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Rapid evolution of (image)
generation capability

P(image) 2018

Laurent Charlin — MATH60629 https://twitter.com/goodfellow_ian/status/1084973596236144640/photo/1



https://twitter.com/goodfellow_ian/status/1084973596236144640/photo/1

Conditional Generation

P(image | text)
text

A photo of a raccoon

wearing an astronaut helmet,
looking out of the window at night.

Laurent Charlin — 60629 https://imagen.research.google/
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Why generate images?
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- Human-in-the-loop design
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Today'’s Plan®

e “Predict” an image
« Generative Models
e Images (P(x)):

« Frameworks: Variational auto-encoders (VAES),
Generative Adversarial Networks (GANS)

e Images conditioned on text (P(x]|Vy)):
o« Dall-E 2, Imagen

* Like last week, the slides are mostly from David Berger

Laurent Charlin — 60629 5



Convolution Neural
Network (CNN) — Recall

o Séries of layers (blocs): convolutions + pooling

« Each layer reduces the dimensionality of the
representation
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Laurent Charlin — 60629 6 https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks



https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks

Convolution

e |INput:5x5

o Filter (kernel): 3 x 3. Stride 2.

e Output:2x2

Output

Input

Laurent Charlin — 60629 7


https://arxiv.org/pdf/1603.07285
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“Reverse” a convolution
network

e Each layers increases the dimensionality of the
iIncoming representation
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« (Note: this is in fact the same operation as done by backdrop in a
CNN.)

8 https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutiona

l-neural-networks
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Input image

Laurent Charl

Convolutions

1. Repetition

Nearest Neighbor

Input: 2 X 2

« No parameters to learn

in — 60629

Output: 4 x 4

111 2 | 2
111 2 | 2
3 3|4 4
31 3|4 4

~ Interpolation

2X

(Bi-)linear interpolation

10 | 20
30 | 40
2x2

10 | 12 | 17 | 20

15 | 17 | 22 | 25

25 | 27 | 32 | 35

30 | 32 | 37 | 40
4x4




Input

Output

Laurent Charlin — 60629

Transposed Convolution

o Useful to generate images or increase the resolution of an image (like in movies)
e INput:2x2
e Filter: 3 x 3. Stride 1.

e Output:3x3

o If we write down a convolution as a matrix operation (by vectorizing
the image), then the reverse operation is multiplying by the
transpose (hence the name)

10

https://arxiv.org/pdf/1603.07285



https://arxiv.org/pdf/1603.07285
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Encoder-Decoder Architecture

e Encoder: Obtain a représentation of the
image (classic CNN without the
classification output)

e Decoder: From the representation, obtain
an image

e Connections between the encoder and
decoder allow for precise localization

up-conv ->transposed convolution (for
example)

Proposed for segmentation

Has become standard for image generation

U-Nets: https://arxiv.org/pdf/1505.04597

https://wiki.cloudfactory.com/docs/mp-wiki/key-principles-of-computer-vision/upsampling-and-downsampling-technigues-in-machine-learning


https://arxiv.org/pdf/1505.04597

Generative models

e A U-Net can obtain a representation from an image,
but it does not have a probabilistic interpretation

e A generative model is a method for parametrizing
P(x) — unsupervised

Laurent Charlin — 60629



Why are generative models
(often) probabilistic?

o Allows different types of evaluation

e For example, the probability of an image according to
the model: Py(xpnew)

« Can obtain samples x ~ Py(x)

e Quantifies uncertainty

e It has been popular recently to parametrize
distributions with neural networks (think of a softmax
layer) — these are not always proper generative models

Laurent Charlin — 60629 13



Auto-Encoder (AE)
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For an AE with a single hidden layer:
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Auto-encoder - Recall

For an AE with a single hidden layer:
v ©OEE - ©)

J

N eYele)

Encoder
W
f h(x) = g(a(x))

x ©OE - ©) = g(Wx + b)




Auto-encoder - Recall

For an AE with a single hidden layer:

X [@ &) () - - ] Decoder

X = o(a(x))

} = o(W*h(x) + b*)

h(X)

Encoder

h(x) = g(a(x))
— o(Wx + b)




Variational Auto-encoder
(VAE)

* Understanding these models precisely requires concepts that are beyond our class. Here, we aim for
familiarization with the terms and an intuitive understanding.




