Machine Learning I 80-629A

Apprentissage Automatique I 80-629

Sequential Decision Making II

— Week #12

Introduction to Reinforcement Learning

Brief recap

- Markov Decision Processes (MDP)
 - Offer a framework for sequential decision making

$$\langle \mathsf{A}, \mathsf{S}, \mathsf{P}, \mathsf{R}, \gamma \rangle$$

- Goal: find the optimal policy
 - Dynamic programming and several algorithms (e.g., VI,PI)

In MDPs we assume that we know

- In MDPs we assume that we know
 - 1. Transition probabilities: P(s' | s, a)

- In MDPs we assume that we know
 - 1. Transition probabilities: P(s' | s, a)
 - 2. Reward function: R(s)

- In MDPs we assume that we know
 - 1. Transition probabilities: P(s' | s, a)
 - 2. Reward function: R(s)
- RL is more general

- In MDPs we assume that we know
 - 1. Transition probabilities: P(s' | s, a)
 - 2. Reward function: R(s)
- RL is more general
 - In RL both are typically unknown

- In MDPs we assume that we know
 - 1. Transition probabilities: P(s' | s, a)
 - 2. Reward function: R(s)
- RL is more general
 - In RL both are typically unknown
 - RL agents navigate the world to gather this information

Experience

- A. Supervised Learning:
 - Given fixed dataset
 - Goal: maximize objective on test set (population)
- B. Reinforcement Learning
 - Collect data as agent interacts with the world
 - Goal: maximize sum of rewards

Example

Supervised Learning

Slide adapted from Pascal Poupart

Example

Supervised Learning

Reinforcement Learning

Slide adapted from Pascal Poupart

Example

Supervised Learning

Reinforcement Learning

Slide adapted from Pascal Poupart

• Key: decision making over time, uncertain environments

- Key: decision making over time, uncertain environments
- Robot navigation: Self-driving cars, helicopter control

- Key: decision making over time, uncertain environments
- Robot navigation: Self-driving cars, helicopter control
- Interactive systems: recommender systems, chatbots

- Key: decision making over time, uncertain environments
- Robot navigation: Self-driving cars, helicopter control
- Interactive systems: recommender systems, chatbots
- Game playing: Backgammon, go

- Key: decision making over time, uncertain environments
- Robot navigation: Self-driving cars, helicopter control
- Interactive systems: recommender systems, chatbots
- Game playing: Backgammon, go
- Healthcare: monitoring systems

Reinforcement learning and recommender systems

- Most users have multiple interactions with the system of time
- Making recommendations over time can be advantageous (e.g., you could better explore one's preferences)
- States: Some representation of user preferences (e.g., previous items they consumed)
- Actions: what to recommend (item 1, item 2, item 3, ...)
- Reward:
 - + user consumes the recommendation
 - user does not consume the recommendation

Challenges of reinforcement learning

Challenges of reinforcement learning

- Credit assignment problem: which action(s) should be credited for obtaining a reward
 - A series of actions (getting coffee from cafeteria)
 - A small number of actions several time steps ago may be important (test taking: study before, getting grade long after)

Challenges of reinforcement learning

- Credit assignment problem: which action(s) should be credited for obtaining a reward
 - A series of actions (getting coffee from cafeteria)
 - A small number of actions several time steps ago may be important (test taking: study before, getting grade long after)
- Exploration/Exploitation tradeoff: As agent interacts should it exploit its current knowledge (exploitation) or seek out additional information (exploration)

Algorithms for Reinforcement Learning

- Input: an environment
 - actions, states, discount factor
 - starting state, method for obtaining next state

- Input: an environment
 - actions, states, discount factor
 - starting state, method for obtaining next state
- Output: an optimal policy

- Input: an environment
 - actions, states, discount factor
 - starting state, method for obtaining next state
- Output: an optimal policy
- In practice: need a simulator or a real environment for your agent to interact

Algorithms for RL

Two main classes of approach

Algorithms for RL

- Two main classes of approach
 - 1. Model-based
 - Learns a model of the transition and uses it to optimize a policy given the model

P(s' | s, a)

Algorithms for RL

- Two main classes of approach
 - 1. Model-based
 - Learns a model of the transition and uses it to optimize a policy given the model

P(s' | s, a)

