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Rapid evolution of (image) 
generation capability

P(image)

https://twitter.com/goodfellow_ian/status/1084973596236144640/photo/1


Laurent Charlin — 60629

P(image ∣ text)

Conditional Generation

A photo of a raccoon  
wearing an astronaut helmet,  
looking out of the window at night.

https://imagen.research.google/ 

text

image

https://imagen.research.google
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Why generate images? 

• It used to be a tougher question to answer  

• To use wherever images are used (visualizations, 
video games, presentations, ads, etc…) 

• Human-in-the-loop design 
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Today’s Plan*
• “Predict” an image  

• Generative Models 

• Images (P(x)): 

• Frameworks: Variational auto-encoders (VAEs), 
Generative Adversarial Networks (GANs) 

• Images conditioned on text (P(x | y )) :  

•  Dall-E 2, Imagen 

* Like last week, the slides are mostly from David Berger

5



Laurent Charlin — 60629

Convolution Neural 
Network (CNN) — Recall 

• Séries of layers (blocs): convolutions + pooling 

• Each layer reduces the dimensionality of the 
representation

6 https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks 

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
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Convolution
• Input: 5 x 5  

• Filter (kernel): 3 x 3. Stride 2.  

• Output: 2 x 2 
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Output

Input

https://arxiv.org/pdf/1603.07285 

https://arxiv.org/pdf/1603.07285


Laurent Charlin — 60629

“Reverse” a convolution 
network

• Each layers increases the dimensionality of the 
incoming representation 

• (Note: this is in fact the same operation as done by backdrop in a 
CNN.)

8 https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks 

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
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Interpolation 

1. Repetition  

• A 

• No parameters to learn

9

2.     (Bi-)linear interpolation
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Transposed Convolution
• Useful to generate images or increase the resolution of an image (like in movies) 

• Input: 2 x 2  

• Filter: 3 x 3. Stride 1.  

• Output: 3 x 3  

• If we write down a convolution as a matrix operation (by vectorizing 
the image), then the reverse operation is multiplying by the 
transpose (hence the name)

10 https://arxiv.org/pdf/1603.07285 

Output

Input

https://arxiv.org/pdf/1603.07285
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U-Nets: https://arxiv.org/pdf/1505.04597 

https://wiki.cloudfactory.com/docs/mp-wiki/key-principles-of-computer-vision/upsampling-and-downsampling-techniques-in-machine-learning 

U-Nets
• Encoder-Decoder Architecture 

• Encoder: Obtain a représentation of the 
image (classic CNN without the 
classification output) 

• Decoder: From the representation, obtain 
an image 

• Connections between the encoder and 
decoder allow for precise localization 

• up-conv ->transposed convolution (for 
example) 

• Proposed for segmentation 

• Has become standard for image generation

https://arxiv.org/pdf/1505.04597
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Generative models

• A U-Net can obtain a representation from an image, 
but it does not have a probabilistic interpretation 

• A generative model is a method for parametrizing
 — unsupervisedP(x)
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Why are generative models 
(often) probabilistic?

• Allows different types of evaluation  

• For example, the probability of an image according to 
the model:   

• Can obtain samples  

• Quantifies uncertainty 

• It has been popular recently to parametrize 
distributions with neural networks (think of a softmax 
layer) — these are not always proper generative models

Pθ(xnew)

x ∼ Pθ(x)
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Auto-Encoder (AE)
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   Auto-encoder - Recall

x1 x2 x3 xpx

x̂1 x̂2 x̂3 x̂px̂

h(x)

W } Encoder

h(x) = g(a(x))
= g(Wx + b)

W* }
Decoder

x̂ = o(â(x))
= o(W*h(x) + b*)

For an AE with a single hidden layer:
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Variational Auto-encoder 
(VAE)

* Understanding these models precisely requires concepts that are beyond our class. Here, we aim for  
familiarization with the terms and an intuitive understanding.



Variational Auto-Encoder - Motivation
Idea:	
• The data are generated conditioned on a random variable (Z):

ℙθ (x ∣ z) You can think of Z has an embedding.  
VAEs will learn a prior P(z) and 
a posterior P(z|x) over it.
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Idea:	
• The data are generated conditioned on a random variable (Z):

ℙθ (x ∣ z)

x

Graphical representation

θ

You can think of Z has an embedding.  
VAEs will learn a prior P(z) and 
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z Question:	
• How do we learn such a 
distribution?