Variational Auto-Encoder - Motivation

ldea:
e The data are generated conditioned on a random variable (Z):

[FDH (X | Z) You can think of Z has an embedding.

VAEs will learn a prior P(z) and
a posterior P(z|x) over it.
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Variational Auto-Encoder - Motivation

ldea:
e The data are generated conditioned on a random variable (Z):

[FDH (X | Z) You can think of Z has an embedding.

VAEs will learn a prior P(z) and
a posterior P(z|x) over it.

Graphical representation

@ 0 Question:

e How do we learn such a
l distribution?
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Partial answer:

e A “good” model should maximize the likelihood of the data P(x)
e Bayes, provides us with two possibilities:

LQ(X)=[L9(Z\X) g (X)dz

P, x)=| P, (x|2)P, (z)dz
Problem: :

e The posterior can be intractable.

e The integral is intractable.
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Variational Auto-Encoder - Motivation

Let’s explore the first problem:
e The posterior can be intractable:

LH(X):JLH(Z|X) g (X)dz

ldea:
e \We could approximate the real e ) @

<
posterior to make it tractable > l

The approximation of the posterior @
would be parametric by @
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Variational Auto-Encoder - Formalism

We can obtain a bound on the log-likelihood of x:
log py(x) = —|KL{g,(z | X) || g,(2)}| +|logpy(x | 2)
Where:

e We're trying to the distance between the posterior q¢(z | X)
and the prior g,(z).

e While maximizing the conditional log-likelihood of X.

Question:

e How do we do this in practice?
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logpyx) = = Kulgy(a | %) 11 4@} + loglpy(x | 2

Graphical view:
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Variational Auto-Encoder - Formalism

logpy(x) 2 — KL | \ + 10

Graphical view:

( ) We suppose the prior follows a particular distribution
q,(Z —

(e.g., a zero-mean Gaussian)

We suppose the posterior follows an
¢ ---------------- > _l unknown distribution parametrizes
E 7 by a neural network
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Reparametrize the hidden layer:

Suppose that g,(z | X) ~ N (u, 62).

Decod
[@ @ @ ] Sa Then we can writez = u + ceou e ~ N (0,1).

Estimate
f po(x | z)
, Now, learning means estimating parameters u
Estimate ot o1

OO - © ot 1




Variational Auto-encoders

[@ &) &) - ] Decoder

Estimate
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Encoder
f Estimate
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OO -
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Variational Auto-encoders

VAEs are a way to train a generative model

[@ @ @ ] Decoder
Estimate
f Pe(X | Z)
[@ @]
Encoder
f Estimate
q,(Z | X)

OO -

Steps:

1. Train the model to learn:
* py(x | 2)
o 4,z |X)~ N (u, 0%
2. Generate € et obtain z ~ P(2).

3. Obtain x from py(Xx | Z).
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Example: Generating numbers (range 0—9)
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Generative Adversarial Networks
(GANS)



GANSs - Introduction

Well-known for image generation




Historical note

e Framework for learning a generative model (for example, an
“Inverted” CNN)

e Developed by researchers at Université de Montréal (2014)
e The first to generate high-quality complex images
e Have been (mostly?) replaced by diffusion models

e The study of GANs has provided insights into 2-player
(Min-max) optimization

Laurent Charlin — 60629 28
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GANs — Intuition

e Two players (each is a neural network)
e Generator: The first player. It learns to generate a (good) image

e Discriminator: The second player, learns to recognize
(discriminate) good images from bad images
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GANs — Intuition

e Two players (each is a neural network)
e Generator: The first player. It learns to generate a (good) image

e Discriminator: The second player, learns to recognize
(discriminate) good images from bad images

e The game (at each round):

e The second player receives an image. It must determine whether
the image comes from the generator or from the training data

e Depending on the response, the players update (their weights)

Laurent Charlin — 60629 29



GANS — Introduction

Visually:

Goal:
GAN Stru Ctu re *  Minimize discriminator
%g'\ accuracy
Training example A: Neural
—— network’s
guess Discrimi
- Iscriminator