- 2. Model-free
- Learns an optimal policy without explicitly learning transitions

T

Model-free

- Model-free
- Assume the environment is episodic
 - Think of playing a card game (like poker). An episode is a hand.
 - Updates the policy after each episode

- Model-free
- Assume the environment is episodic
 - Think of playing a card game (like poker). An episode is a hand.
 - Updates the policy after each episode
- Intuition
 - Experience many episodes
 - Play many hands (of poker)
 - Average the rewards received at each state
 - What is the proportion of wins given your curent cards

Prediction vs. control

- 1. Prediction: evaluate a given policy
- 2. Control: Learn a policy
- Sometimes also called
 - passive (prediction)
 - active (control)

First-visit Monte Carlo

- Given a fixed policy (prediction)
- Calculate the value function V(s) for each state

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Initialize:

\pi \leftarrow \text{policy to be evaluated}

V \leftarrow \text{an arbitrary state-value function}

Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}

Repeat forever:

Generate an episode using \pi

For each state s appearing in the episode:

G \leftarrow \text{the return that follows the first occurrence of } s

Append G to Returns(s)

V(s) \leftarrow \text{average}(Returns(s))
```

[Sutton & Barto, RL Book, Ch 5]

• Converges to $V_{\pi}(s)$ as the number of visits to each state goes to infinity

Laurent Charlin — 80-629

First-visit Monte Carlo

- Given a fixed policy (prediction)
- Calculate the value function V(s) for each state

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Initialize:

\pi \leftarrow \text{policy to be evaluated}

V \leftarrow \text{an arbitrary state-value function}

Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}

Repeat forever:

Generate an episode using \pi

For each state s appearing in the episode:

G \leftarrow \text{the return that follows the first occurrence of } s

Append G to Returns(s)

V(s) \leftarrow \text{average}(Returns(s))
```

[Sutton & Barto, RL Book, Ch 5]

• Converges to $V_{\pi}(s)$ as the number of visits to each state goes to infinity

 $V(s_t) = \max_{a_t} \left\{ R(s_t) + \gamma \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a_t) V(s_{t+1}) \right\}$

Policy π is given (gray arrows)

Episode: (1, →)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow$ policy to be evaluated $V \leftarrow$ an arbitrary state-value function $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

 $V(s) \leftarrow \text{average}(Returns(s))$

Repeat forever:

Generate an episode using π For each state s appearing in the episode: $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

• Policy π is given (gray arrows)

Episode: (1, →)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

• Policy π is given (gray arrows)

Episode: (1, →)

3 4 7 8 7 8 10 11 13 14

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

• Policy π is given (gray arrows)

Episode: $(1, \longrightarrow) \longrightarrow (2, \longrightarrow)$

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

• Policy π is given (gray arrows)

Episode: $(1, \longrightarrow) \longrightarrow (2, \longrightarrow)$

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \longrightarrow) \longrightarrow (2, \longrightarrow) \longrightarrow (3, \downarrow)$

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Policy π is given (gray arrows)

Episode: $(1, \longrightarrow) \longrightarrow (2, \longrightarrow) \longrightarrow (3, \downarrow) \longrightarrow (7, \downarrow)$

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

• Policy π is given (gray arrows)

Episode: $(1, \longrightarrow) \longrightarrow (2, \longrightarrow) \longrightarrow (3, \downarrow) \longrightarrow (7, \downarrow)$

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

Episode: $(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow)$

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow) \longrightarrow (2, \longrightarrow) \longrightarrow (3, \downarrow) \longrightarrow (7, \downarrow) \longrightarrow (6, \longrightarrow)$$


```
\pi \leftarrow policy to be evaluated
                                                                                           V \leftarrow an arbitrary state-value function
                                                                                           Returns(s) \leftarrow \text{an empty list, for all } s \in S
    Bottom right is absorbing (end of episode)
                                                                                       Repeat forever:
                                                                                           Generate an episode using \pi
                                                                                           For each state s appearing in the episode:
                                                                                               G \leftarrow the return that follows the first occurrence of s
• Policy \pi is given (gray arrows)
                                                                                               Append G to Returns(s)
                                                                                               V(s) \leftarrow \text{average}(Returns(s))
```

