
MATH80629A — Machine Learning I:
Large Scale Data Analysis and Decision Making

Solutions to the Fall 2020 exam.

Q. 1

a.

i. [2 Points]

Unsupervised learning.

This is the dimensionality reduction task, which involves representing given high-
dimensional data in a lower-dimensional space.

The labels for the input data points are not available.

[+1: Correct answer, +1: Reasoning]

ii. [2 Points]

Supervised learning.

The input data points are the English sentences, which are available along with their
target French translations.

[+1: Correct answer, +1: Reasoning]

iii. [2 Points]

Reinforcement learning.

The princess is the agent that interacts with her environment to carry out sequential
decisions. She must learn a policy— to take appropriate actions based on her state in
order to gain reward and advance through the levels to save the prince.

[+1: Correct answer, +1: Reasoning]

iv. [2 Points]

Supervised learning.

In order to learn to recognize objects in the game, it is not necessary to carry out the
sequential decision making process as in the previous case.

Instead, having a dataset of the frames from the game along with the annotations of
the bounding boxes for the game objects would suffice. Thus, the task is a supervised
learning one.

[+1: Correct answer, +1: Reasoning]

[+1: Other answer, +1: Appropriate reasoning]

b. [2 Points]

There are multiple tasks where supervised learning and unsupervised learning
approaches can be combined for better performing the task at hand.

For example, consider the task of supervised classification where the input data is
extremely high-dimensional. Learning a supervised classifier directly on such data can
prove to be difficult and computationally expensive. Instead, one can use unsupervised
learning techniques of dimensionality reduction, such as principle component analysis
(PCA), in order to first learn a lower-dimensional representation of the data. One can
then train a supervised classifier on this representation, which can prove to be easier
and computationally feasible.

However, there are multiple correct answers here. Instead of the approach above, we
can also use a mix of supervised and unsupervised data to design a semi-supervised
approach for better performing the task at hand.

[+2: Any correct example with explanation (binary marking)]

c. [4 Points]

A regularizer is any approach, or any expression, that can augment a machine learning
approach in order to avoid overfitting to the training data and generalize better to the
unseen testing data. It can constrain the (effective) capacity of a model without
changing the model class itself in order to achieve this effect. Regularizers help inject

into the learning process our prior knowledge/bias in order to prefer certain (simpler)
solutions over the other (complex) solutions.

In the case of deep networks, dropout is an example of a regularizer. Dropout involves
randomly “turning off” a fraction of neurons during the training of a deep network in
order to stop the co-learning in neurons. Another example is early stopping, which
involves monitoring the performance of a deep network on a separate validation set as
training progresses, and stopping the training when this performance starts to
deteriorate. Early stopping stops the training of the deep network before it starts to
overfit to the training data.

In the case of supervised learning, we are given with a dataset and our aim

is to learn a function having trainable parameters , which inputs the data point in
order to predict its label . This is done via empirical risk minimization.

	 	 	 	

One of the widely used regularizers in this scenario is the so-called regularizer,
which is defined as the sum of the squares of the trainable parameters.	 	 	 	
	 	 	 	 	

The regularized empirical risk minimization learns the weights by minimizing the
empirical risk as well as the aforesaid regularizer scaled by a hyper-parameter .

	 	

Too small a value of can result in overfitting and too large a value of can result in
underfitting, which makes the choice of crucial for improving generalization.

[+2: Explanation of regularizers, +2 Example with explanation]

d. [3 Points]

The term i.i.d. stands for independent and identically distributed. It refers to the
assumption that for a given dataset , its data points follow the same underlying
distribution and that all the data points are independent of each other.

There are multiple reasons for which the i.i.d. assumption is important.

