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This is the supplementary material of (Law et al., 2017). The indices of the different sections and equations correspond to
those in (Law et al., 2017).

A. Proof of Section 3.1
Let us note ĈF = [f̂1, · · · , f̂n]> ∈ Rn×d, i.e. f̂>i is the i-th row of ĈF , Eq. (4) can then be written:

f(F ) = arg max
Ĉ∈Cn,k

1>Φ(ĈF ) + 〈F − ĈF,∇Φ(ĈF )〉 (12)

= arg min
Ĉ∈Cn,k

1>Φ(F )− 1>Φ(ĈF )− 〈F − ĈF,∇Φ(ĈF )〉︸ ︷︷ ︸
=

∑n
i=1 dφ(fi,f̂i)

(13)

Eq. (13) is nonnegative as it can be written as a sum of Bregman divergences, and Bregman divergences are nonnegative.
We note that if s = rank(F ) ≤ k, then we can formulate Ĉ ∈ Cn,k such that ĈF = F and the objective value in
Eq. (13) is then 0 (i.e. the global minimum of Eq. (13) is reached). By using the identity property of Bregman divergences
(i.e. ∀a,b, dφ(a,b) = 0 if and only if a = b), the set of solutions of Eq. (13) is the following set of matrices:

{Ĉ ∈ Cn,k : ĈF = F} (14)

which can be rewritten:

f(F ) = {Ĉ ∈ Cn,k : Ĉ = FF † + V V >, V V > ∈ Cn,(k−s), V V >F = 0} (15)

by using for instance the properties in (Fan, 1949). Indeed, any matrix A ∈ Cn,k that does not belong to the set in Eq. (15)
does not satisfy AF = F . One can verify that any matrix Ĉ ∈ Cn,k that is in the set in Eq. (15) satisfies ĈF = F .

B. Lower bound of Eq. (6)
By using the definition of f(F ) in Eq. (15), we can write Eq. (6):

max
F∈Fn

min
Ĉ∈f(F )

tr(CĈ) = max
F∈Fn

min
{V V >∈Cn,(k−s):V V >F=0}

≥0︷ ︸︸ ︷
tr(CFF †) +

≥0︷ ︸︸ ︷
tr(CV V >) (16)

Both terms tr(CFF †) and tr(CV V >) are nonnegative as the matrices C, FF † and V V > are all symmetric positive
semidefinite. Eq. (7) corresponds to selecting and maximizing the left term.

1Department of Computer Science, University of Toronto, Toronto, Canada 2CIFAR Senior Fellow. Correspondence to: Marc T. Law
<law@cs.toronto.edu>.



Supplementary Material of Deep Spectral Clustering Learning

C. About the gradient in Eq. (8)
We assume in the following that rank(F ) > 0. Otherwise, F = 0 is the optimal solution.

We note P = FF † the orthogonal projector onto the column space of F , we have by definition PF = F . Let us note
∇F = (I − FF †)S(F †)> where S is a symmetric matrix. We observe that the gradient∇P of Eq. (7) w.r.t. P satisfies the
properties in (Golub & Pereyra, 1973)[Lemma 4.1] with this form of∇F . Indeed, (Golub & Pereyra, 1973)[Eq. (4.2)] can
be written:

∇P = (I − FF †)∇FF † + (F †)>(∇F )>(I − FF †) = (I − FF †)S(F †)>F † + [(I − FF †)S(F †)>F †]>

One can verify that (∇P )F = (I − FF †)S

(F †)>︷ ︸︸ ︷
(F †)>F †F +(F †)>(∇F )>

0︷ ︸︸ ︷
(I − FF †)F = ∇F .

As PF = F , one can also verify that∇(PF ) = (∇P )F + P∇F = (∇P )F +

0︷ ︸︸ ︷
FF †(I − FF †)S(F †)> = ∇F .

From (Fan, 1949), Eq. (7) reaches its maximum value (i.e.∇P = 0) iff tr(FF †C) = tr(FF †) since rank(C) ≥ rank(F ).
Multiple optimum solutions of F may exist. However, the gradient must satisfy: ∀F ∈ Fn, P = FF †,∇P = 0 ⇔
FF †C = FF †, which is achieved iff there exists γ > 0 such that C = γS.