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

Episode:
$$(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow)$$

- Policy π is given (gray arrows)

```
Initialize:
                                                                                             \pi \leftarrow policy to be evaluated
                                                                                             V \leftarrow an arbitrary state-value function
                                                                                             Returns(s) \leftarrow \text{an empty list, for all } s \in S
Bottom right is absorbing (end of episode)
                                                                                        Repeat forever:
                                                                                            Generate an episode using \pi
                                                                                             For each state s appearing in the episode:
                                                                                                 G \leftarrow the return that follows the first occurrence of s
                                                                                                 Append G to Returns(s)
                                                                                                 V(s) \leftarrow \text{average}(Returns(s))
```

First-visit MC prediction, for estimating $V \approx v_{\pi}$

```
Episode: (1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow)
```


- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Initialize: $\pi \leftarrow \text{policy to be evaluated}$

 $V \leftarrow$ an arbitrary state-value function $Returns(s) \leftarrow$ an empty list, for all $s \in S$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow)$$

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Initialize: $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$ Repeat forever: Generate an episode using π For each state s appearing in the episode: $G \leftarrow \text{the return that follows the first occurrence of } s$ Append G to Returns(s) $V(s) \leftarrow \text{average}(Returns(s))$

```
Episode: (1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow)
```


• Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

 $V(s) \leftarrow average(Returns(s))$

Episode:
$$(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow)$$

16

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_\pi$ Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

Episode:
$$(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow)$$

16

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow)$$
 \rightarrow $(2, \longrightarrow)$ \rightarrow $(3, \downarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(6, \longrightarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(10, \downarrow)$ \rightarrow $(13, \downarrow)$ \rightarrow $(17, \longrightarrow)$

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

 $V(s) \leftarrow average(Returns(s))$

Episode:
$$(1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \longrightarrow)$$

9 10 11 12 13 14 15 16 17

16

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow)$$
 \rightarrow $(2, \longrightarrow)$ \rightarrow $(3, \downarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(6, \longrightarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(10, \downarrow)$ \rightarrow $(13, \downarrow)$ \rightarrow $(17, \longrightarrow)$

- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Initialize:

\pi \leftarrow \text{policy to be evaluated}

V \leftarrow \text{an arbitrary state-value function}

Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}

Repeat forever:

Generate an episode using \pi

For each state s appearing in the episode:

