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Abstract

This paper introduces a novel similarity learning frame-
work. Working with inequality constraints involving
quadruplets of images, our approach aims at efficiently
modeling similarity from rich or complex semantic label
relationships. From these quadruplet-wise constraints, we
propose a similarity learning framework relying on a con-
vex optimization scheme. We then study how our metric
learning scheme can exploit specific class relationships,
such as class ranking (relative attributes), and class tax-
onomy. We show that classification using the learned met-
rics gets improved performance over state-of-the-art meth-
ods on several datasets. We also evaluate our approach
in a new application to learn similarities between webpage
screenshots in a fully unsupervised way.

1. Introduction
Similarity learning is useful in many Computer Vision

applications, such as image classification [6, 10, 17], image
retrieval [6], face verification or person re-identification [12,
18]. The key ingredients of similarity learning framework
are (i) the data representation including both the feature
space and the similarity function, (ii) the learning frame-
work which includes: training data, type of labels and rela-
tions, the optimization formulation and solvers.

The usual way to learn similarities is to consider binary
labels on image pairs [29]. For instance, in the context of
face verification [12], binary labels establish whether two
images should be considered equivalent or not. Metrics are
learned with training data to minimize dissimilarities be-
tween similar pairs while separating dissimilar ones. Many
different metrics have been considered in Euclidean space
or using kernel embedding [18].

Recently, some attempts have been made to go be-
yond learning metrics with pairwise constraints generated
from binary class membership labels. On the one hand,
triplet-wise constraints have been considered to learn met-
rics [6, 15, 28]. Triplet constraints may be generated from
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Figure 1. Quadruplet-wise (Qwise) strategy on 4 face classes
ranked according to the degree of presence of smile. Instead of
working on pairwise relations that present some flaws (see text),
Qwise strategy defines quadruplet-wise constraints to express that
dissimilarities between examples from (f ) and (g) should be
smaller than dissimilarities between examples from (e) and (h).

class labels or they can be inferred from richer relationships.
For example, Verma et al. [26] learn a similarity that de-
pends on a class hierarchy: an image should be closer to
another image from a sibling class than to any image from a
distant class in the hierarchy. Other methods exploit spe-
cific rankings between classes. For instance, relative at-
tributes have been introduced in [20]: different classes (e.g.
”celebrity”) are ranked with respect to different concepts or
attributes (e.g. ”smile”), see Fig. 1 (top). Pairwise relations
are extracted: e.g. face images from class (x) smile more
than (or as much as) face images from class (y). In [20],
it is shown that learning relative features can help signifi-
cantly boost classification performances.

In this paper, we focus on these rich contexts for learning
similarity metrics. Instead of pairwise or triplet-wise tech-
niques, we propose to investigate relations between quadru-
plets of images. We claim that, in many contexts, consider-
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ing relations such as two images are more similar than two
other images may be useful to learn a similarity. Our moti-
vation is illustrated in Fig. 1 in which enforcing strong pair-
wise equivalence constraints as in [20] may be problematic:
(second row) Owen (f ) is smiling more than Rodriguez (g)
although their classes are annotated as smiling as much as
each other. To overcome this limitation, one can consider
relations on quadruplets: noting that the difference between
the surrounding classes (e) and (h) is always greater than
between (f ) and (g), we express inequality constraints on
dissimilarities (Fig. 1 (bottom part)).

Based on this quadruplet-wise (Qwise) approach, we
propose in this paper a generic framework to learn metrics.
To get efficient optimization, it is based on Mahalanobis-
like metrics embedded in a convex optimization scheme.
Section 2 positions the paper with respect to related works.
Section 3 details our metric learning framework. We then
demonstrate the advantage of our approach for image classi-
fication with respect to pairwise and triplet-wise strategies
(Sections 4 and 5), and also for a new emerging context
about webpage visual screenshot comparison (Section 6).

