitrary
m(8) + arbitrary
Returns(s,a) + empty list

Repeat forever:
Choose Sy € 8§ and Ap € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ao, following 7
For each pair s,a appearing in the episode:
GG + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
For each s in the episode:
m(8) + argmax, Q(s,a)
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[Sutton & Barto,
RL Book, Ch.5]
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Monte Carlo without

exploring starts (on policy)

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ ,

Initialize, for all s € 8, a € A(3):
Q(s, a) + arbitrary

1 / § 5, U (11D

m(a|s) + an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
G + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
(c) For each s in the episode:
A" + arg max, Q(s,a)
For all a € A(s):
l1—e+¢e/|lA(s)] ifa= A"
if a # A"

(with ties broken arbitrarily)

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

Initialize, for all s € §, a € A(3):
Q(s,a) + arbitrary
m(8) + arbitrary
Returns(s,a) + empty list

Repeat forever:
Choose Sp € 8§ and Ap € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ao, following 7
For each pair s,a appearing in the episode:
GG + the return that follows the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
For each s in the episode:
m(8) + argmax, Q(s,a)
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[Sutton & Barto,
RL Book, Ch.5]

Laurent Charlin — 80-629

Monte Carlo without
exploring starts (on policy)

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ ,

Initialize, for all s € 8, a € A(3):
Q(s, a) + arbitrary
af= ns(s. a eIMD

m(a|s) + an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
G + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
(c) For each s in the episode:
A" + arg max, Q(s,a)
For all a € A(s):
l1—e+¢e/|A(s)] ifa=A"
ifa # A"

(with ties broken arbitrarily)

e/|A(s)]

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

Initialize, for all s € §, a € A(3):
Q(s,a) + arbitrary
m(8) + arbitrary
Returns(s,a) + empty list

Repeat forever:
Choose Sy € 8§ and Ap € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ao, following 7
For each pair s,a appearing in the episode:
GG + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
For each s in the episode:
m(8) + argmax, Q(s,a)

e Policy value cannot decrease
Vi (S) > Vg(S),Vs € S

22
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Monte-Carlo methods
summary

o Allow a policy to be learned through interactions
e« (Does not learn transitions)
o States are effectively treated as being independent

e Focus on a subset of states (e.g., states for which
playing optimally is of particular importance)

o Episodic (with or without exploring starts)
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Temporal Difference (TD)
Learning




Temporal Difference (TD)
Learning

e One of the “central ideas of RL" isutton & Barto, RL book]




Temporal Difference (TD)
Learning

e One of the “central ideas of RL" isutton & Barto, RL book]

-
e Monte Carlo methods Observed returned: Gt =Y 7'R(st)
t

V'(st) = V(st) + a\[Gt — V(sy)]

Step size
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Temporal Difference (TD)
Learning

e One of the “central ideas of RL" isutton & Barto, RL book]

-
e Monte Carlo methods Observed returned: Gt =Y 7'R(st)
B First-visit MC prediction, for esti
V (St St @Gt ] Initialize:

 +— policy to be evaluated
V + an arbitrary state-value function
Step size Returns(s) < an empty list, for all s € 8
Repeat forever:

Generate an episode using 7

For each state s appearing in the episode

Append G to Returns(s)
V(s) «+ average(Returns(s))
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Temporal Difference (TD)
Learning

e One of the “central ideas of RL" isutton & Barto, RL book]

-
e Monte Carlo methods Observed returned: Gt =Y 7'R(st)
t

/
V, (St) — V(St) @Gt — V(St>] First-visit MC prediction, for estims
\

Initialize:
 +— policy to be evaluated
V + an arbitrary state-value function

Step size Returns(s) < an empty list, for all s € 8

e TD(O)

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode

A 1€ I'C ! (14 DIIOW 10
Append G to Returns(s)
V(s) «+ average(Returns(s))

e uUupdates “instantly”
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Temporal Difference (TD)
Learning

e One of the “central ideas of RL" isutton & Barto, RL book]

-
e Monte Carlo methods Observed returned: Gt =Y 7'R(st)
t

/
V'(st) = V(st) H ]Gt — V(st)] First-visit MC prediction, for estim:
\

Initialize:
 +— policy to be evaluated
V + an arbitrary state-value function

Step size Returns(s) < an empty list, for all s € 8

e TD(O)

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode

A 1€ T'C ' (14 DIIOW 10
Append G to Returns(s)
V(s) + average(Returns(s))

e Updates “instantly”

Vi(st) = V(st) + a[R(st) + 7V (St+1) —V(st)]
~Gy
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TD(O) for prediction