G \leftarrow \text{the return that follows the first occurrence of } s

Append G to Returns(s)
```



```
Episode: (1, \longrightarrow) \rightarrow (2, \longrightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \longrightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \longrightarrow)
```


- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Initialize: $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$ Repeat forever: Generate an episode using π For each state s appearing in the episode: $G \leftarrow \text{the return that follows the first occurrence of } s$ Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

For state 7:

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating
$$V \approx v_{\pi}$$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s

Append G to Returns(s)

Episode:
$$(1, \longrightarrow)$$
 \rightarrow $(2, \longrightarrow)$ \rightarrow $(3, \downarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(6, \longrightarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(10, \downarrow)$ \rightarrow $(13, \downarrow)$ \rightarrow $(17, \longrightarrow)$

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating
$$V \approx v_{\pi}$$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow)$$
 \rightarrow $(2, \longrightarrow)$ \rightarrow $(3, \downarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(6, \longrightarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(10, \downarrow)$ \rightarrow $(13, \downarrow)$ \rightarrow $(17, \longrightarrow)$

• Policy π is given (gray arrows)

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ the return that follows the first occurrence of s Append G to Returns(s)

Episode:
$$(1, \longrightarrow)$$
 \rightarrow $(2, \longrightarrow)$ \rightarrow $(3, \downarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(6, \longrightarrow)$ \rightarrow $(7, \downarrow)$ \rightarrow $(10, \downarrow)$ \rightarrow $(13, \downarrow)$ \rightarrow $(17, \longrightarrow)$

$$V(7) = \gamma^6 * 10$$

Summary

- Introduced terminology:
 - model based, model-free
- First algorithm for policy evaluation (First-visit MC)
- Compared to MDPs
 - We the agent now has to explore the world to evaluate its value function

Algorithms for RL Control

We know about state-value functions V(s)

- We know about state-value functions V(s)
 - If state transitions are known then they can be used to derive an optimal policy [recall value iteration]:

$$\boldsymbol{\pi}^*(\mathbf{s}) = \arg\max_{\mathbf{a}} \left\{ \mathbf{R}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \mathbf{V}^*(\mathbf{s}') \right\} \ \forall \mathbf{s}$$

- We know about state-value functions V(s)
 - If state transitions are known then they can be used to derive an optimal policy [recall value iteration]:

$$\boldsymbol{\pi}^*(\mathbf{s}) = \arg\max_{\mathbf{a}} \left\{ \mathbf{R}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \mathbf{V}^*(\mathbf{s}') \right\} \ \forall \mathbf{s}$$

When state transitions are unknown what can we do?

- We know about state-value functions V(s)
 - If state transitions are known then they can be used to derive an optimal policy [recall value iteration]:

$$\boldsymbol{\pi}^*(\mathbf{s}) = \arg\max_{\mathbf{a}} \left\{ \mathbf{R}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \mathbf{V}^*(\mathbf{s}') \right\} \ \forall \mathbf{s}$$

- When state transitions are unknown what can we do?
 - Q(s,a) the value function of a (state,action) pair

$$\boldsymbol{\pi}^*(\mathbf{s}) = \arg\max_{\mathbf{a}} \left\{ \mathbf{Q}^*(\mathbf{s}, \mathbf{a}) \right\} \ \forall \mathbf{s}$$

Monte Carlo ES (control)

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $\pi(s) \leftarrow \text{arbitrary}$ $Returns(s,a) \leftarrow \text{empty list}$ Repeat forever: $\text{Choose } S_0 \in \mathcal{S} \text{ and } A_0 \in \mathcal{A}(S_0) \text{ s.t. all pairs have probability} > 0$ $\text{Generate an episode starting from } S_0, A_0, \text{ following } \pi$ For each pair s, a appearing in the episode: $G \leftarrow \text{the return that follows the first occurrence of } s, a$ Append G to Returns(s,a) $Q(s,a) \leftarrow \text{average}(Returns(s,a))$ For each s in the episode: $\pi(s) \leftarrow \text{arg max}_a Q(s,a)$

[Sutton & Barto, RL Book, Ch.5]

First-visit MC prediction, for estimating $V \approx$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π For each state s appearing in the episode: $G \leftarrow$ the return that follows the first occurrence Append G to Returns(s) $V(s) \leftarrow average(Returns(s))$

Laurent Charlin — 80-629

Monte Carlo ES (control)

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*

Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):

Q(s,a) \leftarrow \text{arbitrary}
\pi(s) \leftarrow \text{arbitrary}
Returns(s,a) \leftarrow \text{empty list}

Repeat forever:

Choose S_0 \in \mathcal{S} and A_0 \in \mathcal{A}(S_0) s.t. all pairs have probability > 0
Generate an episode starting from S_0, A_0, following \pi

For each pair s, a appearing in the episode:

G \leftarrow \text{the return that follows the first occurrence of } s, a
Append G to Returns(s,a)

Q(s,a) \leftarrow \text{average}(Returns(s,a))

For each s in the episode:

\pi(s) \leftarrow \text{arg max}_a \ Q(s,a)
```

```
Initialize: \pi \leftarrow \text{policy to be evaluated} \\ V \leftarrow \text{an arbitrary state-value function} \\ Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S} \\ \text{Repeat forever:} \\ \text{Generate an episode using } \pi \\ \text{For each state } s \text{ appearing in the episode:} \\ G \leftarrow \text{the return that follows the first occurrence} \\ \text{Append } G \text{ to } Returns(s) \\ \end{cases}
```

 $V(s) \leftarrow \text{average}(Returns(s))$

First-visit MC prediction, for estimating $V \approx$

[Sutton & Barto, RL Book, Ch.5]

- Strong reasons to believe that it converges to the optimal policy
- "Exploring starts" requirement may be unrealistic

Laurent Charlin — 80-629

Learning without "exploring starts"

- "Exploring starts" insures that all states can be visited regardless of the policy
 - (Specific policy may not visit all states)
 - Unrealistic in real-world settings

Learning without "exploring starts"

- "Exploring starts" insures that all states can be visited regardless of the policy
 - (Specific policy may not visit all states)
 - Unrealistic in real-world settings
- Solution: inject some uncertainty in the policy