2. Related Work

Image representation for classification has been deeply
investigated in recent years [7, 19]. The traditional Bag of
Words representation [22] has been extended for the cod-
ing step [11, 30] as well as for the pooling [2], or with bio-
inspired models [21, 24]. However, all these approaches
focus on image representation. Similarity functions are also
important to compare, classify and retrieve images. The
Mahalanobis-like distance DW is definitively the most in-
vestigated metric for metric learning:

D2
W(xi, xj) = (xi − xj)>W(xi − xj),W � 0 (1)

where W ∈ Rd×d is a symmetric positive semi-definite
(PSD) matrix (W � 0) and (xi, xj) ∈ Rd × Rd are rep-
resentations of images pi and pj . As explained in [28], one
can work on the elements of the matrix W or learn the linear
transformation of the input space parameterized by a matrix
L such that W = L>L and D2

W(xi, xj) = ‖L(xi − xj)‖2.
We focus in this work on supervised learning methods.

The learning strategy is usually driven by the application.
When supervision is considered, the way the dataset is la-
beled, e.g. binary labels on pairwise or triplet-wise rank-
ings, greatly affects the optimization problem formulation.

2.1. Pairwise optimization framework

In pairwise approaches [18, 29], the problem is formu-
lated as learning W such that the distance D2

W is optimized
on a training set composed of a subset S of similar images
and a subset D of dissimilar images. For instance, [29] de-

fine the resulting convex objective function:

min
W

∑
S
DW(xi, xj) s.t.

∑
D
DW(xi, xj) ≥ 1 , W � 0

(2)
A regularization term may be added. A hinge loss or a
generalized logistic loss function may be used to express
all the constraints (over S and D) in a single functional
[18]. This learning process may be extended to kernel func-
tions [14, 18].

Many supervised approaches have been proposed re-
cently to get training sets S and D. Most of those ap-
proaches use binary similarity labels: two images represent
the same object or not [12, 29], two images belong to the
same class or not [18].

2.2. Triplets and extensions

Another way to exploit labeled datasets is to con-
sider triplets of images (pi, p

+
i , p

−
i ) where the dissimilarity

DW(xi, x+i ) between (pi, p
+
i ) is smaller than DW(xi, x−i )

between (pi, p
−
i ). This type of constraints is easy to gen-

erate in classification: (pi, p
+
i ) are sampled from the same

class and (pi, p
−
i ) from different classes [10, 15, 25, 28].

For instance, Large Margin Nearest Neighbor algorithm
(LMNN) [28] learns a Mahalanobis distance for k-Nearest
Neighbors (k-NN) approach using these triplet-wise train-
ing sets. More precisely, LMNN uses a scheme similar to
Eq. (2) with a hinge loss function to enforce D2

W(xi, x−i ) to
be larger than D2

W(xi, x+i ).
In image retrieval, the Online Algorithm for Scalable Im-

age Similarity (OASIS) [6] uses a non-PSD square matrix
W in the bilinear function x>i Wxj as a similarity between
images pi and pj . For any triplet, a safety margin constraint
is defined: x>i W(x+i − x−i ) ≥ 1 . As explained by the
authors [6], OASIS requires images represented as sparse
vectors to be computationally efficient.

Other approaches investigate different dataset labels or
semantic relationships to build pairwise or triplet-wise met-
ric learning schemes. For instance, in [27], a class taxon-
omy is used in order to get elements of related classes, close
to each other. Verma et al. [26] extend this work by learn-
ing for each class a local Mahalanobis distance. Hwang et
al. [13] learn discriminative visual representations while ex-
ploiting external semantic knowledge about object category
relationships. In [20], complex relations between classes
are used. They consider totally ordered sets of classes that
describe relations among classes. Based on these rich re-
lations, they learn image representations by exploiting only
pairwise class relations.

We propose to explore this type of data knowledge in
metric learning for image comparison. Noting that pairwise
or triplet-wise approaches may, sometimes, be limited (see
Section 1), our learning framework is based on constraints
on quadruplets.