Firstly, it allows us to understand the distribution of an entire dataset in terms of only
the distribution followed by each sample. However, more importantly, it is required to

{xi, yi}n
i=1

f w x
̂y = f (x; w)

w* = arg minw
1
n ∑

n

i=1
ℓ (f (xi; w), yi)

L2

R (w) = w 2
2

λ

w* = arg minw
1
n ∑

n

i=1
ℓ (f (xi; w), yi) + λ w 2

2

λ λ
λ

{zi} zi

ascertain that the model learned by a machine learning approach is indeed correct and
is the best possible model for unseen data.

Note that we train a machine learning approach with a training dataset and evaluate it
on a separate testing dataset. With the i.i.d. assumption, we can be certain that the
training and evaluation of the model is being carried out on the same data distribution.
In the absence of the i.i.d. assumption, the distribution of the training set would be
systematically different from the testing set and thus, there would not be any
guarantees that a model trained on the training dataset would indeed generalize well
on an unseen testing dataset.

[+1: IID definition, +2 Explanation]

e. [3 Points] [Only on some versions of the exam]

Representation learning refers to the machine learning paradigm of discovering useful
representations of the given data, thereby facilitating the task at hand. Often, the
available data is not best suitable to carry out the task at hand. Thus, representation
learning involves extracting features, or useful information, from this data that can
make the downstream task at hand easier. Alternatively, by extracting good
representations, we can learn a simpler model on the given dataset.

Consider a simple example of learning a linear classifier on the dataset . This dataset
can not be classified correctly with a linear classifier and thus, we would require a
higher capacity model to perform well on it. However, if we change the representation
of the data points by converting them from Cartesian coordinates to polar coordinates,
we can see that the data becomes linearly separable. Thus, the representation of the
data is important; good representations can enable learning simpler models of the

A

Dataset : No linear classifierA Linearly separable representation

data. Deep learning has the peculiarity that instead of using hand-crafted features of
the data for performing the downstream task, the model learns the best features for the
task. For instance, in a convolutional neural network (CNN) for performing the task of
image classification, the initial layers learn features of the data, which are then
classified with a learned classifier. Each layer of the CNN learns progressively complex
representations of the data by composing the features output by the previous layer.

[+2: Explanation, +1 Example]

Q. 2

a. [4 Points]

Whereas means does hard assignment of points to clusters (i.e., each point is
assigned to a single cluster), GMMs perform soft assignment (i.e., each point is given
a probability distribution over cluster assignments). This can be especially useful for
points at boundaries where we want our model to reflect greater “uncertainty”. In
addition, GMMs provide modelling flexibility since the entire covariance matrix for
each cluster can be learned. This allows for modeling non-spherical cluster shapes. In
contrast, means clusters are always spherical (equivalent to having a diagonal
covariance), which may be a strong assumption to make depending on the data.

[+2: Hard/soft assignment (1/2: if soft-clustering without description),
+2: Modeling flexibility (+1: entire covariance matrix, +1: non-spherical cluster)]

b. [6 Points]

There are two important changes that we must consider in order to make the algorithm
work for other types of data— i. We need to use an appropriate distance metric for
the given data type. This change should be done is both line 7 and line 9. ii. We need to
update the cluster centers to ensure that they are valid members of the data
distribution that we have. This change should be done in line 3 and line 9.

In the specific case of integer data, treating it as float is incorrect. A valid alternative
would be to use the medoids approach that ensures the argmin over cluster
centers is instead carried out with an argmin over the data points. In the case of integer
data, we can use distance (also called the Manhattan distance).

K−

K−

K−

L1−

In general, a somewhat creative answer would be to encode the given data into real-
valued vectors and then perform means approach in the encoded space.

[+3: Change of metric in BOTH line 7 and line 9 (2/3: Insufficient description, 1/3:
Stating only data encoding), +1: Suggest a precise alternative metric, +2:
Updating cluster centers correctly (1/2: Stating that the cluster centers may not
remain valid data points but not resolving the issue)]

c. [6 Points]

Yes, means can be distributed using Apache Spark.