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
    Q(s, a) \leftarrow \text{arbitrary}
    Returns(s, a) \leftarrow \text{empty list}
    \pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
Repeat forever:
    (a) Generate an episode using \pi
    (b) For each pair s, a appearing in the episode:
             G \leftarrow the return that follows the first occurrence of s, a
             Append G to Returns(s, a)
             Q(s, a) \leftarrow \text{average}(Returns(s, a))
    (c) For each s in the episode:
             A^* \leftarrow \arg\max_a Q(s, a)
                                                                                      (with ties broken arbitrarily)
             For all a \in \mathcal{A}(s):
                 \pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}
```

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
Q(s,a) \leftarrow \text{arbitrary}
\pi(s) \leftarrow \text{arbitrary}
Returns(s,a) \leftarrow \text{empty list}
Repeat forever:
\text{Choose } S_0 \in \mathcal{S} \text{ and } A_0 \in \mathcal{A}(S_0) \text{ s.t. all pairs have probability } > 0
\text{Generate an episode starting from } S_0, A_0, \text{ following } \pi
\text{For each pair } s, a \text{ appearing in the episode:}
G \leftarrow \text{the return that follows the first occurrence of } s, a
\text{Append } G \text{ to } Returns(s,a)
Q(s,a) \leftarrow \text{average}(Returns(s,a))
\text{For each } s \text{ in the episode:}
\pi(s) \leftarrow \text{arg} \max_a Q(s,a)
```

[Sutton & Barto, RL Book, Ch.5]

22

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
    Q(s, a) \leftarrow \text{arbitrary}
    Returns(s, a) \leftarrow \text{empty list}
    \pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
Repeat forever:
    (a) Generate an episode using \pi
    (b) For each pair s, a appearing in the episode:
             G \leftarrow the return that follows the first occurrence of s, a
             Append G to Returns(s, a)
             Q(s, a) \leftarrow \text{average}(Returns(s, a))
    (c) For each s in the episode:
             A^* \leftarrow \arg\max_a Q(s, a)
                                                                                     (with ties broken arbitrarily)
             For all a \in \mathcal{A}(s):
                 \pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}
```

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
Q(s,a) \leftarrow \text{arbitrary}
\pi(s) \leftarrow \text{arbitrary}
Returns(s,a) \leftarrow \text{empty list}
Repeat forever:
\text{Choose } S_0 \in \mathcal{S} \text{ and } A_0 \in \mathcal{A}(S_0) \text{ s.t. all pairs have probability} > 0
\text{Generate an episode starting from } S_0, A_0, \text{ following } \pi
\text{For each pair } s, a \text{ appearing in the episode:}
G \leftarrow \text{the return that follows the first occurrence of } s, a
\text{Append } G \text{ to } Returns(s,a)
Q(s,a) \leftarrow \text{average}(Returns(s,a))
\text{For each } s \text{ in the episode:}
\pi(s) \leftarrow \text{arg max}_a Q(s,a)
```

[Sutton & Barto, RL Book, Ch.5]

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
   Q(s, a) \leftarrow \text{arbitrary}
   Returns(s, a) \leftarrow \text{empty list}
   \pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
Repeat forever:
   (a) Generate an episode using \pi
   (b) For each pair s, a appearing in the episode:
            G \leftarrow the return that follows the first occurrence of s, a
            Append G to Returns(s, a)
            Q(s, a) \leftarrow \text{average}(Returns(s, a))
   (c) For each s in the episode:
            A^* \leftarrow \arg\max_a Q(s, a)
                                                                            (with ties broken arbitrarily)
            For all a \in \mathcal{A}(s):
                                1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| if a = A^*
                                                         if a \neq A^*
```

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $\pi(s) \leftarrow \text{arbitrary}$ $Returns(s,a) \leftarrow \text{empty list}$ Repeat forever: $\text{Choose } S_0 \in \mathcal{S} \text{ and } A_0 \in \mathcal{A}(S_0) \text{ s.t. all pairs have probability } > 0$ $\text{Generate an episode starting from } S_0, A_0, \text{ following } \pi$ For each pair s, a appearing in the episode: $G \leftarrow \text{the return that follows the first occurrence of } s, a$ Append G to Returns(s,a) $Q(s,a) \leftarrow \text{average}(Returns(s,a))$ For each s in the episode: $\pi(s) \leftarrow \text{arg} \max_a Q(s,a)$

[Sutton & Barto, RL Book, Ch.5]

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
   Q(s, a) \leftarrow \text{arbitrary}
   Returns(s, a) \leftarrow \text{empty list}
   \pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
Repeat forever:
   (a) Generate an episode using \pi
   (b) For each pair s, a appearing in the episode:
            G \leftarrow the return that follows the first occurrence of s, a
            Append G to Returns(s, a)
            Q(s, a) \leftarrow \text{average}(Returns(s, a))
   (c) For each s in the episode:
            A^* \leftarrow \arg\max_a Q(s, a)
                                                                            (with ties broken arbitrarily)
            For all a \in \mathcal{A}(s):
                                1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| if a = A^*
                                                         if a \neq A^*
```