3. Qwise Similarity Learning Framework
As illustrated in Fig. 1, pair or triplet constraints may

be noisy or irrelevant, leading to less than optimal learning
scheme when provided at a class level. On the other hand,
working on dissimilarities between quadruplets of images
limits the risk of incorporating misleading annotations. One
can find other Computer Vision applications where pairwise
dissimilarities Dij might be hard or meaningless for hu-
mans to annotate and quadruplet-wise easy or meaningful.
For instance, perceptual color spaces have been proposed
using experiments to compare Dij and Dkl.

We are interested in comparing pairs of dissimilari-
ties (Dij , Dkl) that involve up to four different images
(pi, pj , pk, pl). We are given a set P of images pi, and
the target dissimilarity function D : P × P → R between
pairs of images (pi, pj), we note D(pi, pj) = Dij . Two
types of relations R are considered between Dij and Dkl:
(1) strict inequality between dissimilarities: Dij < Dkl,
(2) non-strict inequality: Dij ≤ Dkl. Note that Dij =
Dkl can be rewritten as two relations Dij ≤ Dkl and
Dij ≥ Dkl. We then define two training sets: A, com-
posed of quadruplets (pi, pj , pk, pl) satisfying Dij < Dkl

(Dkl strict upper bound ofDij) andB, composed of quadru-
plets (p′i, p

′
j , p
′
k, p
′
l) satisfying Di′j′ ≤ Dk′l′ (non-strict up-

per bound).1

3.1. Metric formulation

Following Eq. (1), the dissimilarity considered for learn-
ing in this paper is:

D2
W(pi, pj) = Φ(pi, pj)

>W Φ(pi, pj) (3)

with W ∈ Rd×d PSD and Φ(pi, pj) ∈ Rd the aggregation
in a single vector of d elementary dissimilarity functions φk
where ∀k ∈ {1, . . . , d}, φk : P×P → R. The basic choice
for Φ is Φ(pi, pj) = xi − xj corresponding to Eq. (1).

Working in Rd, the optimization may be done using a
global loss on Eq. (3) over a training set, as proposed in
[6, 28]. However, it is usually computationally expensive to
guarantee W PSD.2 An option is to optimize over L∈ Rn×d
s.t. L>L = W (usually n < d). This reduces the number of
parameters from d2 to nd, and thus may overcome overfit-
ting issues, as discussed in [18]. However, this can lead to a
non-convex optimization problem. As a consequence, [28]
alternate their optimization steps w.r.t. W and L.

Instead, we focus on two contexts where the optimiza-
tion may be done efficiently and with a relatively small

1Although quadruplet-wise constraints can be inferred from pairwise
approaches [8, 18], i.e. (pi, pj) ∈ S, (pk, pl) ∈ D ⇒ Dij < Dkl,
the reverse is not true. Quadruplet-wise constraints can be generated even
if (pi, pj) and (pk, pl) are both similar or dissimilar. Only the order of
similarity between (pi, pj) and (pk, pl) is required.

2Gradient descent over W usually requires projecting the solution onto
the cone of PSD matrices at each iteration using spectral decomposition.

number of parameters to avoid overfitting:
• W is diagonal: Diag(W) = w and

D2
W(pi, pj) = w>Φ2(pi, pj) with Φ2(pi, pj) =

Φ(pi, pj) ◦ Φ(pi, pj) where ◦ is the Hadamard product
(element-by-element product). W is PSD (i.e. D2

W is a
squared Mahalanobis distance) iff w ≥ 0 (the elements of
w are non-negative). We then restrict w ≥ 0 in this case.
• Optimization over the rows of L: if the annotations

provide M different dissimilarity functions, where each of
them represents a relative ordering focused on a given cri-
terion (e.g. pi is more smiling than pj , pi is younger than
pj ...), each row of the matrix L ∈ RM×d can be learned
independently. Themth row of L (denoted w>m) satisfies the
ordering of the mth function Dwm

