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Brief recap

e Markov Decision Processes (MDP)
o Offer a framework for sequential decision making
(A,S,P,R,7)
e Goal: find the optimal policy

« Dynamic programming and several algorithms (e.g., VI,Pl)
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From MDPs to RL

e In MDPs we assume that we know
1. Transition probabilities: P(s’| s, a)
2. Reward function: R(s)

e RL is more general
e In RL both are typically unknown

e RL agents navigate the world to gather this
information
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Experience

A. Supervised Learning:

e Given fixed dataset

o Goal: maximize objective on test set (population)
B. Reinforcement Learning

e Collect data as agent interacts with the world

e Goal: maximize sum of rewards
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Algorithms for
Reinforcement
Learning



Monte Carlo Methods
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Monte Carlo Methods

e Model-free

e Assume the environment is episodic
o Think of playing a card game (like poker). An episode is a hand.
o« Updates the policy after each episode
e Intuition
e Experience many episodes
« Play many hands (of poker)
o Average the rewards received at each state

e What is the proportion of wins given your curent cards
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First-visit Monte Carlo

e« Given a fixed policy (prediction)

o Calculate the value function V(s) for each state

First-visit MC prediction, for estimating V ~ v,

Initialize:
 +— policy to be evaluated
V « an arbitrary state-value function
Returns(s) + an empty list, for all s € 8

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
GG + the return that follows the first occurrence of s
Append G to Returns(s) [Sutton & Barto,
V (s8) «+ average(Returns(s)) RL Book, Ch 3]

e Converges to V;(s) as the number of visits to each
state goes to Iinfinity



First-visit Monte Carlo

e« Given a fixed policy (prediction)

o Calculate the value function V(s) for each state

First-visit MC prediction, for estimating V =~ v,

Initialize:
 +— policy to be evaluated
V « an arbitrary state-value function
Returns(s) + an empty list, for all s € 8

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
Append G to Returns(s) [Sutton & Barto,
V (s8) «+ average(Returns(s)) RL Book, Ch 3]

e Converges to V;(s) as the number of visits to each

state goes to infinit
d Y L/(St) = max R(St) + 7y Z P(St_|_'| ‘ St, at)V(st+1)

dt

St+1
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Example: Black Jack *,

« Episode: one hand

e States: Sum of player’s cards, dealer’s card, usable ace
e Actions: {Stay, Hit}

e Rewards: {Win +1, Tie O, Loose -1}

e A few other assumptions: infinite deck
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Q-value function for
control

e We know about state-value functions V(s)



Q-value function for
control

e We know about state-value functions V(s)

o If state transitions are known then they can be used to
derive an optimal policy [recall value iteration]:

a

mM*(S) = arg max {R(s) + VZ P(s'|s,a)V” (s’)} Vs
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Q-value function for
control

e We know about state-value functions V(s)

o If state transitions are known then they can be used to
derive an optimal policy [recall value iteration]:

'IT*(S)argmaX{ +72P 's,a)V(s )} Vs
e When state transitions are unknown what can we do?

e Q(s,a) the value function of a (state,action) pair

m*(S) = arg max {Q*(s,a)} Vs
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[Sutton & Barto,
RL Book, Ch.5]
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Monte Carlo without
exploring starts (on policy)

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ ,

Initialize, for all s € 8, a € A(s):
Q(s, a) + arbitrary
Returns(s,a) + empty list
m(a|s) + an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
G + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
(c) For each s in the episode:
A" + arg max, Q(s,a)
For all a € A(s):
l1—e+¢e/|A(s)] ifa=A"
m(ale) < { e/ A(s)| if a # A°

(with ties broken arbitrarily)

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

Initialize, for all s € §, a € A(3):
Q(s,a) + arbitrary
m(8) + arbitrary
Returns(s,a) + empty list

Repeat forever:
Choose Sy € 8§ and Ap € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ao, following 7
For each pair s,a appearing in the episode:
GG + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
For each s in the episode:
m(8) + argmax, Q(s,a)
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Monte Carlo without

exploring starts (on policy)

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ ,

Initialize, for all s € 8, a € A(3):
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1 / § 5, U (11D
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Monte Carlo without
exploring starts (on policy)

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ ,

Initialize, for all s € 8, a € A(3):
Q(s, a) + arbitrary
af= ns(s. a eIMD

m(a|s) + an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
G + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
(c) For each s in the episode:
A" + arg max, Q(s,a)
For all a € A(s):
l1—e+¢e/|A(s)] ifa=A"
ifa # A"

(with ties broken arbitrarily)

e/|A(s)]

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

Initialize, for all s € §, a € A(3):
Q(s,a) + arbitrary
m(8) + arbitrary
Returns(s,a) + empty list

Repeat forever:
Choose Sy € 8§ and Ap € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ao, following 7
For each pair s,a appearing in the episode:
GG + the return that follows the first occurrence of s,a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
For each s in the episode:
m(8) + argmax, Q(s,a)

e Policy value cannot decrease
Vi (S) > Vg(S),Vs € S
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Monte-Carlo methods
summary

o Allow a policy to be learned through interactions
e« (Does not learn transitions)
o States are effectively treated as being independent

e Focus on a subset of states (e.g., states for which
playing optimally is of particular importance)

o Episodic (with or without exploring starts)
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TD for control

Sarsa (on-policy TD control) for estimating () ~ ¢,
Tabular TD(0) for estimating v,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8*,a € A(s), arbitrarily except that Q(terminal,-) =0 Input: the policy 7 to be evaluated
Initialize V' (s) arbitrarily (e.g., V(s) =0, for all s € 87)

Loop for each episode: Repeat (for each episode):
Initialize S Initialize S

Choose A from S using policy derived from @ (e.g., e-greedy) Relj:ai (:giisic ;zzpb(;,f:pfi:: %e):

Loop for each step of episode: N e e T bl G
Take action A, observe R, S’ V(S) « V(S)+ a[R+~V(S") - V(9)]
Choose A’ from S’ using policy derived from @ (e.g., e-greedy) S5
Q(S, A) “ Q(S, A) 4 Oé[R 4 ,YQ(S/, Al) . Q(S, A)] until S is terminal
S+ S A+ A

until S is terminal
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Comparing TD and MC

e MC requires going through e« TD updates each V(s) after

full episodes before each transition. Online.
updating the value
function. Episodic. « Converges to the optimal
solution (some conditions
« Converges to the optimal on )
solution

« Empirically TD methods
tend to converge faster
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