Note that in line 7, updating the cluster responsibilities for any data point depends
only on the data point itself and the cluster centers. This computation does NOT
depend on any other data point . Thus, this calculation can be distributed in a
straight-forward manner as a map operation over every data point. Once we have
updated all the responsibilities, we then need to update the cluster centers in line 9.
Once again, note that updates for any cluster center does NOT depend on any other
cluster centers . This update depends only on the cluster center itself and the data
points assigned to it. Thus, this calculation can also be distributed as a reduce
operation, aggregating over the assigned data points for a cluster center.

Given number of computers, we can expect roughly a speedup of a factor of at
each of the parallelizable operations (lines 7 and 9). However, this would be true as
long as the number of clusters is larger than the number of computers , which may
be a reasonable assumption for large datasets.

For the interested reader, a longer discussion of this question can be found in this
nicely written report:

https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/bodoia.pdf

[+1: Yes/No, +3: Description of the answer (2/3: Insufficient/vague answers, 0/3:
Use MLib), +2: Discussion of potential gains in performance]

K−

K−

xi

xj

μi
μj

m m

K m

https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/bodoia.pdf

Q. 3

a.

i. [3 Points]

Interpretation 1:

Suppose we want to find the neural network with no hidden layers such that it can
process 100-dimensional inputs and produce 2-dimensional outputs.

Then, there can only be 1 set of weights and biases in the neural network.

The number of trainable parameters in this set is:

	 or

Interpretation 2:

Suppose we want to find the neural network that can process 100-dimensional inputs
and produce 2-dimensional outputs with the least number of trainable parameters.
Then, the neural network must have 1 hidden layer containing 1 neuron. Thus, there
can only be two sets of weights and biases , in the neural network.

The number of parameters in :

	 or

The number of parameters in :

	 	 or

So, the total number of parameters is:

 or

W1

(100 + 1) × 2 = 202 (with biases) 100 × 2 = 200 (without biases)

W1 W2

W1

(100 + 1) × 1 = 101 (with biases) 100 × 1 = 100 (without biases)

W2

(1 + 1) × 2 = 4 (with biases) 1 × 2 = 2 (without biases)

101 + 4 = 105 (with biases) 100 + 2 = 102 (without biases)

[+2: Explanation, +1: Final answer; Answers with/without biases are accepted]

ii. [3 Points]

In this case, the neural network processes 100-dimensional inputs with two hidden
layers having 20 neurons each and then produces a 2-dimensional outputs. Thus, there
are three sets of weights and biases in the neural network.

The number of parameters in :

	 or

The number of parameters in :

	 or

The number of parameters in :

	 or

So, the total number of parameters is:

	 	

	 	 	 or

[+2: Explanation, +1: Final answer; Answers with/without biases are accepted]

b.

i. [8 Points]

The given data consists of ratings given by a user to a particular item and thus, we can
model the given ratings data using a feed-forward neural network (FFNN) that inputs
the information about the user and the item in order to predict the rating that the user
would give for that item.

Note that the users and the products are categorical variables, taking discrete values
that need to be fed as inputs to a neural network. Thus, we must encode the user and
item IDs in order to obtain their vector representations. This can be simply achieved by
using the one-hot encoding separately for the users and for the items. Suppose there
are number of users and number of items. Then, a user with ID and an item
with ID i are encoded as vectors and as follows:

W1, W2, W3

W1

(100 + 1) × 20 = 2020 (with biases) 100 × 20 = 2000 (without biases)

W2

(20 + 1) × 20 = 420 (with biases) 20 × 20 = 400 (without biases)

W3

(20 + 1) × 2 = 42 (with biases) 20 × 2 = 40 (without biases)

2020 + 420 + 42 = 2482 (with biases)

2000 + 400 + 40 = 2440 (without biases)

NU NI u
⃗u ⃗i

Further, it is important to encoder the users and the items separately in order to
disentangle their contribution to the prediction of the rating.