[N :>.Il\

Probability
of fake

Goal: differentiate fake vs.
— B: Real real with 100% accuracy

answer
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GANSs - objectives GANs have two objectives (one for each player)
- The output of D is “1” for real and “0" for fake.

max E [log(D(w))] + E

D  x~P, x~P,

s lmax K [log(D(x))).
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[P, 1s the distribution that “generates” the real data



GANSs - objectives GANs have two objectives (one for each player)

Objective of the

D

Objective of the
max

G

where:

I

d>

K
4§ b,

D)

g

- The output of D is “1” for real and “0" for fake.

log(D(x))] + E

iy )
L~ g

log(1 — D(x))].

log(D(x))].

[P, 1s the distribution that “generates” the real data

]P)g s the distribution generating data

x = G(2),

zZ p(z) Where z follows a normal (e.g.)
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GANSs - formalism

The game is framed as a two players game between the discriminator
and the generator

| 1 [log(D(x))]+ E [log(1 — D(&))].
minmax E llog(D(x))] + E log( (x))

where:
[P, 1s the distribution that “generates” the real data

]Pg s the distribution generating data

€Tr — G(Z), zZ p(z) Where z follows a normal (e.g.)



Training GANs in practice alternates between training D and G

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, £, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do
e Sample minibatch of m noise samples {z1), ... 2(™)} from noise prior p,(2).

e Sample minibatch of m examples {z'V, ..., 2™} from data generating distribution

e Update the discriminator by ascending its stochastic gradient:

Vo~ 3" [losD (29) +10g (1- D ( (7)))]

1=1

e Sample minibatch of 1 noise samples {z(1), ..., 2™ from noise prior py(2).
e Update the generator by descending its stochastic gradient:

Vo, L3 tog (1- D (c(=0))).

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




GANSs - Varia

Monet _ Photos Zebras T Horses Summer _ Winter
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DALL-E 2
(As an example of using a
diffusion model)



https://arxiv.org/pdf/2204.06125v1

DALL-E

an espresso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation a corgi’s head depicted as an explosion of a nebula
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a propaganda poster depicting a cat dressed as french emperor
napoleon holding a piece of cheese

a dolphin in an astronaut suit on saturn, artstation a teddy bear on a skateboard in times square
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1. Input, a sentence (prompt) of the image we want to create
2. This prompt is encoded in a (latent) representation
3. Transform this representation in an image representation (image space) — not shown

4. Decode the image representation into an actual image



DALL-E - Overview

Each step uses specific techniques:

O O
O-+0~+
'i O O

"a corgl
playing a
flame
throwing
trumpet”




DALL-E - Overview

Each step uses specific techniques:

"a corgl
playing a =
flame Q O =
. Q+0Q- m
throwing O O N
trumpet” N

1. Contrastive Language-Image Pre-training (CLIP)




DALL-E - Overview

Each step uses specific techniques:

"a corgl

playing a
' O
flame ®
O

throwing
trumpet”

v
000
.
TTTTTTT

1. Contrastive Language-Image Pre-training (CLIP)



DALL-E - Overview

Each step uses specific techniques:

"a corgl
playing a

throwing
trumpet”

1. Contrastive Language-Image Pre-training (CLIP)

2. Generation of an image using a diffusion model



DALL-E - Overview

Each step uses specific techniques:

"a corql

playing a
flame

throwing
trumpet”

1. Contrastive Language-Image Pre-training (CLIP)

2. Generation of an image using a diffusion model



DALL-E - Overview

Each step uses specific techniques:

"a corgl
playing a

throwing
trumpet”

1. Contrastive Language-Image Pre-training (CLIP)
2. Generation of an image using a diffusion model

3. Learn the latent representations of text and images



DALL-E - Overview

Each step uses specific techniques:

"a corql

playing a
flame

throwing
trumpet”

1. Contrastive Language-Image Pre-training (CLIP)
2. Generation of an image using a diffusion model

3. Learn the latent representations of text and images



DALL-E - Overview

Each step uses specific techniques:

"a corql

playing a
flame

throwing
trumpet”

