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Today

e Introduction to machine learning
e The course (syllabus)

e Math review (probability + linear algebra)
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Machine Learning (ML)

e Science that studies statistical and computational
aspects of modeling data for predictive purposes

e (Mostly) Empirical science
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> Predictions

Data >

e Task: Predict whether an image contains a malignant tumor

e Task: Predict the next movie a person should watch
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THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLIERS ARE. WRONG? )

JUST STiR THE PILE DNTIL
THEY START OOKING RIGHT

, https://xkcd.com/1838/
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“Data analysis, machine learning and data
mMining are various names given to the practice
of statistical inference, depending on the
context.”

Probability

Data generating Observed data

process

Inference

—Larry Wasserman in “All of Statistics: A Concise Course in Statistical
Inference.”



What is the goal of ML?



e A bit of historical context
e When | started my PhD very few in ML talked about Al
e Recent ML makes progress toward “Al tasks”

« Examples of Al tasks: dialogue (think ChatGPT), image
recognition, image generation

e |In that context: create a machine with human-like
capacities? Or a machine that can help humans?
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e For this course:
Understand data through predictive models

Understand the world through predictive models
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How does ML relate
to other fields?




Historical View

e« (Modern) Statistics: ~1900
e Machine Learning, Al, and Data Mining: ~1960

e Data Science: ~2000
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Statistics
+

Mathematics

Computer Science
+

Engineering

Substantive
Expertise

Laurent Charlin — 60629 12 [Inspired by Drew Conwayj]



Laurent Charlin — 60629

Attitudes in Machine Learning and Data Mining
Versus Attitudes in Traditional Statistics

Despite these differences, there’s a big overlap in problems addressed by machine

learning and data mining and by traditional statistics. But attitudes differ. ..

Machine learning

No settled philosophy or widely
accepted theoretical framework.

Willing to use ad hoc methods
if they seem to work well (though
appearances may be misleading).

Emphasis on automatic methods with
little or no human intervention.

Methods suitable for many problems.

Heavy use of computing.

Traditional statistics

Classical (frequentist) and
Bayesian philosophies compete.

Reluctant to use methods without
some theoretical justification (even if
the justification is actually meaningless).

Emphasis on use of human judgement
assisted by plots and diagnostics.

Models based on scientific knowledge.

Originally designed for hand-calculation,
but computing is now very important.

[Reproduced from R. Neal: http://www.utstat.utoronto.ca/~radford/sta414.S14/weeki.pdf ]



http://www.utstat.utoronto.ca/~radford/sta414.S14/week1.pdf
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2024
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Applications of ML



Google

artificial in|

artificial intelligence
artificial insemination

artificial intelligence movie
A.l. Artificial Intelligence — 2001 film

artificial intelligence definition

artificial intelligence in healthcare
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b Y

Prog resive Growing of GANS for Improved
Quality, Stability, and Variation
NVIDIA. Karras et al., ICLR'18



2018
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https://www.youtube.com/watch?v=vA4n5yNiTPs

TEXT PROMPT  an armchair in the shape of an avocado....

AL S 2

https://openai.com/blog/dall-e/

AI-GENERATED
IMAGES




« Medicine: personalized, automate diagnhostics
e Social sciences: prediction problem (e.g., predict recidivism)

e Engineering: to propose new design, evaluate without
building

« Finance: capture uncertainty, short-term trading

« Marketing: to understand and quantify user experience,
advertising efficacy

e Many others: conservation, social projects, climate change

e Your domain of expertise...
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Risks

« Powerful technology that continues to improve

o« Dual-use, like most technologies
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Course Introduction
& Goals




Logistics

e Course syllabus: http://mww.cs.toronto.edu/~Icharlin/courses/60629/
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http://www.cs.toronto.edu/~lcharlin/courses/60629/index.html

Flipped Classroom

e Every week:
1. Class preparation (Offline):
e Weekly material ( )
« Reading, watching capsules
2. Class time (Online):

e Summary, Q&A, problem solving ( )
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Suggestions for navigating
a flipped classroom

e In class: Come prepared
e Watch the capsules ahead of time
e Do the readings
« Write down your questions

o Capsules: Stay active while watching the capsules
(e.g., take notes, pause, go back, think of how it fits in
the broader context)
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Fit with other courses

e HEC
e PhD level (originally)

« Computationally oriented

e Prequel to
e Machine Learning ll: Deep Learning (MATH 60630A)
e Trustworthy Machine Learning (MATH 80630)
e Other ML courses in Montreal (U.Montreal, Polytechnique, Mcgill)

e More applied (similar to COMP-551@McGill)

Laurent Charlin — 60629 29



Short review of
linear algebra, statistics,
and probabilities



« Based on chapters 2 and 3 of “Deep Learning”

http://www.deeplearningbook.org/
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http://www.deeplearningbook.org/
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Linear algebra

e Scalar: a single value.

aceR aeN a—3

e Vector: an array of values. -2

5
acRP aeNP a= |4
2

e Matrix: a table of values. - -

A € RP*DP2 A ¢ NPr1xD2 A =

32

N B

Im NI




Indexing notation

e Indexing elements of a vector: 9 Convention:
o The first element
5 IS the zero'th.
a—= |4|— a
2

e Indexing elements of a matrix: djj

A =

3 4
1 2

2
9
T
di2
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e Transpose

e Addition

Simple operations

(Ay) ' = Ay

e Vectors and matrices w. the same shape

b:

a-+b=

(A + B)jj = Ajj + Bjj



Simple operations

« Multiply by a scalar ‘o ag
ad = | & dj
e az_

e Vector product.
e The dot product a'a=> a3
« Note: it yields a scalar.