(pi, pj) = w>mΦ(pi, pj).
In both cases, the learning problem may be expressed as

a linear combination of the w parameters. Without loss of
generality, we then consider optimizing the following dis-
similarity function (with Ψ equal to Φ or Φ2):

Dw(pi, pj) = w> Ψ(pi, pj) (4)

3.2. Learning scheme

Let Dw be the family of dissimilarities that we consider.
Our goal is to learn the parameters ofDw such that the max-
imum number of the following constraints is satisfied:

∀(pi, pj , pk, pl) ∈ A : Dw(pk, pl) ≥ Dw(pi, pj) + 1 (5)

∀(pi, pj , pk, pl) ∈ B : Dw(pk, pl) ≥ Dw(pi, pj) (6)

This means that Dw fulfills in Eq. (5) the constraint Dkl >
Dij with a safety margin of 1, and Dw fulfills in Eq. (6) the
constraint Dkl ≥ Dij . Eq. (5) is similar to the constraints
used in triplet-wise approaches [10, 25, 28] with the excep-
tion that we use quadruplets of images.

The problem of determining a w that maximizes the
number of satisfied constraints in Eq. (5) and Eq. (6) (corre-
sponding to minimizing a global loss with a 0/1 loss func-
tion per constraint) is NP-hard [20]. Instead, we use a surro-
gate loss function that is convex and differentiable. We first
rewrite these equations using Eq. (4). Let zq be the vector of
differences of quadruplet q = (pi, pj , pk, pl): zq = zijkl =
Ψ(pk, pl)−Ψ(pi, pj). We have Dw(pk, pl)−Dw(pi, pj) =
w>zq , and Eq. (5) and Eq. (6) may be rewritten:

∀q ∈ A : w>zq ≥ 1 (7)

∀q ∈ B : w>zq ≥ 0 (8)

As explained in Section 2, we can use a loss function
over the training set A ∪ B to define our objective func-
tion. Since the constraints over A and B are different, we
first define the loss function Lh1 over quadruplets in A w.r.t.



Eq. (7). We note t = w>zq (∀q ∈ A) and use the following
differentiable loss function3:

Lh1 (t) =


0 if t > 1 + h
(1+h−t)2

4h if |1− t| ≤ h
1− t if t < 1− h

(9)

We define Lh0 as an adaptation of Lh1 that considers the ab-
sence of safety margin in Eq. (8). ∀q ∈ B, t = w>zq :

Lh0 (t) =


0 if t > 0
t2

4h if | − h− t| ≤ h
−h− t if t < −2h

(10)

To avoid overfitting, we introduce a regularization over w
(term ‖w‖22). We then get our optimization problem:

min
w

∑
q∈A

Lh1 (w>zq) +
∑
q∈B

Lh0 (w>zq) + λ‖w‖22 (11)

where the parameter λ weighs the regularization.
By choosing such a regularization, our scheme may be

compared to a ranking SVM [5], except that the loss func-
tions work on quadruplets. Therefore, the optimization
problem defined in Eq. (11) is convex. We solve the above
primal problem using Newton’s method [5]. The complex-
ity of our optimization is linear in the size ofA∪B. It can be
solved efficiently even with a large number of constraints.
In the three applications that we consider, the learning can
be achieved on a single computer in less than one hour. The
number of parameters to learn is small and grows linearly
with the input space dimension, limiting overfitting [18]. It
can also be extended to kernels [5].

The two key ingredients of our approach are the formu-
lation of Ψ and the generation of the training setA∪B. We
present in the next sections different ways to choose Ψ, A
and B depending on the application context.

4. Metric learning and Relative Attributes
Relative attributes have been introduced in [20]. At-

tributes are human-nameable concepts used to describe im-
ages. In Fig. 1 the attribute am = ”Presence of smile” al-
lows to rank 4 celebrity classes from the least to the most
smiling. Instead of considering attributes as boolean val-
ues (the concept is present in the image or not), Parikh and
Grauman [20] learn for each attribute am a vector wm ∈ Rd
so that the score w>mxi represents the degree of presence of
am in pi (xi ∈ Rd is the feature vector of pi).