We just proved that the gradient can be written ∇F = γ(I − FF †)C(F †)> for some γ > 0, which is sufficient to use
gradient-based methods since a step size plays a scaling factor role.

We verify experimentally that γ = 2 by using the tutorial presented in http://ufldl.stanford.edu/wiki/
index.php/Gradient_checking_and_advanced_optimization

The tutorial uses the definition of derivatives. To follow the notations of the tutorial, let us note the objective function of
Eq. (7):

J(F ) = tr(FF †C) (17)

where F ∈ Rn×d is our variable. We note Eij ∈ Rn×d the matrix that contains only 0 except for its (i, j)-th element
whose value is 1. We also note ε ≤ 10−4 a small real value.

The tutorial explains that:

∀i ∈ {1, · · · , n},∀j ∈ {1, · · · , d}, (∇F )ij '
J(F + εEij)− J(F − εEij)

2ε
(18)

where (∇F )ij is the (i, j)-th element of∇F . By using the following Matlab code, we verify that γ = 2.

1 clear all;
2

3 n = 10;
4 d = 4;
5 rank_of_C = 7;
6

7 Y = rand(n,rank_of_C)*10;
8 C = Y * pinv(Y);
9

10 F = (rand(n,d)*10) - 5;
11 Real_gradient = 2*(eye(n) - F*pinv(F)) * C * pinv(F)';
12 epsilon = 10ˆ-7;
13

14 Approximate_gradient = zeros(n,d);
15

16 for i=1:n
17 for j=1:d
18 E = zeros(n,d);
19 E(i,j) = epsilon;
20

21 X1 = F+E;

http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization
http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization
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22 X2 = F-E;
23

24 Approximate_gradient(i,j) = (trace(X1 * pinv(X1) * C) - trace(X2 * pinv(X2) * ...
C))/(2*epsilon);

25 end
26 end
27

28

29 Real_gradient
30 Approximate_gradient
31

32 disp('Frobenius distance')
33 norm(Real_gradient-Approximate_gradient,'fro')

D. t-SNE plots
The following figures illustrate the 2-dimensional t-SNE (Van Der Maaten, 2014) embedding vectors produced by our
method and different baselines on the test categories (i.e. which are unseen) on the Birds, Cars196 and Stanford Online
products datasets, respectively. Each image is represented by a point and its ground truth label is represented by a color.
One can observe that our learned model is able to generalize and group examples from new categories that were unseen
during training.

Note that results are difficult to visualize for the Products dataset as there are thousands of categories whereas there are
about 100 categories in the other datasets.

t-SNE figures of some baselines for the same test sets are also provided in (Song et al., 2016) and (Song et al., 2017).
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Figure 2. Barnes-Hut t-SNE visualization (Van Der Maaten, 2014) of the embedding on the test/unseen categories of the Birds dataset
produced by the vanilla GoogLeNet pretrained on Image (top left), logistic regression for classification (top right), our method that
updates only the parameters in the last layer during fine-tuning (bottom left), our end-to-end method (bottom right). Examples in the
same category have the same color.
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Figure 3. Barnes-Hut t-SNE visualization (Van Der Maaten, 2014) of the embedding on the test/unseen categories of the Cars dataset
produced by the vanilla GoogLeNet pretrained on Image (top left), logistic regression for classification (top right), our method that
updates only the parameters in the last layer during fine-tuning (bottom left), our end-to-end method (bottom right). Examples in the
same category have the same color.
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Figure 4. Barnes-Hut t-SNE visualization (Van Der Maaten, 2014) of the embedding on the test/unseen categories of the Products
dataset produced by the vanilla GoogLeNet pretrained on Image (top left), logistic regression for classification (top right), our method
that updates only the parameters in the last layer during fine-tuning (bottom left), our end-to-end method (bottom right). Examples in
the same category have the same color.