[Sutton & Barto, RL Book, Ch.5]

Policy value cannot decrease

$$v_{\boldsymbol{\pi}'}(s) \geq v_{\boldsymbol{\pi}}(s), \forall s \in S$$

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $\pi(s) \leftarrow \text{arbitrary}$ $Returns(s,a) \leftarrow \text{empty list}$ Repeat forever: $\text{Choose } S_0 \in \mathcal{S} \text{ and } A_0 \in \mathcal{A}(S_0) \text{ s.t. all pairs have probability } > 0$ $\text{Generate an episode starting from } S_0, A_0, \text{ following } \pi$ For each pair s, a appearing in the episode: $G \leftarrow \text{the return that follows the first occurrence of } s, a$ Append G to Returns(s,a) $Q(s,a) \leftarrow \text{average}(Returns(s,a))$ For each s in the episode: $\pi(s) \leftarrow \text{arg max}_a Q(s,a)$

 π : policy at current step π : policy at next step

Monte-Carlo methods summary

- Allow a policy to be learned through interactions
 - (Does not learn transitions)
- States are effectively treated as being independent
 - Focus on a subset of states (e.g., states for which playing optimally is of particular importance)
- Episodic (with or without exploring starts)

• One of the "central ideas of RL" [Sutton & Barto, RL book]

• One of the "central ideas of RL" [Sutton & Barto, RL book]

• Monte Carlo methods $\textbf{V}'(\textbf{s}_t) = \textbf{V}(\textbf{s}_t) + \alpha[\textbf{G}_t - \textbf{V}(\textbf{s}_t)]$ Step size

• One of the "central ideas of RL" [Sutton & Barto, RL book]

Monte Carlo methods

$$\mathbf{G_t} = \sum_{\mathbf{t}}^{\mathbf{T}} \gamma^{\mathbf{t}} \mathbf{R}(\mathbf{s_t})$$

First-visit MC prediction, for estima

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

Repeat forever:

Generate an episode using π For each state s appearing in the episode

 $G \leftarrow$ the return that follows the first

Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

- One of the "central ideas of RL" [Sutton & Barto, RL book]
- Monte Carlo methods

Observed returned: $V'(s_t) = V(s_t) + \alpha G_t - V(s_t)$

Step size

TD(0)

updates "instantly"

 $\mathbf{G_t} = \sum_{\mathbf{r}} \gamma^{\mathbf{t}} \mathbf{R}(\mathbf{s_t})$

First-visit MC prediction, for estima

Initialize:

 $\pi \leftarrow$ policy to be evaluated $V \leftarrow$ an arbitrary state-value function $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

Repeat forever:

Generate an episode using π For each state s appearing in the episode $G \leftarrow$ the return that follows the first

Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

- One of the "central ideas of RL" [Sutton & Barto, RL book]
- Monte Carlo methods

Observed returned :
$$\mathbf{G_t} = \sum_{\mathbf{t}}^{\mathbf{t}} \gamma^{\mathbf{t}} \mathbf{R}(\mathbf{s_t})$$

$$\mathbf{V}'(\mathbf{s_t}) = \mathbf{V}(\mathbf{s_t}) + \alpha \mathbf{G_t} - \mathbf{V}(\mathbf{s_t})$$
Step size

- TD(0)
 - updates "instantly"

$$\mathbf{V}'(\mathbf{s_t}) = \mathbf{V}(\mathbf{s_t}) + \alpha [\underbrace{\mathbf{R}(\mathbf{s_t}) + \gamma \mathbf{V}(\mathbf{s_{t+1}})}_{\approx \mathbf{G_t}} - \mathbf{V}(\mathbf{s_t})]$$

