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Abstract—In many artificial intelligence, machine learning and
computer vision tasks, the weighted sum model is used to value
objects and define an order over them. In this paper, we consider
two decision criteria defined as the (Euclidean and more generally
Mahalanobis-like) distance to a reference point and investigate
how they relate to the weighted sum model. In particular, we
show that the distance-based representations can be seen as a
relaxation of the representation induced by the weighted sum and
we provide a characterization of the latter model with the former
models in the case of strict orders. To illustrate our point, we
consider the context of relative visual attributes. Nonetheless, our
results also apply to other domains. More specifically, we present
how these reference-point-based representations can be learned
from pairwise comparisons and how they can be exploited for
classification. Our experimental results show that those two cri-
teria yield a more precise representation of the relative ordering
for some attributes and that combining the best representations
for each attribute improves recognition performance.

I. INTRODUCTION

Ranking is a common and fundamental task in many
domains, such as artificial intelligence, machine learning or
computer vision. In those domains, objects to be compared
are generally described as vectors in a feature space. The
usual approach then relies on comparing objects through the
values they are given by a linear function. This is for instance
the case with the popular method called linear ranking SVM
[1] in information retrieval. Such a linear function is called a
weighted sum criterion in decision theory. Its widespread use
and success can be explained by some of its nice properties,
such as its simplicity and interpretability.

However, this simple criterion is not always suitable as
suggested by axiomatic work in decision theory [2], [3]. It is
known for example that not all preorders can be described by
this linear model and using it to represent a certain ordering
implies that some implicit assumptions (e.g. see Sections II
and III) are made. Therefore, using this decision model may be
problematic when such an assumption does not hold and one
cannot expect an exact or good representation of an ordering
when those assumptions do not hold.

In this paper, we consider two alternative representations
for ranking that are reference-point-based. A reference-point-
based criterion is defined as the Euclidean (or more generally
Mahalanobis-like) distance to a fixed reference point. The first
alternative representation is specified by setting the reference
point to be an ideal point, the second one sets the reference
point to be an anti-ideal point. An object is ranked higher if it
is closer to the ideal point in the first case, or further from the

anti-ideal point in the second case. Those criteria could be used
in many diverse domains instead of the weighted sum criterion;
we focus in this paper on the relative attribute problem [4] in
computer vision to illustrate our point and demonstrate the
usefulness of these representations.

II. RELATED WORK

A. Attributes

In this paper, we consider visual attributes [5] which are
high-level descriptions of concepts in images widely used in
the computer vision community (see [6] and related work sec-
tion therein). While traditional visual recognition approaches
map low-level image features directly to object category labels,
some recent works have proposed to focus on visual attributes.
Generally, attributes have human-designated names (e.g. “is
natural” or “is smiling”, see Fig. 1) and are then valuable tools
to give a semantic meaning to objects or categories in various
problems. They are also easy to interpret and manipulate.
Visual attributes have proven useful in face verification [7]
and object classification [5], [8], particularly in the context of
zero-shot learning [9], [6].

In many attribute-based problems [4], [10], [8], a (linear)
transformation is learned so that low-level representations of
images are projected into a high-level semantic space. Such a
space is usually constructed so that each dimension describes
the degree of presence of an attribute in an image. In other
words, an image is described by a vector, and each element
of the vector is the degree of presence of a given attribute
in the image (see Section IV for details). In the attribute
space, images can be semantically compared to one another.
One of the most popular contexts that compare images with
attributes is the relative attribute problem [4]. In this problem,
the representations of images in the high-level semantic space
are learned relatively to the learned representations of other
images. The relative attribute problem considers relations
between pairs of categories:
• inequality constraints: i.e. (e) ≺a (f): the presence of

attribute a is stronger in category (f) than in category (e)
• equivalence constraints: i.e. (g) ∼a (h): the presence of

attribute a is equivalent in category (g) and category (h).
This type of relationship is particularly useful when a

Boolean score for the presence of an attribute is difficult to
annotate. For instance, in Fig. 1, it may be difficult to annotate
whether the image in category (e) is natural or not. Relative
attributes tackle this problem by allowing people to annotate



Is natural: ≺ ≺

category (d) category (e) category (f)

Is smiling: ∼

category (g) category (h)
Fig. 1. Relative attributes: high-level descriptions of categories are given as
a function of other categories. While it is difficult to determine whether the
image in category (e) is natural, it is easier to say that it is more natural than
category (d) and less natural than category (f). Scarlett Johansson (category
(g)) smiles as much as Zac Efron (category (h)).

that the image in category (e) is more (or less) natural than
the image in category (d) (or (f)).