Note that our network must produce a rating based on the inputs . Note that
the rating must satisfy: .

Now, we consider a general FFNN block as shown above. The block has an input layer,
 number of hidden layers, and one output layer. Thus, there are sets of

weights and biases with each set consisting of weight matrix
and bias . Suppose the number of input layer neurons be . Let and

, where represents the number of neurons in the th layer. The output size
will then be . Now, suppose for each layer, let denote its input. Thus,
denotes the output of the th layer, which is the input to the th layer. For the
block shown above, we have and . Note that each
layer computes the following function of its inputs:

	 	 	

Here, represents the non-linearity of the th layer. Some of the widely used
choices for the non-linearity are sigmoid, tanh, ReLU, etc.

Finally, note that the hyperparameters such as the number of hidden layers, the
number of neurons per layer, the choices of non-linearities are dependent on and are
tuned based on the task at hand.

Now, having seen a FFNN block, we consider the following NN for the given task.

⃗u = [0 … 0 1
⏟

u−th location

0 … 0]⊤ ∈ ℝNU and ⃗i = [0 … 0 1
⏟

i−th location

0 … 0]⊤ ∈ ℝNI

r ⃗u and ⃗i
r ∈ [0,1]

NL NL + 1
W1, …, WNL+1 Wi Wi

bi N0 Wi ∈ ℝNi−1×Ni

bi ∈ ℝNi Ni i−
NNL+1 ai ai+1

i− (i + 1)−
a1 = x ∈ ℝN0 aNNL+1 = y ∈ ℝNNL+1

ai+1 = ϕi (Wi ⋅ ai + bi) ∀i ∈ 1,…, NL + 1

ϕi i−

W1 = (W1, b1) WNL+1 = (WNL+1, bNL+1)

x ∈ ℝN0 y = f (x) ∈ ℝNNL+1

This neural net has two input blocks. The first block inputs the user encoding and
produces its dimensional feature representation . The second block
inputs the item encoding and produces its dimensional feature representation

. These two representations are then concatenated in order to produce a

representation of the user-item pair as . This

concatenated dimensional representation is fed to another block, which
then outputs a scalar corresponding to the predicted rating as .

Note that the choices of the aforesaid hyperparameters can be decided based on the
given dataset but the output layer activation of the block must be sigmoid in order to
output a ranged scalar at the output.

Now, we can train this network using the given dataset by

minimizing the empirical risk objective, which is defined as follows—

	

All the trainable weights can then be learned by using (stochastic) gradient descent on
this objective. After training the model, for any new combination of user and item

, we can predict the corresponding rating that the

user would give for the item. This gives us the desired model for the ratings based on
the user and item information.

⃗u
d1− ρ (⃗u) ∈ ℝd1

⃗i d2−
ψ (⃗i) ∈ ℝd2

(⃗u , ⃗i) ⃗v = ρ (⃗u) ⊕ ψ (⃗i) ∈ ℝd1+d2

(d1 + d2)−
̂r ̂r = μ (⃗v) ∈ ℝ

μ
[0,1]−

D = {(un, in), rn}
N

n=1

L =
1
N ∑

N

n=1
̂rn − rn 2

=
1
N ∑

N

i=1
μ (ρ (⃗u n) ⊕ ψ (⃗in)) − rn

2

u*

i* r* = μ (ρ (⃗u *) ⊕ ψ (⃗i*))

⃗u ∈ ℝNU

⃗i ∈ ℝNi

ρ (⃗u) ∈ ℝd1

ψ (⃗i) ∈ ℝd2

⊕ ⃗v ∈ ℝd1+d2 ̂r = μ (⃗v) ∈ ℝ

ρ

ψ

μ

[+1: Description of inputs: users/items and their encoding, +1: Disentangling user/
item representation or factorization, +1: Description of output: sigmoid/[0, 1]-
ranged scalar, +1: Formalization/mathematical details, +4: Sketch and
description; other correct and consistent answers accepted, marked accordingly]

ii. [8 Points]

Unlike the previous question, we are given with temporal data for different users in
terms of the items that they bought and the order in which they did so. Thus, we must
use recurrent neural network architectures to model the given data. We can use any
of the following— vanilla RNN, LSTM, or even GRU. We will describe an RNN below.