First-visit MC prediction, for estima

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

Repeat forever:

Generate an episode using π For each state s appearing in the episode $G \leftarrow$ the return that follows the first

Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

TD(0) for prediction

[Sutton & Barto, RL Book, Ch.6]

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated

Initialize V(s) arbitrarily (e.g., V(s) = 0, for all s \in S^+)

Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

A \leftarrow action given by \pi for S

Take action A, observe R, S'

V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]

S \leftarrow S'

until S is terminal
```

TD for control

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal,\cdot) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Loop for each step of episode:
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma Q(S',A') - Q(S,A) \big]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated

Initialize V(s) arbitrarily (e.g., V(s) = 0, for all s \in S^+)

Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

A \leftarrow action given by \pi for S

Take action A, observe R, S'

V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right]

S \leftarrow S'

until S is terminal
```

Comparing TD and MC

- MC requires going through full episodes before updating the value function. Episodic.
- Converges to the optimal solution

- TD updates each V(s) after each transition. Online.
- Converges to the optimal solution (some conditions on α)
- Empirically TD methods tend to converge faster

27

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Initialize Q(s,a), for all s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'
```

[Sutton & Barto, RL Book, Ch.6]

until S is terminal

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Initialize Q(s, a), for all $s \in S$, $a \in A(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode):

Initialize S

 ϵ -greedy policy

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ϵ -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

$$S \leftarrow S'$$

until S is terminal

[Sutton & Barto, RL Book, Ch.6]

$$\mathbf{a} = \begin{cases} \arg\max_{\mathbf{a}} \mathbf{Q}(\mathbf{a}, \mathbf{s}) & \text{with probability } 1 - \epsilon, \\ \text{random a} & \text{with probability } \epsilon. \end{cases}$$

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Initialize Q(s, a), for all $s \in S$, $a \in A(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode):

Initialize S

 ϵ -greedy policy

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ϵ -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

$$S \leftarrow S'$$

[Sutton & Barto, RL Book, Ch.6] until S is terminal

$$\mathbf{a} = \begin{cases} \arg\max_{\mathbf{a}} \mathbf{Q}(\mathbf{a}, \mathbf{s}) & \text{with probability } 1 - \epsilon, \\ \text{random a} & \text{with probability } \epsilon. \end{cases}$$

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Initialize Q(s, a), for all $s \in S$, $a \in A(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode):

Initialize S

 ϵ -greedy policy

until S is terminal

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ϵ -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

$$S \leftarrow S'$$

[Sutton & Barto, RL Book, Ch.6]

$$\mathbf{a} = \begin{cases} \arg\max_{\mathbf{a}} \mathbf{Q}(\mathbf{a}, \mathbf{s}) & \text{with probability } \mathbf{1} - \epsilon, \\ \text{random a} & \text{with probability } \epsilon. \end{cases}$$

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Initialize Q(s, a), for all s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
```

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ϵ -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$

 ϵ -greedy policy

until S is terminal

$$\mathbf{a} = \begin{cases} \arg\max_{\mathbf{a}} \mathbf{Q}(\mathbf{a}, \mathbf{s}) & \text{with probability } 1 - \epsilon, \\ \text{random a} & \text{with probability } \epsilon. \end{cases}$$