B. Representations of Orders

In [4], the degree of presence of a given attribute is learned
as a weighted sum, which induces an order over images with
respect to that attribute. However, this aggregation function
may not be the most appropriate representation for some
attributes. In fact, in general, the choice of an aggregation
function should depend on the attribute. In this section, we
present different alternatives to the weighted sum model.

Mathematical representations of orderings have been theo-
retically investigated in many domains such as measurement
theory [2], decision theory [11] or social sciences [12]. In
this line of work, when the order ≺ is defined over objects
that are represented by vectors in Rd, an aggregation function
f : Rd → R is said to represent ≺ if comparing objects via the
values they receive from f leads to the same order as ≺. For
instance, the weighted sum model is used as an aggregation
function to represent relative attributes [4].

Many representations of orders1 (and preorders2) have
been proposed and studied theoretically. The focus in those
mathematical approaches has been to characterize those rep-
resentations by providing their axiomatizations, which are
necessary and sufficient conditions (called axioms) on the
order relation for the use of a representation. For instance,
using a weighted sum to represent a given binary relation
over vectors implies that the relation is a total3 preorder that
satisfies an independence axiom (i.e. no interaction between
components of a vector) and a continuity axiom (i.e. small
changes in a vector lead to small changes in the ordering).

In decision theory, when the objects to be compared are
represented as vectors, as is the case with relative visual at-
tributes, the problem is referred to as multi-objective (or multi-
criteria) decision-making [3], [13]. In this area, the aggregation
function f is called a decision criterion and many different
criteria have been proposed and studied: Ordered Weighted

1Binary relation ≺ is a (strict) order if it is irreflexive (i.e. ∀x, not x ≺ x)
and transitive (i.e. ∀(x, y, z), x ≺ y and y ≺ z ⇒ x ≺ z).

2A preorder - is reflexive (i.e. ∀x, x - x) and transitive.
3Binary relation - is total if ∀(x, y), x - y or y - x.

Averaging (OWA) [14], Weighted OWA [15], (augmented
weighted) Chebyshev norm [16]... Most of them may not be
appropriate for our problem as they are specifically designed
for multi-objective decision-making. One notable exception is
the criterion defined as the Euclidean distance of a vector to
an ideal point, which has been used to define compromise
solution [13]. In the TOPSIS methodology [17], this criterion
is combined with the distance to an anti-ideal point.

Interestingly, this criterion can also be found in social sci-
ences [12]. In this setting, called multi-dimensional unfolding,
individuals and objects are represented as points in a joint
(multidimensional) space. Given a choice set, an individual
will choose the object that is closest to him/her. In this context,
the reference point is the individual in that joint space and also
represents an ideal object.

The reference-point model has also been used in some
machine learning work. [18] used it in an active learning
setting for eliciting a preference order while trying to minimize
the query complexity. In our case, the embedding problem
assigns Euclidean coordinates only to the reference point
without modifying the Euclidean low-level representations of
images. Unlike classic embedding methods that do not extend
to new samples, new examples can be easily added and
compared to the reference-point.

Contributions: In this paper, we investigate the use of the
Euclidean distance to a reference point as a representation
for relative visual attributes. Although the weighted sum
criterion and the Euclidean distance to an ideal point have
been extensively used, to the best of our knowledge, not much
work relate those two criteria. In this paper, we provide some
theoretical results to clarify the relation between them. We also
consider a third aggregation function defined as the Euclidean
distance to an anti-ideal point.

We show that the order induced by the Euclidean distance
to a reference point (e.g. ideal or anti-ideal points) can be seen
as a relaxation of the order induced by a weighted sum, and
we give a characterization of the weighted sum with respect
to the other aggregation functions in the case of strict orders.
Therefore, the Mahalanobis(-like) distance, which generalizes
the Euclidean distance, can be seen as a further relaxation to
the weighted sum. Finally, we illustrate how these aggregation
functions based on the Mahalanobis distances can be exploited
in the context of relative attributes.