To learn wm, they use original training sets about rela-
tive ordering between classes such as the one presented in

3As described in [4], Lh
1 is a differentiable approximation of the hinge

loss when h → 0. It is inspired by the Huber Loss function. Usually
h ∈ [0.01, 0.5]. In all our experiments, h is set to 0.05.

Fig. 1: (e) ≺ (f) ∼ (g) ≺ (h). [20] only consider pair-
wise relations for learning: (e) ≺ (f) meaning that images
of class (f) have stronger presence of attribute am than im-
ages of class (e), and (f) ∼ (g) meaning that images of (f)
and (g) have similar relative strengths of attribute am.

By considering the signed dissimilarity Dwm(pi, pj) =
w>m(xi − xj), their constraints are of the form
Dwm

(pi, pj) ≥ 1 and Dwm
(pi, pj) = 0.

4.1. Ψ, A: Qwise strategy

Following our formalism defined in Section 3, we con-
siderDwm

(pi, pj) = w>mΨ(pi, pj), and Ψ(pi, pj) = xi−xj .
As explained in Section 1, the learning information is

provided at a class level: pairwise constraints may be noisy
or irrelevant, leading to less than optimal learning scheme.
Considering triplet-wise constraints (class (x) is more sim-
ilar to (y) than to (z)) could be helpful but still generates
inconsistent constraints in some cases: in Fig. 1 (second
row), Owen (f ) seems to be more similar to Johansson (h)
than to Rodriguez (g). To further exploit the available or-
dered set of classes and overcome these limitations, we con-
sider relations on quadruplets. Two types of Qwise con-
straints may be derived from the training set. The first one
is: (e) ≺ (f) ≺ (g) ≺ (h). We then do the following as-
sumption: any image pair from the extreme border classes
(e) and (h) are more dissimilar than any image pair from
the intermediate classes (f) and (g):

∀(pi, pj , pk, pl) ∈ (g)× (f)× (h)× (e) Dkl > Dij (12)

By working with pairs of dissimilarities, the risk of in-
corporating misleading annotations into our process is lim-
ited. By sampling such quadruplets from the whole set of
relative orderings on classes (e.g. Table 1, see experiments
for details), we build our Qwise set A.

The second type of relations is: (e) ≺ (f) ∼ (g) ≺
(h), meaning that the pair (pi, pj) are similar. We then use
a slightly different assumption: Dkl > |Dij | to take into
account the fact that pi and pj are not ranked. In order to
have a convex problem, we rewrite it as two constraints:4{

Dkl ≥ Dij + 1
Dkl ≥ Dji + 1

(13)

We thus generate two quadruplets in A from Eq. (13).
Note that B remains empty in this application. Once the
optimal weight vectors wm are learned for all am, each im-
age pi is described by a high level feature representation:
hi = [w>1 xi, . . . ,w>mxi, . . . ,w>Mxi]> ∈ RM where M is
the number of attributes. This corresponds to learning a lin-
ear transformation parameterized by L ∈ RM×d such that
hi = Lxi where the m-th row of L is w>m.

4It is not necessary to discuss the sign of Dkl since pk was annotated
to have stronger presence of am than pl. We infer Dkl > 0.



OSR Attributes Relative Ordering of Classes
Natural T ≺ I ∼ S ≺ H ≺ C ∼ O ∼M ∼ F
Open T ≺ F ≺ I ∼ S ≺M ≺ H ∼ C ∼ O

Perspective O ≺ C ≺M ∼ F ≺ H ≺ I ≺ S ≺ T
Large-Objects F ≺ O ≺M ≺ I ∼ S ≺ H ∼ C ≺ T

Diagonal-Plane F ≺ O ≺M ≺ C ≺ I ∼ S ≺ H ≺ T
Close-Depth C ≺M ≺ O ≺ T ∼ I ∼ S ∼ H ∼ F

Table 1. Relative orderings used in [20] for OSR (categories: coast
(C), forest (F), highway (H), inside-city (I), mountain (M), open-
country (O), street (S) and tall-building (T)).