« Element-wise product: dodo
d>©a= | aa;

« Also known as Hadamard product dadp
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Operations

o Matrix product (dot product):

Cii = > _k AikByj

e« A's columns must equal B’s rows (order is important)
A € RP*P2 B € RP2*Ps

 Distributive: A(B+C)=AB+ AC

» Associative: A(BC) = (AB)C

 Product of transpose: (AB)' =B'A"
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INnverse

« We denote a matrix’s inverse as A~!
e A matrix has an inverse Iiff:
e it'ssquare. Dj;=D;

. . . A sguare matrix
e Its columns are linearly independent. not invertible is singular

e No column can be recovered using a combination
of other columns

e Inverses are useful to solve systems of equations:

Ax=b x=A"b
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Norms

e LPnorm. Size of a vector (or matrix)

| aflp= (Z aip)‘/P

e Standard norms in ML:

« Euclidean norm (p=2) | all2= \ (Z ai2>

« Dot product w.2-norm: a'b = ||a||2||b||2 cos bap

e Frobenius norm (matrix): 1A= (>:>:au2)
i

\
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Special matrices & vectors

1 0 O
o Identity. Denoted I,,. =10 1 O
_0 0, 1
o All zeros except for ones on the main diagonal.
e Symmetric: A=A"
e Unitvector: ||a|; =1
« Orthogonal vectors: a'b =0

« Orthonormal vectors: unit and orthogonal A'A = AA' =|

e Orthogonal matrix: Orthonormal rows & columns
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o Skip eigendecomposition, SVD, pseudo-Inverse,
determinants (Sections 2.7-2.11).

« We will get back to them if/when needed in the
course.
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e On to probabilities
e Chapter 3 of “Deep Learning”

e I've adapted some of the lecture slides from the
book.

e Thanks to lan Goodfellow for providing slides.
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Why probabilities?

e To capture uncertainty
E.g., What time will | get home tonight?

e Probabilities provide a formalism for making statements
about “data generating processes” (L. Wasserman)

E.g., what happens when | flip a fair coin?

Probability

Data generating Observed data

Process

Inference
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The @ example

e Generate data by throwing a fair die.
e What do we know about a single throw?
e 6 possible outcomes. (sample space)
e Each outcome (e.g, 1). (element, state)
e A subset of outcomes (e.g., <3). (event)

e Outcomes are equiprobable. (uniform distribution)
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Random variables and
probabilities

e A random variable (r.v.) is a probabilistic outcome.
e For example,
e Die throw (X)
e The actual outcomeis <€ {1,2,3,4,5,6}. (x)

e A probability function (P) assigns a real number to
each possible event: P(x) > 0,Vx € X

P(| Jx) =1
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Discrete RVs

e AN RV is discrete if it takes a finite number of values!

P(x =X;) > 0,V

P(X = X;)
E P(XxX=X;) =1 1
i SRR RS
e E.g., uniform distribution:
0 a b X
1 .
P(X — Xi) — —,\V/| 0.40 \ T ;
k 0.35} 1 ° A=l
0.30} ® A=4 |
. . . . 0.25} © A=10 |
e E.g., Poisson distribution: X \ O
'exXp 015 4 @
P(X = Xj; )‘) — X: | 0.10 ©7 a_
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Continuous RVs

« An RV is continuous if f(x) > 0,Vx € X

/ f(x

Pl@a<x<b)= Q/f X)dx
o f(X) is a probability density function (PDF)

e E.g., (continuous) uniform distribution:
1 o ﬁ o
—— Ifxecla,b
ux;a,b) =< ¢ | : |
O otherwise L

e E.g., Gaussian distribution from: wikipedia.org
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https://upload.wikimedia.org/wikipedia/commons/thumb/9/96/Uniform_Distribution_PDF_SVG.svg/500px-Uniform_Distribution_PDF_SVG.svg.png

A few useful properties

(shown for discrete variables for simplicity)

. Sum rule: P(X) = » P(X,Y)

e Productrule: P(X,Y)=P(X|Y)P(Y)
« Chain rule: P(Xy,....Xn) = [[P(X; | X1,..., Xi_1)P (%)

e If xandy are independent: P(X,Y) = P(X)P(Y)

P(X|Y)P(Y)
P(X)

« Bayes' Rule: P(Y | X) =
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« Expectation: E[X| = Z P(X = X;)Xi
i

« Variance: 0% = E[(X — E[X])?]

 Covariance: Cov(X,Y)=E (X —

e correlation: p(X,y) =

Cov(X,Y)

OxOy

Moments

EIXD(Y — E




Further Reading

e Prologue to “The Master Algorithm”
http://homes.cs.washington.edu/~pedrod/Prologue.pdf

e Ch.1 of Hastie et al.

e Math Preparation
e« Ch.2 of Pattern Recognition and Machine Learning [PRML]
e Ch.2-3 of Deep Learning [DL]

e Slightly more advanced:

http://www.cs.mcgill.ca/~dprecup/courses/ML/Materials/prob-review.pdf

http://www.cs.mcgill.ca/~dprecup/courses/ML/Materials/linalg-review.pdf
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