Similar to the previous question, since the user and item data is categorical, we must
encode it in order to feed it into our neural network. However, we can also learn
trainable embeddings for these categorical variables. We will describe the solution
with a simple one-hot encoding as described in the previous question. For brevity, we
will represent this encoding/embedding as .

Now, note that the dataset that we have has the following form:

	 	 	 	

Here, each data point consists of a user and the (ordered) tuple of the items that the
user considered. Note that for each of the data points, the lengths of the tuple can
in principle be different. We can model this dataset similar in the following manner—
For each data point, we initialize our RNN architecture with the information about the
user and then based on the items purchased by that user till time , we try to predict
the item that the user might purchase at the next time step . For each data
point, we perform this task for every time step . This idea is summarized below.

Firstly, note that we can not afford to learn a different RNN for every user as we expect
to model a large number of users. Thus, we must somehow condition our RNN for a
particular user in order to predict the items considered by this user. One of the easiest
ways to do this would be to initialize the hidden state of the RNN with the user’s
encoding/embedding: . Now, at the first time-step, we provide as an input
a special embedding titled , which serves to represent the starting token before
the first item is considered and is used as an input to predict the item at time

. At each time step , we update the hidden state of the RNN based on the
current input and the previous hidden state. At each time step , we provide as

e (⋅)

D = {(un, ⟨in,1, in,2, …, in,mn⟩)}
N

n=1

un

mn

t
(t + 1)

t ≤ mn

h0

h0 = e (un)
⟨BOS⟩

̂in,1

t = 1 t
t ≥ 2

input , which is the encoding/embedding of the item considered by the user
 and try to predict the next item based on this input and the current hidden state
. Note that performing this prediction requires the information of all the previous

items and the user itself, which is correctly encoded in the hidden state at time .
One important detail in the prediction of the next item is that the RNN outputs a vector
that depends on hidden state and input , which must then be used to
predict the next item ID. Therefor, we process this output of RNN using a small FFNN
having a softmax layer at the output. This layer would produce a distribution over all
the items based on the output of the RNN at every time step and the argmax over this
distribution would give the required item ID.

Formally, the RNN performs following computation at every time step —

	 	 and

Now, the minimization objective would consist of the cross-entropy loss for the item
prediction at each time step for all the given input data points. In particular, we have—

	 	 	

We perform (stochastic) gradient descent on this objective to learn trainable weights.

Once the training is complete, we can use the same recurrent neural network to make
recommendations for different users as follows. Suppose we are given a user . We
first initialize the hidden state of the RNN with the user’s encoding/embedding:

. We then input the trained RNN with the special embedding and
obtain the item prediction for time step at the output. We take this prediction

e (in,t−1)
un ̂in,t

ht

ht t

ht e (tn,t−1)
ρ

t

t ≥ 1

ht = tanh (U ⋅ e (in,t−1) + W ⋅ ht−1) ̂in,t = ρ (V ⋅ ht)

L =
1
N ∑

N

n=1 ∑
mn

t=1
cross-entropy (̂in,t, in,t)

u*
h0

h0 = e (u*) ⟨BOS⟩
i*,1 t = 1

h1 h2 h3
W

h0 = e (un)
W W W

U U U

V V V

ρ ρ ρ

̂i n,1 ̂i n,2 ̂i n,3

⟨BOS⟩ e (in,1) e (in,2)

Training Phase

and feed it back to the RNN as input at time step and obtain as output the next
item prediction . We continue this process to make subsequent predictions.