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Initialize Q(s,a), for all s \in S, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
   Initialize S
Repeat (for each step of episode):
   Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
   Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'
```

[Sutton & Barto, RL Book, Ch.6]

until S is terminal

 Converges to Q* as long as all (s,a) pairs continue to be updated and with minor constraints on learning rate

Summary

- Introduced algorithms for learning the optimal policy
 - Monte Carlo and TD methods
 - On-policy and off-policy methods

Practical difficulties

- Compared to supervised learning setting up an RL problem is often harder
 - Need an environment (or at least a simulator)
- Rewards
 - In some domains it's clear (e.g., in games)
 - In others it's much more subtle (e.g., you want to please a human)

Extra material (Some will be used for this week's exercises)

Example: Black Jack

- Episode: one hand
- States: Sum of player's cards, dealer's card, usable ace
- Actions: {Stay, Hit}
- Rewards: {Win +1, Tie 0, Loose -1}
- A few other assumptions: infinite deck

> No usable ace

[Figure 5.1, Sutton & Barto]

Usable ace

No usable ace

[Figure 5.1, Sutton & Barto]

Usable ace

No usable ace

[Figure 5.1, Sutton & Barto]

[Figure 5.1, Sutton & Barto]

- Methods we studied are "tabular"
- State value functions (and Q) can be approximated
 - Linear approximation: $V(s) = w^T x(s)$
 - Coupling between states through x(s)
 - Adapt the algorithms for this case.
 - Updates to the value function now imply updating the weights w using a gradient

• Linear approximation: $V(s) = w^{T}x(s)$

• Linear approximation: $V(s) = w^T x(s)$

• Objective: $\sum_{s \in S} \left[v_{\pi}(s) - w^{\top} x(s) \right]^{2}$

• Linear approximation: $V(s) = w^T x(s)$

• Objective:
$$\sum_{s \in S} \left[v_{\pi}(s) - w^{\top} x(s) \right]^2$$

• Gradient update: $w_{t+1} = w_t - 2\alpha \sum_{s \in S} \left[v_\pi(s) - w^\top x(s) \right] x(s)$

- Linear approximation: $V(s) = w^T x(s)$
- Objective: $\sum_{s \in S} \left[v_{\pi}(s) w^{\top} x(s) \right]^{2}$
- Gradient update: $w_{t+1} = w_t 2\alpha \sum_{s \in S} \left[v_{\pi}(s) w^{\top} x(s) \right] x(s)$

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v}: \mathbb{S} \times \mathbb{R}^d \to \mathbb{R}$

Initialize value-function weights \mathbf{w} as appropriate (e.g., $\mathbf{w} = \mathbf{0}$) Repeat forever:

Generate an episode $S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T$ using π

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha [G_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$

[Sutton & Barto, RL Book, Ch.9]

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π For each state s appearing in the episode: $G \leftarrow$ the return that follows the first occurrence of sAppend G to Returns(s) $V(s) \leftarrow average(Returns(s))$

- Linear approximation: $V(s) = w^T x(s)$
- Objective: $\sum_{s \in S} \left[v_{\pi}(s) w^{\top} x(s) \right]^{2}$
- Gradient update: $w_{t+1} = w_t 2\alpha \sum_{s \in S} \left[v_{\pi}(s) w^{\top} x(s) \right] x(s)$

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v}: \mathbb{S} \times \mathbb{R}^d \to \mathbb{R}$

Initialize value-function weights \mathbf{w} as appropriate (e.g., $\mathbf{w} = \mathbf{0}$) Repeat forever:

Generate an episode $S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T$ using π

For $t = 0, 1, \dots, T - 1$:

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha \big[G_t - \hat{v}(S_t, \mathbf{w}) \big] \nabla \hat{v}(S_t, \mathbf{w})$

[Sutton & Barto, RL Book, Ch.9]

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

Repeat forever:

Generate an episode using π For each state s appearing in the episode: $G \leftarrow$ the return that follows the first occurrence of sAppend G to Returns(s) $V(s) \leftarrow average(Returns(s))$

 G_t is an unbiased estimator of $v_{\pi}(s_t)$

Works both for prediction and control

- Works both for prediction and control
- Any model can be used to approximate

- Works both for prediction and control
- Any model can be used to approximate
- Recent work using deep neural networks yield impressive performance on computer (Atari) games

Laurent Charlin — 80-629

Summary

- Today we have defined RL studied several algorithms for solving RL problems (mostly for for tabular case)
- Main challenges
 - Credit assignment
 - Exploration/Exploitation tradeoff
- Algorithms
 - Prediction
 - Monte Carlo and TD(0)
 - Control
 - Q-learning
- Approximation algorithms can help scale reinforcement learning

Practical difficulties

- Compared to supervised learning setting up an RL problem is often harder
 - Need an environment (or at least a simulator)
- Rewards
 - In some domains it's clear (e.g., in games)
 - In others it's much more subtle (e.g., you want to please a human)

Acknowledgements

- The algorithms are from "Reinforcement Learning: An Introduction" by Richard Sutton and Andrew Barto
 - The definitive RL reference
- Some of these slides were adapted from Pascal Poupart's slides (CS686 U.Waterloo)
- The TD demo is from Andrej Karpathy