III. REFERENCE-POINT-BASED MODEL

We formally present the reference-point model and its use
in the setting of relative attributes as a motivating example.

We assume that the ordering relations provided on cate-
gories (e.g. in Fig. 1) can be extended to the images of these
categories. For a pair of images (described as feature vectors)
xi ∈ Rd and xj ∈ Rd, the notation xi -a xj (resp. xi ≺a xj

or xi ∼a xj) means that the degree of presence of attribute a
in image i is not greater than (resp. smaller than or equivalent
to) the one in image j.

One of the goals of decision theory (and related domains)
has been to investigate representations of binary relations. For



a function f : Rd → R, component-wisely non-decreasing
(called aggregation function or decision criterion), we say that
f represents a preorder - over Rd if:

∀xi,xj ∈ Rd, xi - xj ⇔ f(xi) ≤ f(xj) (1)

When relation - is a total preorder, as assumed in this paper,
this can be equivalently written with its asymmetric part ≺:

∀xi,xj ∈ Rd,xi ≺ xj ⇔ f(xi) < f(xj) (2)

In the work on relative visual attributes, the preorder -a for an
attribute a is represented by a weighted sum, i.e. fwa

(x) =
w>a x where x ∈ Rd is the feature vector of an image and
wa ∈ Rd is the weight vector associated to attribute a. For a
fixed weight vector w ∈ Rd, we denote -w (resp. ≺w) the
preorder (resp. order) induced by the weighted sum defined
by w. Therefore, we have -a=-wa

and ≺a=≺wa
. A binary

relation - (or ≺) for which there exists w ∈ Rd such that
-=-w (or ≺=≺w) is said to be weight-based.

As explained previously, the weighted sum is not always
suitable to represent an order. We focus in this paper on two
distance-based representations, in which objects are compared
with respect to their distances to a fixed reference point.
Before focusing on the Mahalanobis-like distance (see below
for definition), we consider the Euclidean distance: d(xi, r) :=

‖xi − r‖2 =
√∑d

k=1(xi,k − rk)2 where xi ∈ Rd is the
feature vector of an object and r ∈ Rd represents a reference
point. Note that any strictly increasing transformation of f in
Eq. (1) yields a representation inducing the same (pre-)order.
Therefore, from now on, we will use the squared distance
‖xi − r‖22 for convenience’ sake.

The first representation that we consider is defined by
choosing the reference point r to be an ideal point4 r and
is given by choosing gr(x) = −‖x− r‖22 as a criterion:

xi -r xj ⇔ gr(xi) ≤ gr(xj) (3)

Informally, an object is ranked higher if it is closer to the ideal
point. A (pre-)order that admits this representation is said to
be ideal-focused.

Symmetrically, the second representation sets the reference
point r to an anti-ideal point r and is defined by choosing
hr(x) = ‖x− r‖22 as a criterion:

xi -r xj ⇔ hr(xi) ≤ hr(xj) (4)

It states that an object is preferred when it is further from an
anti-ideal point. A (pre-)order that admits this representation
is said to be anti-ideal-focused.

Although less commonly used in practice, we introduce anti-
ideal-focused relations because they will help us understand
the relation between the weighted sum and the distance-based
criteria. Note that the three representations are not equivalent
in general. Indeed, an order described by one of those three

4An ideal (resp. anti-ideal) point represents the most archetypal or typical
(resp. atypical) point for an attribute. This definition is related to multidi-
mensional unfolding, should not be confused to the notion of ideal/anti-ideal
points in multiobjective optimization.

criteria may not be representable by another one. The weighted
sum model and the reference-point-based model may not be
equivalent because their indifference curves (i.e. points consid-
ered equivalent) are different (i.e. hyperplan vs. hypersphere).
The distance-based criteria may not be equivalent depending
on the position of the reference point. For instance, the case
where an ideal point is the centroid of a cloud of points may
not find any representation with an anti-ideal point.

We now prove some theoretical results that shed some
light on the relation between these three representations. Let
V = {x1,x2, . . . ,xn} ⊂ Rd be a set of objects endowed
with a preorder -. A binary relation can also be viewed
as a set, e.g. -⊆ V × V . We adopt this view to state our
results for conciseness’ sake. First, when a preorder is both
ideal-focused and anti-ideal-focused, it is weight-based (see
definitions above):

Proposition 1. If ∃ r, r, -=-r ∩ -r, then ∃ w, -=-w.