1. Contrastive Language-Image Pre-training (CLIP)
2. Generation of an image using a diffusion model

3. Learn the latent representations of text and images

4. Wrap-it up!
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DALL-E - CLIP

pepp.er the _ Text
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1. Learn latent representations of
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4. Maximize the similarities and
minimize the dissimilarities
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DALL-E - Diffusion Model

|dea:

e From an image (left), generate other similar ones
e This is where diffusion models are used
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Diffusion Models

|dea:

e Add noise incrementally to an image until it is pure white noise
e Danoise the image to obtain the original image

e |f we know the noise mechanism, starting from white noise, we
can then generate an image
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DALL-E - Diffusion Model

For text-to-image generation, we add information from the text
During the diffusion process
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We use the text representation
to condition the model

“Face face of a man with red hair”
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DALL-E - Wrap-it up!

Prior
Décodeur

"a corgl
playing a

O O

ﬂame D+

throwing O O

trumpet”
ldea:

e Given (x, y) a tuple of an image x and text y.
e Given the representation of an image z.

e The distribution of the image given the text is:

P(xly) = P(x,2ily) =|P(x|z:, y)P(ziy)



A cute corgi lives in a house made out
of sushi.

https://imagen.research.google/



Architecture
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For example a transformer learned from a
Text Embedding large-scale text dataset to predict the next word.
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Diffusion Model . . . .
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Super-Resolution

Diffusion Model
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Architecture

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”

Text

\

Frozen Text Encoder ‘ .

« Uses a fixed and pertained engoder

|
For example a transformer learned from a
Text Embedding large-scale text dataset to predict the next word.

No image!

\4
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Diffusion Model
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Architecture

“A Golden Retriever dog wearing a blue

Text checkered beret and red dotted turtleneck.”

\

Frozen Text Encoder ‘ .

« Uses a fixed and pertained engoder

|
For example a transformer learned from a
Text Embedding large-scale text dataset to predict the next word.

No image!

\4

Text-to-Image
Diffusion Model

Followed by a diffusion model to obtain a first
image

164 X 64 Image

Super-Res« :Jl._li,i': )

| Super

Followed by a few other diffusion models to
obtain images of higher and higher resolution
256 x 256 Image
e The diffusion models use an attention
: R' - mechanism on the text representation
L 5 uper-Resolution

Diffusion Model

l

1024 x 1024 Image

The diffusion moles are parametrized using a
U-Net

, https://arxiv.org/pdf/2205.11487
Laurent Charlin — 60629
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« Classifier-free »
guidance

e The diffusion model is trained using two objectives

1. Generate images from the text

Avant Imagen

2. (Also) Generate images

e This allows to obtain high-quality images (1) that
are diversified (2)

e Imagen proposes a method to ensure pixels don’t
saturate during diffusion (somewhat similar problem
to clipping in RNNSs)

Laurent Charlin — 60629 51



Compared to Dall-E 2

100%

50%

0%

Laurent Charlin — 60629

Imagen

o« Better empirical performance

DALL-E2 (according to a human study)

H

-

e “Alignment” -> “Does the caption
accurately describe the above
- iImage”

=

-

e “Fidelity” -> “Which image is more
photorealistic”

Alignment

Fidell i '
ety o Users a simpler architecture (no CLIP)
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The size of the text encoder is
an Iimportant hyper-ammeter

T5 XXL (2.6B)
" T5-Small - Trans. Encodeur-Decodeur
N 25 || —— Il-Large B - Uses only the encoder
%)) —e— T5-XLL |
C % 20 —— D-XXL Comparatively, the size of the image
£ — w generation model is less important
5 8 | «
2> as | N ] —— 300M b. De parameétres du
"&; 15 S S 25 | | —— 500M 0 pU-Nett
E) i —e— 1B
a 10 | - < 20 2
| | A
0.22 0.24 0.26 0.28 T 15
CLIP Score
: : 10
Allgnment between images and the text

|
024 025 0.26 0.27 0.28

Laurent Charlin — 60629 CLIP SCOI'G




Still far from perfect...

A pear cut 1nto seven pieces One cat and two dogs sitting on the grass.
arranged 1n a ring.

e E.g., operations that require counting and logic
remain difficult

Laurent Charlin — 60629



