
Machine Learning I

MATH60629

Machine Learning fundamentals — Summary

— Week #2



Laurent Charlin — MATH60629

Three main components

1.  Task (T). The question you are answering.


• Model. How to parametrize?


2.  Performance measure (P). How good is the model?


3.  Experience (E). What type of data do you have 
access to? 
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Les types d’expériences

• Supervised {(x,y)}. e.g., regression, classification. f: X -> Y • 


• Unsupervised {(x)}. e.g., clustering, dim. reduction, density 
estimation  


• Reinforcement learning. Agent takes actions in an environment.
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Model Evaluation
• Given:


• A performance measure


• A train dataset


• A model


• Can calculate: 


• Train error: used to learn (to train).


• Train error cannot be used to evaluate your model


• Must use a separate dataset for evaluation
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CHAPTER 5. MACHINE LEARNING BASICS
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Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

the concept of non-parametric models. So far, we have seen only parametric
models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression,
which has a fixed-length vector of weights, the nearest neighbor regression model
simply stores the X and y from the training set. When asked to classify a test
point x, the model looks up the nearest entry in the training set and returns the
associated regression target. In other words, ŷ = yi where i = arg min ||Xi,: � x||

2
2.

The algorithm can also be generalized to distance metrics other than the L2 norm,
such as learned distance metrics (Goldberger et al., 2005). If the algorithm is
allowed to break ties by averaging the yi values for all Xi,: that are tied for nearest,
then this algorithm is able to achieve the minimum possible training error (which
might be greater than zero, if two identical inputs are associated with different
outputs) on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
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Figure 5.4: The effect of the training dataset size on the train and test error, as well as
on the optimal model capacity. We constructed a synthetic regression problem based on
adding a moderate amount of noise to a degree-5 polynomial, generated a single test set,
and then generated several different sizes of training set. For each size, we generated 40
different training sets in order to plot error bars showing 95 percent confidence intervals.
(Top)The MSE on the training and test set for two different models: a quadratic model,
and a model with degree chosen to minimize the test error. Both are fit in closed form. For
the quadratic model, the training error increases as the size of the training set increases.
This is because larger datasets are harder to fit. Simultaneously, the test error decreases,
because fewer incorrect hypotheses are consistent with the training data. The quadratic
model does not have enough capacity to solve the task, so its test error asymptotes to
a high value. The test error at optimal capacity asymptotes to the Bayes error. The
training error can fall below the Bayes error, due to the ability of the training algorithm
to memorize specific instances of the training set. As the training size increases to infinity,
the training error of any fixed-capacity model (here, the quadratic model) must rise to at
least the Bayes error. (Bottom)As the training set size increases, the optimal capacity
(shown here as the degree of the optimal polynomial regressor) increases. The optimal
capacity plateaus after reaching sufficient complexity to solve the task.
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[Figure 5.4, Chapter 5, Deep Learning]

Training set size 

also plays an important 

role in a model’s capacity 

to generalize

Synthetic data is generated

using a degree 5 polynomial y = w5x5 +w4x4 +w3x3 +w2x2 +w1x1



Laurent Charlin — MATH60629

Regularization

• Can be thought of as way to limit a model’s capacity


• Loss := MSEtrain + λw!w
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Validation set
• How do we choose the right model and set its hyper parameters (e.g.   )? 


• Use a validation set


• Split the original data into two:


1. Train set


2. Validation set 


• Proxy to the test set


• Train different models/hyperparameter settings on the train set


• Pick the best according to their performance on the validation set

8
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• The goal is to hit the bull’s eye

• Each blue dot represents the 

“performance” of a fixed model 
on different data from the same 
distribution

Bias / Variance
CHAPTER 5. MACHINE LEARNING BASICS

The MSE measures the overall expected deviation—in a squared error sense—
between the estimator and the true value of the parameter ✓. As is clear from
equation 5.54, evaluating the MSE incorporates both the bias and the variance.
Desirable estimators are those with small MSE and these are estimators that
manage to keep both their bias and variance somewhat in check.

Capacity

Bias Generalization
error Variance

Optimal
capacity

Overfitting zoneUnderfitting zone

Figure 5.6: As capacity increases (x-axis), bias (dotted) tends to decrease and variance
(dashed) tends to increase, yielding another U-shaped curve for generalization error (bold
curve). If we vary capacity along one axis, there is an optimal capacity, with underfitting
when the capacity is below this optimum and overfitting when it is above. This relationship
is similar to the relationship between capacity, underfitting, and overfitting, discussed in
section 5.2 and figure 5.3.

The relationship between bias and variance is tightly linked to the machine
learning concepts of capacity, underfitting and overfitting. In the case where gen-
eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in figure 5.6, where we see again the U-shaped
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true
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