Idea:	
• The data are generated conditioned on a random variable (Z):

ℙθ (x ∣ z)

x

Graphical representation

θ

You can think of Z has an embedding.  
VAEs will learn a prior P(z) and 
a posterior P(z|x) over it.
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Idea:	
• We could approximate the real 
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• The posterior can be intractable:
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Idea:	
• We could approximate the real 
posterior to make it tractable

Let’s explore the first problem:	
• The posterior can be intractable:

ℙθ (x) = ∫z
ℙθ (z ∣ x)ℙθ (x)dz

x

z θϕ

The approximation of the posterior 
would be parametric by ϕ

Variational Auto-Encoder - Motivation
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We can obtain a bound on the log-likelihood of :x

log pθ(x) ≥ − KL{qϕ(z ∣ x) | | qϕ(z)} + log pθ(x ∣ z),

Where: 

• We’re trying to the distance between the posterior  
and the prior .

qϕ(z ∣ x)
qϕ(z)

• While maximizing the conditional log-likelihood of .x

Question:
• How do we do this in practice?
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x

z θϕ

log pθ(x) ≥ − KL{qϕ(z ∣ x) | | qϕ(z)} + log pθ(x ∣ z),

Graphical view: 

qϕ(z ∣ x) pθ(x ∣ z)

qϕ(z)
We suppose the posterior follows an 
unknown distribution parametrizes 
by a neural network 

We suppose the prior follows a particular distribution 	

(e.g., a zero-mean Gaussian)

Variational Auto-Encoder - Formalism
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qϕ(z ∣ x)
Estimate

μ σ

Variational Auto-encoders 



Reparametrize the hidden layer:

x̂1 x̂2 x̂3 x̂p

}
Decode

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

μ σ

Variational Auto-encoders 



Reparametrize the hidden layer:

x̂1 x̂2 x̂3 x̂p

}
Decode

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

Suppose that .qϕ(z ∣ x) ∼ 𝒩(μ, σ2)

μ σ

Variational Auto-encoders 



Reparametrize the hidden layer:

x̂1 x̂2 x̂3 x̂p

}
Decode

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

Suppose that .qϕ(z ∣ x) ∼ 𝒩(μ, σ2)

Then we can write  où .z = μ + σϵ ϵ ∼ 𝒩(0,1)

μ σ

Variational Auto-encoders 



Reparametrize the hidden layer:

x̂1 x̂2 x̂3 x̂p

}
Decode

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

Suppose that .qϕ(z ∣ x) ∼ 𝒩(μ, σ2)

Then we can write  où .z = μ + σϵ ϵ ∼ 𝒩(0,1)

Now, learning means estimating parameters  
et !

μ
σ

μ σ

Variational Auto-encoders 



Reparametrize the hidden layer:

x̂1 x̂2 x̂3 x̂p

}
Decode

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

Suppose that .qϕ(z ∣ x) ∼ 𝒩(μ, σ2)

Then we can write  où .z = μ + σϵ ϵ ∼ 𝒩(0,1)

Now, learning means estimating parameters  
et !

μ
σ

μ σ

Variational Auto-encoders 



x̂1 x̂2 x̂3 x̂p

}
Decoder

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

μ σ

Variational Auto-encoders 



VAEs are a way to train a generative model

x̂1 x̂2 x̂3 x̂p

}
Decoder

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

μ σ

Variational Auto-encoders 



VAEs are a way to train a generative model

x̂1 x̂2 x̂3 x̂p

}
Decoder

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

μ σ

Steps:

Variational Auto-encoders 



VAEs are a way to train a generative model

1. Train the model to learn:
x̂1 x̂2 x̂3 x̂p

}
Decoder

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

μ σ

Steps:

Variational Auto-encoders 



VAEs are a way to train a generative model

1. Train the model to learn:
• pθ(x ∣ z)

x̂1 x̂2 x̂3 x̂p

}
Decoder

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

μ σ

Steps:

Variational Auto-encoders 



VAEs are a way to train a generative model

1. Train the model to learn:
• pθ(x ∣ z)

• qϕ(z ∣ x) ∼ 𝒩(μ, σ2)

x̂1 x̂2 x̂3 x̂p

}
Decoder

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

μ σ

Steps:

Variational Auto-encoders 



VAEs are a way to train a generative model

1. Train the model to learn:
• pθ(x ∣ z)

• qϕ(z ∣ x) ∼ 𝒩(μ, σ2)

2. Generate  et obtain .ϵ z ∼ P(z)

x̂1 x̂2 x̂3 x̂p

}
Decoder

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

μ σ

Steps:

Variational Auto-encoders 



VAEs are a way to train a generative model

1. Train the model to learn:
• pθ(x ∣ z)

• qϕ(z ∣ x) ∼ 𝒩(μ, σ2)

2. Generate  et obtain .ϵ z ∼ P(z)
3. Obtain  from .x pθ(x ∣ z)
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Example: Generating numbers (range 0—9)

Multivariate Normal	
 ( )ℝ2

Multivariate Normal	
 ( )ℝ5

Multivariate Normal ( )ℝ10 Multivariate Normal ( )ℝ20

Variational Auto-encoders 
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Generative Adversarial Networks 
 (GANs)



   GANs - Introduction 
Well-known for image generation
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Historical note

• Framework for learning a generative model (for example, an 
“inverted” CNN) 

• Developed by researchers at Université de Montréal (2014) 

• The first to generate high-quality complex images 

• Have been (mostly?) replaced by diffusion models 

• The study of GANs has provided insights into 2-player 
(min-max) optimization

28
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GANs — Intuition 
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GANs — Intuition 
• Two players (each is a neural network) 

• Generator: The first player. It learns to generate a (good) image 

• Discriminator: The second player, learns to recognize 
(discriminate) good images from bad images
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GANs — Intuition 
• Two players (each is a neural network) 

• Generator: The first player. It learns to generate a (good) image 

• Discriminator: The second player, learns to recognize 
(discriminate) good images from bad images

• The game (at each round): 

• The second player receives an image. It must determine whether 
the image comes from the generator or from the training data 

• Depending on the response, the players update (their weights) 

29



Visually: 

GANS — Introduction
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The game is framed as a two players game between the discriminator 	
and the generator

where:
Is the distribution that “generates” the real data

Is the distribution generating data

Where z follows a normal (e.g.)

GANs - formalism



Training GANs in practice alternates between training D and G



   GANs - Varia
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DALL-E 2 
(As an example of using a 

diffusion model)
https://arxiv.org/pdf/2204.06125v1 

https://arxiv.org/pdf/2204.06125v1
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   DALL-E - CLIP

1. Learn latent representations of 
text  and images Ti Ii

• From a batch of size N

2. Similarity measure

• max TiIi

3. Dissimilarity measure

• min TiIj ∀j ≠ i
4. Maximize the similarities and 

minimize the dissimilarities
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   DALL-E - Diffusion Model
Idea:

• From an image (left), generate other similar ones	
• This is where diffusion models are used



 Diffusion Models
Idea:

• Add noise incrementally to an image until it is pure white noise	
• Danoise the image to obtain the original image 	
• If we know the noise mechanism, starting from white noise, we 
can then generate an image
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   DALL-E - Diffusion Model

For text-to-image generation, we add information from the text 	
During the diffusion process
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   DALL-E

“Face face of a man with red hair”

,c

We use the text representation 
to condition the model  
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   DALL-E - Wrap-it up!

Idea:
• Given  (x, y) a tuple of an image x and text y.	
• Given the representation of an image z.	
• The distribution of the image given the text is:

Décodeur
Prior



Imagen

https://imagen.research.google/
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Architecture
• Uses a fixed and pertained encoder 

• Followed by a diffusion model to obtain a first 
image  

• Followed by a few other diffusion models to 
obtain images of higher and higher resolution

• The diffusion models use an attention 
mechanism on the text representation 

• The diffusion moles are parametrized using a 
U-Net

For example a transformer learned from a  
large-scale text dataset to predict the next word. 
No image!

https://arxiv.org/pdf/2205.11487 
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« Classifier-free » 
guidance

• The diffusion model is trained using two objectives 

1. Generate images from the text 

2. (Also) Generate images   

• This allows to obtain high-quality images (1) that 
are diversified (2) 

• Imagen proposes a method to ensure pixels don’t 
saturate during diffusion (somewhat similar problem 
to clipping in RNNs)
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Compared to Dall-E 2

• Better empirical performance 
(according to a human study) 

• “Alignment” -> “Does the caption 
accurately describe the above 
image”  

• “Fidelity” -> “Which image is more 
photorealistic” 

• Users a simpler architecture (no CLIP)
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The size of the text encoder is 
an important hyper-ammeter

D
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ty
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f I
m

ag
es

Alignment between images and the text

T5 XXL  (2.6B) 
-  Trans. Encodeur-Decodeur  

- Uses only the encoder

Comparatively, the size of the image  
generation model is less important

Nb. De paramètres du  
U-Net
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Still far from perfect…

• E.g., operations that require counting and logic 
remain difficult