[+1: Stating RNN, +1: Conditioning of the RNN based on the user, +1: Description
of inputs: item embedding/encoding, +1: Per time step details/unfolding of the
RNN, +2: Sketch and description of the approach, +2: Training versus testing
details; Other correct and consistent answers accepted and marked accordingly]

Q. 4

a. [2 Points]

In Markov decision processes (MDPs) having infinite episode lengths, the returns
obtained by the agent will consist of an infinite number of summands. Thus, it is
possible that the returns, and therefore the associated values, at certain states/state-
actions may diverge (blow up to infinities). In order to mitigate this problem, a discount
factor is often used while computing the returns in MDPs. Note that

 results in no discounting. With discounting, we multiply the reward time steps
in the future by , thereby effectively decreasing its contribution.

The intuition behind the discount factor is that an agent should weigh the rewards in
the immediate future more than the the rewards in the very distant future. However,

t = 2
i*,2

γ (0 ≤ γ < 1)
γ = 1 k

γk

h1
W

h0 = e (u*)
W

U

V

ρ

⟨BOS⟩

i*,3i*,1

i*,1

V

W

ρ

i*,2

W

V

ρ

i*,2

h2 h3

U U

Testing Phase

more importantly, the discount factor ensures that the returns are bounded, which
leads to consistent estimates of value functions.

Formally, suppose that all rewards are bounded, i.e, at any state and action , the
corresponding reward satisfies that for some fixed . Consider a
discounted return expression—

Then,

	 	 	 	 	 	 	

Thus, returns are always well-defined and never diverge when discounted!

[2/2: Finiteness of returns; 1/2: Stating preference for immediate rewards]

b.

i. [5 Points]

The major goal of Monte-Carlo Exploring Starts algorithm is to discover the optimal
policy by i. updating Q-values for state-action pairs based on sampling trajectories
with the current policy, ii. updating the policy to the greedy policy based on the current
estimate of the Q-values, and iii. repeating steps i. and ii. until convergence.

The “Monte-Carlo” part of the name refers to the use of sampling of trajectories in
order to estimate the expectations in Q-values. The “Exploring Starts” part is related to
ensuring that we visit all possible state-action pairs in order to have good estimate of
the corresponding Q-values.

In this algorithm, we begin with a randomly initialized policy and randomly initialized
estimates of Q-values. We create lists corresponding to the returns obtained for all
possible state-action pairs and initialize them to empty lists. We start randomly
at any state and randomly choose action from the state of actions that can be
taken at . Then, following the policy , we sample a trajectory with this given
initialization. We update the returns list for those state-action pairs that are visited in
this trajectory by appending to these lists the returns for the first occurrence of the
state-action pair. We then update the Q-values for all these state-action pairs as the
average of all the returns in the corresponding returns list.

s a
r r ≤ R R ≥ 0

G = Rt + γ ⋅ Rt+1 + … + γk ⋅ Rt+k + …

G = ∑k≥0
γk ⋅ Rt+k ≤ ∑k≥0

γk ⋅ Rt+k = ∑k≥0
γk ⋅ Rt+k

≤ ∑k≥0
γk ⋅ R = R ⋅ (∑k≥0

γk) =
R

1 − γ

G

π

(s′ , a′)
s a

s π

[+3: Discover optimal policy, +1: Learn for each possible , +1: Greedy
update for the policy; -1: Impreciseness related to state vs. state-action values.]

ii. [3 Points]

Note that we must visit all possible states and take all possible actions in those states
in order to have good estimates of the Q-values for all possible state-action pairs. The
“Exploring Starts” part of the name of the algorithm refers to starting a particular
trajectory by randomly sampling a state from all possible states and randomly taking
any action from all possible actions at that state. This ensures that we visit all possible
state-action pairs in our algorithm, thereby having good Q-value estimates for them.