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Initialize V' (s) arbitrarily (e.g., V(s) =0, for all s € §™)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
A + action given by 7 for S
Take action A, observe R, S’
V(S) < V(S) + a[R+~V(S") — V(9)]
[Sutton & Barto, S « S’

RL Book, Ch.6] until S is terminal
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TD for control

Sarsa (on-policy TD control) for estimating () ~ ¢,
Tabular TD(0) for estimating v,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8*,a € A(s), arbitrarily except that Q(terminal,-) =0 Input: the policy 7 to be evaluated
Initialize V' (s) arbitrarily (e.g., V(s) =0, for all s € 87)

Loop for each episode: Repeat (for each episode):
Initialize S Initialize S

Choose A from S using policy derived from @ (e.g., e-greedy) Relj:ai (:giisic ;zzpb(;,f:pfi:: %e):

Loop for each step of episode: N e e T bl G
Take action A, observe R, S’ V(S) « V(S)+ a[R+~V(S") - V(9)]
Choose A’ from S’ using policy derived from @ (e.g., e-greedy) S5
Q(S, A) “ Q(S, A) 4 Oé[R 4 ,YQ(S/, Al) . Q(S, A)] until S is terminal
S+ S A+ A

until S is terminal
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Comparing TD and MC

e MC requires going through e« TD updates each V(s) after

full episodes before each transition. Online.
updating the value
function. Episodic. « Converges to the optimal
solution (some conditions
« Converges to the optimal on )
solution

« Empirically TD methods
tend to converge faster
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Q-learning for control

Q-learning (off-policy TD control) for estimating 7 =~ ,

Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a[R + ymaxa Q(S’,a) — Q(S, A)]
[Sutton & Barto S — S’
RL Book, Ch.6] until S is terminal

Laurent Charlin — 80-629 28



Q-learning for control

Q-learning (off-policy TD control) for estimating 7 =~ ,

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from @ (e.g., e-greedy
Take action A, observe R, S

Q(S, A) + Q(S, A) + a[R +ymax, Q(S',a) — Q(S, A)]

S+ S

[Sutton & Barto, . . .
RL Book, Ch.6] until S is terminal

arg maxa Q(a,s) with probability 1— ¢,

random a with probability e.

€ -greedy policy ad — {
28
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Q-learning for control

Q-learning (off-policy TD control) for estimating 7 =~ ,

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S

Q(S,A) + Q(S,A) + a|R+vymax, Q(S",a) — Q(S, A)
[Sutton & Barto, S — S’
RL Book, Ch.6] until S is terminal

arg maxa Q(a,s) with probability 1— ¢,

random a with probability e.

€ -greedy policy ad — {
28
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Q-learning for control

Q-learning (off-policy TD control) for estimating 7 =~ ,

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’

Q(S,A) « Q(S,A) +a|R+ vymax, Q(S,a) — Q(S, A

(_
[Sutton & Barto, . . .
RL Book, Ch.6] until S is terminal

arg maxa Q(a,s) with probability 1— ¢,

random a with probability e.

€ -greedy policy ad — {
28
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Q-learning for control

Q-learning (off-policy TD control) for estimating 7 =~ ,

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a|R+vymax, Q(S",a) — Q(S, A
[Sutton & Barto,

RL Book, Ch.6] until S is terminal

arg maxa Q(a,s) with probability 1— ¢,

random a with probability e.

€ -greedy policy ad — {
28
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Q-learning for control

Q-learning (off-policy TD control) for estimating 7 =~ ,

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’

Q(S, A) + Q(S, A) + a[R + ymaxa, Q(S’,a) — Q(S, A)]
[Sutton & Barto S i S,
RL Book, Ch.6] until S is terminal

« Converges to Q* as long as all (s,a) pairs continue to be updated
and with minor constraints on learning rate
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Summary

e Introduced algorithms for learning the optimal policy
e Monte Carlo and TD methods

e On-policy and off-policy methods
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Practical difficulties

« Compared to supervised learning setting up an RL
problem is often harder

e Need an environment (or at least a simulator)
e Rewards
e In some domains it's clear (e.g., in games)

e |In others it’'s much more subtle (e.g., you want to
please a human)
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Extra material
(Some will be used for
this week’s exercises)



Example: Black Jack *,

« Episode: one hand

e States: Sum of player’s cards, dealer’s card, usable ace
e Actions: {Stay, Hit}

e Rewards: {Win +1, Tie O, Loose -1}

e A few other assumptions: infinite deck
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o Evaluates the policy that hits

except when the sum of the cards is 20 or 21

Laurent Charlin — 80-629
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[Figure 5.1, Sutton & Barto]



o Evaluates the policy that hits

except when the sum of the cards is 20 or 21
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o Evaluates the policy that hits

except when the sum of the cards is 20 or 21
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Usable
ace

NoO
usable
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[Figure 5.1, Sutton & Barto]



o Evaluates the policy that hits
except when the sum of the cards is 20 or 21

After 10,000 episodes After 500,000 episodes

T2
>
Usable ~ /72~

ace /W %
7

[Figure 5.1, Sutton & Barto]
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Approximation
techniques

e Methods we studied are “tabular”
o State value functions (and Q) can be approximated
. Linear approximation: V(S) = W X(s)
e Coupling between states through x(s)
o« Adapt the algorithms for this case.