Proof. Let - be ideal-focused w.r.t. r and anti-ideal-focused
w.r.t. r. It is easy to check that -=-w with w = r− r.

Unfortunately, in general the converse is not always true,
but it does hold for strict orders:

Proposition 2. If ∃w,≺=≺w, then ∃r, r, ≺=≺r ∩ ≺r.

Proof. Without loss of generality, we assume x1 ≺ x2 ≺
. . . ≺ xn. By assumption, there exists w ∈ Rd such that
w>x1 < w>x2 < . . . < w>xn. Let δ1 = mini>j w

>(xi −
xj) > 0. Let δ2 = ε + maxi,j |x>i xi − x>j xj | with ε > 0.
Let r = −δ2/(2δ1)w and r = −r. One can check that
≺r=≺r=≺w.

In the general case, Prop. 2 can be extended as follows:

Proposition 3. If ∃w,-=-w, then ∃r, r,
(i) ≺=≺r ∩ ≺r and
(ii) ∼=

(
-r ∩ %r

)
∪
(
%r ∩ -r

)
.

Proof. If ≺= ∅ (i.e. all points in V lie on the same hyper-
plane), choose r and r on different sides of this hyperplane and
proportional to w. Otherwise, by Proposition 2, there exists
r, r such that ≺=≺r ∩ ≺r. It is then easy to check that for
xi ∼ xj , we can have neither xi ≺r xj and xi ≺r xj , nor
xi �r xj and xi �r xj , which yields (ii).

This proposition states that a weight-based preorder can
be seen as the combination of two preorders, one ideal-
focused and one anti-ideal-focused, where two images are
ranked in the order specified by those two preorders if they
agree, otherwise, the two images should be considered equally
ranked. Moreover, Propositions 2 and 3 imply that when
ranking with a weighted sum, one has in fact implicitly chosen
two reference points: one ideal point and one anti-ideal point.
Furthermore, it suggests that using an ideal-focused or an anti-
ideal-focused relation alone gives more flexibility than using
a weight-based relation.

As a side note, Propositions 1 and 2 provide a simple
characterization of weight-based strict orders:



Corollary 1. ∃w, ≺=≺w ⇐⇒ ∃r, r, ≺=≺r ∩ ≺r

These (pre)orders can be extended to the Mahalanobis(-
like) distance widely used in distance metric learning [19] and
defined for all xi and r in Rd as:

dM(xi, r) :=
√
(xi − r)>M(xi − r) = d(Lxi,Lr)

where M = L>L is a d × d symmetric positive semidefinite
matrix. The Mahalanobis(-like) distance dM generalizes the
Euclidean distance (which corresponds to the special case
where M or L is the identity matrix) and thus provides even
more flexibility to the model, which may help better order
the objects. Interestingly, such a general distance can encode
some interactions between components of vectors thanks to
the matrix M, which is not possible with the weighted sum
model. Representing a preorder with dM requires determining
both the parameters M � 0 and r ∈ Rd.

In the context of relative attributes, it is probably justified
for some attributes to learn and represent their orderings over
images with weighted sums. However, in this paper, we argue
that for other attributes, it may make more sense to learn a
representation based on an ideal or anti-ideal point. This is
for instance the case for the attribute “Masculine-Looking”
(see Section V-A) where a representation based on an ideal
point (representing a male stereotype) may make more sense
because it may be difficult to define an anti-ideal point that
would work for both males and females.

IV. DESCRIBING IMAGES WITH REFERENCE POINTS

We now present our learning algorithm that learns both an
(anti-)ideal point and the Mahalanobis-like distance from a
training dataset that describes pairwise comparisons.

a) Learning anti-ideal points: We focus on the case
where we learn the anti-ideal point ra ∈ Rd and the Ma-
halanobis distance dMa

for a given attribute a by exploiting
the results of Section III; the ideal point case is similar.