However, for several reasons, this assumption can be unreasonable in many real-world
examples. One of the problems is the difficulty in enumerating possible states or
initializing at a randomly sampled state. For instance, in the game of chess, how do we
know that a particular placement of the chess pieces is indeed legitimate and can be
reached from the standard starting point? Thus, we need a mechanism to ensure that
all possible state-action pairs can be reached without explicitly starting a trajectory in a
particular state-action pair. This can be achieved by using an soft policy.

In our algorithm, we replace the greedy policy update with another policy that takes
with high probability the optimal action but also takes with low probability a random
non-optimal action. This ensures that we eventually reach all possible state-action
pairs. Formally, we only need to change the greedy policy update with the soft
policy update, which is described below.

	 	 For each state appearing in the trajectory:

	 	 	

	 	 	 For all actions that are possible in state :

	 	 	 	

	 	 	 	

[+2: Explanation of ES, +1: Soft policy and its description]

iii. [10 Points]

Q (s, a)

ϵ−

ϵ−

s

a* = arg maxa∈A(s) Q (s, a)

a s (i.e., ∀a ∈ A(s))
π (a ∣ s) = 1 − ϵ +

ϵ
A(s)

if a = a*

π (a ∣ s) =
ϵ

A(s)
if a ≠ a*

ϵ−

We have 4 states: and two actions: . The policy is initialized randomly
and the values are initialized to 0 . For each state-action pair , let

 denote the list of corresponding returns. Initially, these lists are empty.

After episode 1:

	 (Note that we must consider the return only for the first occurrence of the state-	 	
	 action pair)

The rest of the return lists remain unchanged.

Thus, the new Q-values are—

The rest of the state-action pairs did not occur in the episode and thus, their returns
lists did not change. Thus, their Q-values remain unchanged at 0—

Thus, the policy will update as follows—

 as

 as

 as

After episode 2:

A, B, C, D L, R π
Q (s, a) ∀ s, a (s, a)

Return (s, a)

Return (B, L) = [(5 + 5 + 2 + 5 + 0 = 17)]
Return (A, L) = [(5 + 2 + 5 + 0 = 12)]

(A, L)

Return (C, L) = [(2 + 5 + 0 = 7)]
Return (C, R) = [(0 = 0)]

Q (B, L) = average (Return (B, L)) = 17

Q (A, L) = average (Return (A, L)) = 12

Q (C, L) = average (Return (C, L)) = 7

Q (C, R) = average (Return (C, R)) = 0

Q (A, R) = Q (B, R) = Q (D, L) = Q (D, R) = 0

π (A) = arg maxa∈{L, R} Q (A, a) = L Q(A, L) = 12 > Q(A, R) = 0

π (B) = arg maxa∈{L, R} Q (B, a) = L Q(B, L) = 17 > Q(B, R) = 0

π (C) = arg maxa∈{L, R} Q (C, a) = L Q(C, L) = 7 > Q(C, R) = 0

π (D) remains unchanged to the action chosen in the random initialization

The rest of the return lists remain unchanged.

Thus, the new Q-values are—

The rest of the state-action pairs did not occur in the the second episode as well and
thus, their returns lists did not change. Thus, their Q-values remain unchanged at 0—

Thus, the policy will update as follows—

 as

 as

 as
 and the ties are broken randomly

[+4: Correct calculation of each of the 4 values that update, +1: Correct
calculation of policy, +1: Stating the rest of values remain at 0 and that

 remains unchanged at random initialization, +4: Calculations (3/4 if minor
calculation/conceptual error, 2/4 if major conceptual error, 0/4 if no justification)]

Return (C, R) = [(0 = 0), (2 + 5 + 2 = 9)]
Return (A, L) = [(5 + 2 + 5 + 0 = 12), (5 + 2 = 7)]
Return (C, L) = [(2 + 5 + 0 = 7), (2 = 2)]