« Updates to the value function now imply updating
the weights w using a gradient
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Approximation techniques
(prediction)

o Linear approximation: V(s) = W X(s)
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Approximation techniques
(prediction)

o Linear approximation: V(s) = W X(s)

e« Objective: Z[Vﬂ(s)—WTX(S)}Z

scS

o Gradient update: Wii1=Wt—2a) [Va(s) —w'X(s)] x(s)
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Approximation techniques
prediction)

o Linear approximation: V(s) = W X(s)

e« Objective: Z[Vﬂ(s)—WTX(S)}Z

scS

o Gradient update: Wii1=Wt—2a) [Va(s) —w'X(s)] x(s)
seS

Gradient Monte Carlo Algorithm for Estimating 0 ~ v,

First-visit MC prediction, for estimating V ~ v,

Input: the policy 7 to be evaluated Initialize:
7 < policy to be evaluated

Input: a differentiable function v : & X R¢ 5 R V « an arbitrary state-value function
Returns(s) «+ an empty list, for all s € 8

Initialize value-function weights w as appropriate (e.g., w = 0) SO
epeat forever:

Repeat forever: Generate an episode using «
Generate an episode Sy, Ao, R1,51,Aq,..., Ry, S using 7 For each state s appearing in the episode:
G < the return that follows the first occurrence of s
[Sutton & Barto, Fort=0,1,...,7 —1: Append G to Returns(s)
RL Book, Ch.9] W <— W + « [Gt — ’lA)(St,W)] V@(St’w) V (s) + average(Returns(s))
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Approximation techniques
(prediction)

o Linear approximation: V(s) = W X(s)

e« Objective: Z[Vﬂ(s)—WTX(S)}Z

scS

o Gradient update: Wii1=Wt—2a) [Va(s) —w'X(s)] x(s)
seS

Gradient Monte Carlo Algorithm for Estimating 0 ~ v,

First-visit MC prediction, for estimating V ~ v,

Input: the policy 7 to be evaluated Initialize:
7 < policy to be evaluated

Input: a differentiable function v : & X R¢ 5 R V « an arbitrary state-value function
Returns(s) «+ an empty list, for all s € 8

Initialize value-function weights w as appropriate (e.g., w = 0) SO
epeat forever:

Repeat forever: Generate an episode using 7
Generate an episode Sy, Ag, R1,51,Aq,..., Ry, ST using 7 For each state s appearing in the episode:
G « the return that follows the first occurrence of s
[Sutton & Barto, S — Append G to Returns(s)

V(s) + average(Returns(s))

RL Book, Ch.9]

G; is an unbiased estimator of v, (st)
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Approximation
techniques

e Works both for prediction and control



Approximation
techniques

e Works both for prediction and control

e Any model can be used to approximate
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Approximation

techniques

e Works both for prediction and control
« Any model can be used to approximate

e Recent work using deep neural networks yield
Impressive performance on computer (Atari) games

Convolution
v

Y ¥ Vv ¥
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Summary

« Today we have defined RL studied several algorithms for solving RL problems (mostly
for for tabular case)

« Main challenges
e Credit assignment
o Exploration/Exploitation tradeoff
o Algorithms
e Prediction
« Monte Carlo and TD(0O)
e« Control
e Q-learning

o« Approximation algorithms can help scale reinforcement learning
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Practical difficulties

« Compared to supervised learning setting up an RL
problem is often harder

e Need an environment (or at least a simulator)
e Rewards
e In some domains it's clear (e.g., in games)

e |In others it’'s much more subtle (e.g., you want to
please a human)

Laurent Charlin — 80-629 38



Acknowledgements

e The algorithms are from “Reinforcement Learning: An
Introduction” by Richard Sutton and Andrew Barto

e The definitive RL reference

e Some of these slides were adapted from Pascal
Poupart’s slides (CS686 U.Waterloo)

e The TD demo is from Andrej Karpathy

Laurent Charlin — 80-629 39