4.2. Classification Experiments

To evaluate and compare our Qwise scheme, we follow
a classification framework inspired from [20] for scene and
face recognition on the OSR [19] and Pubfig [16] datasets.

Datasets: We experiment with the two datasets used
in [20]: Outdoor Scene Recognition (OSR) [19] containing
2688 images from 8 scene categories and a subset of Pub-
lic Figure Face (PubFig) [16] containing 771 images from
8 face categories. We use the image features made pub-
licly available by [20]: a 512-dimensional GIST [19] de-
scriptor for OSR and a concatenation of the GIST descriptor
and a 45-dimensional Lab color histogram for PubFig. An-
other information is also available for both datasets: relative
orderings of classes according to some semantic attributes
(see Table 1 for OSR).

Baselines: We use three baselines: (1) the linear trans-
formation learned with LMNN [28] that uses only class
membership information5, (2) the relative attribute learning
problem of Parikh and Grauman [20] that uses relative at-
tribute annotations on classes (e.g. Table 1), unlike LMNN,
to generate and exploit only pairwise constraints, (3) a com-
bination of the first two baselines that first uses relative at-
tribute annotations to learn a representation of images in at-
tribute space, and second, learns a metric in attribute space
with LMNN. We call this baseline RA + LMNN. We use
the publicly available codes of [20] and [28].

Qwise Method: We use for OSR and Pubfig the Qwise
constraints defined in Section 4.1. The Qwise scheme only
uses relative attribute information to learn a linear transfor-
mation. This linear transformation can be exploited by other
linear transformation learning methods that use class mem-
bership information. We chose LMNN [28]: the high level
features hi learned with our method are used as input of
LMNN. We call this strategy Qwise + LMNN.

Learning setup: We use the same experimental setup
as [20] to learn our Qwise metric. N = 30 training images
are used per class, the rest is for testing. To learn the projec-
tion direction wm of attribute am, we select pairs of classes.

5For each image, LMNN tries to satisfy the condition that members
of a predefined set of target neighbors (of the same class) are closer than
samples from other classes. In [28], those neighbors are chosen using the
`2-distance in the input space.

OSR Pubfig
Parikh’s code [20] 71.3± 1.9% 71.3± 2.0%

LMNN-G 70.7± 1.9% 69.9± 2.0%
LMNN 71.2± 2.0% 71.5± 1.6%

RA + LMNN 71.8± 1.7% 74.2± 1.9%

Qwise 74.1± 2.1% 74.5± 1.3%
Qwise + LMNN-G 74.6± 1.7% 76.5± 1.2%

Qwise + LMNN 74.3± 1.9% 77.6± 2.0%

Table 2. Test classification accuracies on the OSR and Pubfig
datasets for different methods.

From each selected pair of classes, we extractN×N image
pairs or quadruplets to create training constraints. To carry
out fair comparisons, we generate one Qwise constraint for
each pairwise constraint generated by [20] using the strate-
gies described in Section 4.1. We then have the same num-
ber of constraints. Once all the M projection directions wm
are learned, a Gaussian distribution is learned for each class
cs of images: the mean µs ∈ RM and covariance matrix
Σs ∈ RM×M are estimated using the hi of all training im-
ages pi ∈ cs. A test image pt is then assigned to the class
corresponding to the highest likelihood. The performance
is measured as the average classification accuracy across all
classes over 10 random train/test splits.

Results: Table 2 reports the classification scores for the
three baselines, Qwise, and Qwise+LMNN. A k-NN clas-
sifier is used for the LMNN methods (since LMNN is de-
signed for k-NN classification) whereas Gaussian models
are used for the LMNN-G methods to have the same clas-
sifier as [20]. On OSR and Pubfig, our method reaches
an accuracy of 74.1% and 74.5%, respectively. It out-
performs the first two baselines on both datasets with a
margin of 3% accuracy, reaching state-of-the-art results in
this original setup [20]. Moreover, performance is fur-
ther improved when combining Qwise and LMNN. Particu-
larly, an improvement of about 3% is obtained on Pubfig,
reaching 77.6%. Relative attribute annotations (used for
Qwise learning) and class membership information (used
for LMNN) then seem complementary.