We denote Aa the set of training pairs {(xi,xj) ∈ Rd ×
Rd : xi ≺a xj} where (xi,xj) are vector representations of
images. In the case of an anti-ideal point, we want to find a
reference vector ra that is closer to xi than to xj for every
pair (xi,xj) ∈ Aa. Formally, we want ra and dMa

to satisfy
the maximum number of the following constraints:

∀(xi,xj) ∈ Aa, d
2
Ma

(xi, ra) + 1 ≤ d2Ma
(xj , ra) (5)

⇔ `
(
1 + d2Ma

(xi, ra)− d2Ma
(xj , ra)

)
= 0 (6)

where 1 is a safety margin and the convex loss function
` : Rd → Rd can be written `(x) = max(0, x). Finding the
optimal values of ra and dMa is a NP-hard problem. Instead,
we then optimize the following biconvex problem inspired by
ranking SVM [1], [20]:

min
ra∈R

d

Ma�0

∑
(xi,xj)∈Aa

`
(
1 + d2Ma

(xi, ra)− d2Ma
(xj , ra)

)
+ µ ‖ra‖22 + ν tr(Ma)

(7)

where ‖ra‖22 and tr(Ma) are regularization terms, and µ ≥ 0
and ν ≥ 0 are regularization parameters.

For ease of exposition, we do not consider constraints
induced by the equivalence relation ∼a. Those equality con-
straints could be added in the optimization problem in a
straightforward manner.

Since Eq. (7) is a biconvex problem, we solve it by
alternating the optimization over ra and Ma. We first initialize
Ma as the identity matrix, optimize the problem over ra and
alternate the optimization over each variable by fixing the other
variable (see supplementary material for details).

b) Learning ideal points: To train an ideal point ra, we
replace in Eq. (7) the loss `

(
1 + d2Ma

(xi, ra)− d2Ma
(xj , ra)

)
by `

(
1 + d2Ma

(xj , ra)− d2Ma
(xi, ra)

)
and optimize over ra

instead of ra.

c) Exploiting reference points for classification: We now
explain how we exploit ideal and anti-ideal points ra and ra
for each attribute a to perform classification.

As explained in Section II-A, many attribute-based ap-
proaches learn a linear transformation so that low-level repre-
sentations of images are projected into a high-level semantic
space. In the case of relative attributes [4], a weighted sum is
learned for each attribute a ∈ {1, · · · , A} where A is the num-
ber of attributes. More precisely, a vector wa ∈ Rd is learned
so that the (maximum number of) following constraints are
satisfied: ∀i, j, xi ≺a xj ⇒ w>a xi < w>a xj . Eventually,
from the low-level representation xi ∈ Rd of an image i, a
high-level representation hi = (hi,1, · · · , hi,A) ∈ RA is cre-
ated where hi,a = w>a xi. We propose different formulations
of hi,a depending on some criteria that we explicit below.

Let Ta be a test set (different from the training set Aa)
composed of pairs (xi,xj) such that xi ≺a xj . Naturally, the
best model for the attribute a between the weighted sum (WS),
the ideal and the anti-ideal based representations (resp. IR and
AR) is the one that best satisfies the following constraints over
Ta (see Section V-A for details):

w>a xi < w>a xj for WS

d2Ma
(xi, ra) < d2Ma

(xj , ra) for AR (8)

d2Ma
(xi, ra) > d2Ma

(xj , ra) for IR

We then first consider that dMa
= d and run 100 different

train/test splits, the model that best satisfies these constraints
for most splits is the model chosen for the attribute a since
this means that it describes more accurately relations for the
attribute. More precisely, for a low-level image representation
xi and a given attribute a, we formulate:

hi,a =


w>a xi if WS is chosen

d2Ma
(xi, ra) if AR is chosen

d2Ma
(xi, ra) if IR is chosen

(9)

Our high-level representation of an image i is then hi =
(hi,1, · · · , hi,A) ∈ RA where hi,a is formulated as in Eq. (9).
In the end, the high-level representation of the training data is
used as the input of a classifier (e.g. linear SVM).