Q (B, L) = average (Return (B, L)) = 17

Q (A, L) = average (Return (A, L)) =
12 + 7

2
= 9.5

Q (C, L) = average (Return (C, L)) =
7 + 2

2
= 4.5

Q (C, R) = average (Return (C, R)) =
0 + 9

2
= 4.5

Q (A, R) = Q (B, R) = Q (D, L) = Q (D, R) = 0

π (A) = arg maxa∈{L, R} Q (A, a) = L Q(A, L) = 9.5 > Q(A, R) = 0

π (B) = arg maxa∈{L, R} Q (B, a) = L Q(B, L) = 17 > Q(B, R) = 0

π (C) = arg maxa∈{L, R} Q (C, a) = random-choice {L, R}
Q(C, L) = Q(C, R) = 4.5

π (D) remains unchanged to the action chosen in the random initialization

Q(s, a)
Q(s, a)

π (D)

c.

Note that the (autonomous) driving car agent is significantly more complex than a
simple gridworld agent and thus, the former should not be reduced to the latter!

i. [2 Points]

Note that a car needs to decide at every time step whether to accelerate or decelerate
(brake) as well as the direction in which to go. The accelerator being pressed or not
and the breaks being applied or not helps capture the acceleration/deceleration.
Further, the direction of motion of the car can be captured by the steering angle. Thus,
in a first-level model, we can define the tuple as the action, where
represents if the accelerator is pressed, represents whether the brakes are applied,
and represents the steering angle.

Note that this is a simplified model because in a real car, we must also incorporate the
gears and their contribution to the change of the state of the car.

[+2: Any correct and sufficient description of actions; 1/2: If mapped to gridworld]

ii. [4 Points]

A state captures all the relevant information about the agent and the environment and
uniquely characterizes them at a particular time step. Thus, it is important to notice that
the state must contain the information about the internal variables related to the car as
well as the external factors.

The internal variables associated with the car may include the amount of fuel left in the
car , the velocity of the car , the relative/absolute location of the car in a convenient
coordinate system, etc.

The external variables may include the locations of other cars with respect to our
car, the different objects (e.g., traffic signs, pedestrians, etc.) in the environment of the
car along with their locations and so on.

Thus, the state is a tuple that would capture all the relevant factors described above.

For instance, in our example, the state would be defined as— .

(a, b, θ) a
b

θ

f v x

(ci)i

(o j)j

(f, v, x, (ci)i
, (o j)j)

[+2: Internal factors, +2: External factors; 3/4: Insufficient description mentioning
both internal and external factors; 2/4: Correct answer mapped to gridworld; 1/4:
Insufficient description mapped to gridworld; 0/4: Insufficient description]

iii. [3 Points]

Note that the reward is a scalar that is maximized by the agent in order to achieve its
goal. Further, the reward is, in principle, a function of the state and action; i.e., for any
state , taking an action in it leads to a reward of for the agent.

Thus, when we need to define the reward in our case, we ought to define a scalar-
valued function for each possible combination of state and action. This is a challenging
task in general but nonetheless, we can broadly describe how the reward should look
like in different scenarios of interest. Intuitively, there are a lot of factors that would
contribute to the design of reward and they can be described based on what we want
our agent to learn.

For instance, if our car takes an action that keeps it driving correctly on the road in a
specific lane, we give our car a small positive reward of, say, 1. If the car is traveling on
a road and takes an action that leads it to break a traffic rule (e.g., over-speeding,
changing lanes without indicators, etc.), we give a medium negative reward of, say,
-10. If the car takes an action and then hits another car or a pedestrian, we give a large
negative reward of, say, -500. If the car correctly reaches the target destination, we
give a large positive reward of, say, 1000.

Note that the choice of values will result in reward-shaping, which is an important
factor in defining the reinforcement learning problem.

[3/3: Example of scalar valued rewards and description; 2/3: Explanation of the
factors contributing to the reward but missing that the reward is a scalar; 1/3:
Insufficient description; Any reasonable reward description is accepted]

s a r (s, a)

	MATH80629A — Machine Learning I:
	Large Scale Data Analysis and Decision Making