Ideal Point Anti-ideal Point
OSR Attributes Abs. diff. Frob. norm Abs. diff. Frob. norm

Natural 24 46 22 37
Open 67 73 60 65

Perspective 6 12 29 41
Large-Objects 16 25 85 90

Diagonal-Plane 15 22 51 62
Close-Depth 82 81 92 88

PubFig Attributes Abs. diff. Frob. norm Abs. diff. Frob. norm
Masculine-Looking 72 86 43 70

White 45 73 72 84
Young 29 56 80 86

Smiling 12 41 65 78
Chubby 34 65 63 77

Visible-Forehead 35 52 19 38
Bushy-Eyebrows 46 54 27 51

Narrow-Eyes 45 69 16 28
Pointy-Nose 53 69 41 61

Big-Lips 23 55 59 80
Round-Face 28 52 80 83

TABLE I
COMPARISON OF THE REFERENCE POINT METHODS WITH THE WEIGHTED

SUM ON THE TEST SET OVER 100 SPLITS. HIGHER IS BETTER.

V. EXPERIMENTAL RESULTS

To evaluate our reference point model, we follow a classi-
fication framework inspired by [4]. We experiment with the
two datasets they used: Outdoor Scene Recognition (OSR)
[21] containing 2688 images from 8 scene categories and
a subset of Public Figure Face (PubFig) [7] containing 771
images from 8 face categories. We use the image features
made publicly available by [4]: a 512-dimensional GIST [21]
descriptor for OSR and a concatenation of the GIST descriptor
and a 45-dimensional Lab color histogram for PubFig. Relative
orderings of categories according to semantic attributes are
given in [4, Table 1].

We denote category(u) the set of images in category u. By
abuse of notation, we write category(u) ≺a category(v) if
the presence of attribute a in category v is stronger than in
category u, which implies x ≺a y for any image x of category
u and any image y of category v.

A. Determining the best model for each attribute

Setup: We detail how we determine the model that is most
appropriate for each attribute to apply the classification frame-
work described in Section IV. We denote c = 8 the number of
categories in both datasets. For each attribute a, we consider
the ground truth order matrix Ga ∈ {0, 1}c×c exploiting
annotations provided in [4, Table 1]. Ga = (Ga

uv)1≤u≤c,1≤v≤c
is defined as:

Ga
uv =

{
1, if category(u) ≺a category(v)
0, otherwise

(10)

For each model, we construct the matrix Fa ∈ [0, 1]c×c:

F a
uv =


pauv if category(u) ≺a category(v)
pauv = 1− F a

vu if category(u) �a category(v)
0 otherwise

where pauv ∈ [0, 1] is the ratio/fraction of pairs in the test
set Ta that satisfy Eq. (8) for all xi ∈ category(u), xj ∈
category(v). We denote Fa

WS (resp. Fa
ideal or Fa

anti−ideal)
the matrix Fa obtained when using WS (resp. IR or AR).

≺ ∼ ≺

Fig. 2. Different categories ordered w.r.t. the degree of presence of the
attribute “smiling”.

It is clear from the formulation above of Fa that the most
appropriate model is the one for which the constructed matrix
Fa is the closest to the ground truth matrix Ga. To measure
the discrepancy between Fa and Ga, we use the following
metrics:
1. absolute difference

∑
uv |F a

uv −Ga
uv|

2. (squared) Frobenius norm ‖Fa−Ga‖2F =
∑

uv(F
a
uv−Ga

uv)
2

Table I reports for each attribute the number of times over
100 random training/test splits that Fa

ideal and Fa
anti−ideal are

closer to Ga than Fa
WS is w.r.t. both metrics (i.e. if both

methods have scores smaller than 50, then the weighted sum
is the most appropriate for attribute a). Due to the small size
of the datasets, we extract 80 and 50 training images per
category on the OSR and Pubfig datasets, respectively. From
these images, we create all the possible combinations of image
pairs and use the annotations in [4, Table 1] to create our
training constraints (based on Aa for reference point methods,
see for example Eq. (5)) and we train the different models.
The test set Ta is composed of all the possible pairs of the
remaining images. When both the ideal and anti-ideal methods
outperform the weighted sum, the reference point method with
highest score actually outperforms the other one.

As can be seen in Table I, the anti-ideal point method
outperforms the two other methods for half of the attributes
w.r.t. both evaluation metrics on both datasets. On the other
hand, the ideal point method outperforms the two other meth-
ods only for 2 attributes (“Masculine-Looking” and “Pointy-
Nose”) on Pubfig and 1 attribute (“open”) on OSR.

Interpretation: We now explain for some attributes why
the reference point models are more appropriate:
• Smiling: As illustrated in Fig. 2, although a relative ordering
can be found between the different persons to rank the degree
of presence of smile, there exist different kinds of smiles in
the dataset. People smile with a closed mouth in the first row
and with an open mouth in the second row of Fig. 2. While
there are different kinds of smiles, the emotionless expression
of Jared Leto (left) remains the same and corresponds to the
anti-ideal point of smiling person. In this context, the anti-ideal
point approach is more appropriate.
• Masculine-Looking: the Pubfig dataset is biased towards
men since there are 6 categories of men and 2 categories of
women. Among the 6 men, it is difficult to annotate whether
some man is more masculine than some other man. Annotators
then ranked the presence of “Masculine-Looking” according to
their socially-defined stereotype of masculinity which is close
to Clive Owen (third column of Fig. 2).



Method PubFig dataset OSR dataset

Weighted sum 75.0± 0.4% 69.6± 0.4%
d
M

a
=
d Ideal point (with d) 74.7± 0.6% 69.2± 0.5%

Anti-ideal point (with d) 77.9± 0.7% 72.0± 0.9%
Combination (with d) 78.7± 0.4% 72.8± 0.7%

d
M

a
6=
d Ideal point (with dMa ) 75.7± 1.2% 73.8± 0.6%

Anti-ideal point (with dMa ) 78.0± 1.0% 72.1± 0.7%
Combination (with dMa ) 82.1± 1.0% 73.2± 0.6%

TABLE II
TEST CLASSIFICATION ACCURACY (MEAN AND STANDARD ERROR) FOR

THE DIFFERENT HIGH-LEVEL IMAGE REPRESENTATIONS.

Similar explanations can be given for other attributes. For
instance, only one person has a pointy nose in the PubFig
dataset and the ideal point model is more appropriate because
of the presence of different kinds of non-pointy noses (e.g. flat
or round) in the dataset.

B. Classification results

We compare the classification performances of the different
reference point strategies to construct high-level image repre-
sentations that are used as input of a linear SVM classifier.
We use the same number of training images as in the previous
task and run the experiments on 10 new random training/test
splits. We report in Table II the average classification accuracy
across categories (i.e. mean of the accuracies obtained for each
category).

We consider the weighted sum baseline which corresponds
to the method proposed in [4]. It considers the high-level rep-
resentation hi = (hi,1, · · · , hi,A) ∈ RA where hi,a = w>a xi.

Additionally to this baseline, we compare in Table II three
reference-point-based strategies to construct hi ∈ RA:
1. The ideal point method considers ∀a, hi,a = d2Ma

(xi, ra)
where ra is the learned ideal point for attribute a.
2. The anti-ideal point method corresponds to ∀a, hi,a =
d2Ma

(xi, ra) where ra is the learned anti-ideal point.
3. The combination of the best representations for each at-
tribute as described in Eq. (9). The best method is determined
by exploiting the scores in Table I: if both the ideal and anti-
ideal point methods have at least one score smaller than 50 in
Table I, then the weighted sum is chosen.

We report the scores for cases where the Mahalanobis
distance is learned with reference points (i.e. dMa 6=d) and
where it is not learned (i.e. dMa

=d). The ideal point method,
which already obtains the worst scores in Table I, usually
achieves the worst performance in classification accuracy.
However, the anti-ideal point method which obtains the best
scores in Table I for half of the attributes outperforms the
weighted sum. This demonstrates a correlation between the
scores in Table I and suggests that better representations lead
to more accurate classification. The appropriate combination
of the best representations for each attribute further improves
classification performance, which validates our reference point
approach. Learning a metric with the reference point slightly
improves results.

VI. CONCLUSION

We have proposed and justified the use of reference-point-
based decision models, which can be seen as a relaxation
of the classic weighted-sum model, to deal with ordered
relations between objects or categories. Particularly, we have
successfully applied our reference-point-based approach in the
context of relative visual attributes where our method seems
more appropriate than the weighted sum for some attributes.
Extensions to other types of attributes (e.g. related to ethnicity)
such as relative similes [7] (e.g. similarity with Halle Berry’s
nose or Robert Redford’s mouth) are straightforward. Fur-
thermore, although we illustrate our approach for the relative
attribute problem, it could be applied to other contexts such
as late fusion in multimodal problems [22].
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