We also investigated how our quadruplets are sampled
from the set of ordering relations. For instance, if we have
(k) ≺ (i) ≺ (e) ≺ (f) ∼ (g) ≺ (h) ≺ (j) ≺ (l) and focus
on the class pair (f) ∼ (g), in all our experiments, we only
sampled quadruplets from the 4 classes (e) ≺ (f) ∼ (g) ≺
(h) (step 1). We experimented with increasing the step: e.g.
(i) ≺ (f) ∼ (g) ≺ (j) (step 2) or (k) ≺ (f) ∼ (g) ≺ (l)
(step 3). There are no significant differences in the results,
our method is very robust and always better than baselines.



5. Hierarchical Metric Learning
Another classification context with rich annotations is

metric learning using a semantic taxonomy structure. We
study in this section how our model can exploit complex
relations from a class hierarchy as proposed in [26] . Our
objective is to learn a metric such that images from close
(sibling) classes with respect to the class semantic hierarchy
are more similar than images from more distant classes.

5.1. Ψ, A: Qwise formulation

Given a semantic taxonomy expressed by a tree of
classes, let us consider two sibling classes ca and cb and
one of their cousin classes cd. We generate two types of
quadruplet-wise constraints in order to:

• Enforce the dissimilarity between two images from
the same class to be smaller than between two others from
sibling classes. If (pi, pj) are both sampled from ca, and
(pk, pl) from ca × cb, this means we want Dij < Dkl.
• Enforce the dissimilarity between two images from sib-

ling classes to be smaller than between two images from
cousin classes. If (pi, pj) are sampled from ca × cb and
(pk, pl) from ca × cd, we want Dij < Dkl.

All these quadruplets form the set A. We use the diago-
nal PSD matrix learning framework described in Section 3.
We formulate our distance Dw(pi, pj) = w>Ψ(pi, pj)
where Ψ(pi, pj) = (xi−xj)◦(xi−xj) and w = Diag(W).
Once the diagonal PSD matrix W ≥ 0 is learned, we project
the input space using the linear transformation parameter-
ized by the diagonal matrix W1/2 = L ∈ Rd×d such that
∀i ∈ {1, . . . , d},Lii =

√
Wii (note that L>L = W).

5.2. Experiments

To validate the Qwise ability to learn a powerful met-
ric using a class hierarchy, we focus on the local subtree
classification task described in [26]. We use the same 9
datasets as in [26] (which are all subsets of ImageNet [9]).
The goal is to discriminate classes (leafs of a hierarchical
subtree) amongst a hierarchical subtree that contains all the
considered classes. The training sets (mentioned in Table 3)
contain from 8 to 40 different classes and from 8000 to
54000 images per subtree. We use the train, validation and
test sets defined in [26], and the same publicly available
features6 as in [26]: 1000 dimensional SIFT-based Bag-of-
Bords (BoW).

We compare our model to Verma et al. [26] which also
use class taxonomy information to learn hierarchical simi-
larity metrics. It is worth mentioning that they learn a local
metric for each class (leaf of the subtree), parameterized
by a full PSD matrix. Our Qwise-learning model is simpler
since we learn a global metric for each subtree and use a

6http://www.image-net.org/challenges/LSVRC/2010/

Subtree Dataset Verma et al. [26] Qwise
Amphibian 41% 43.5%

Fish 39% 41%
Fruit 23.5% 21.1%

Furniture 46% 48.8%
Geological Formation 52.5% 56.1%
Musical Instrument 32.5% 32.9%

Reptile 22% 23.0%
Tool 29.5% 26.4%

Vehicle 27% 34.7%

Global Accuracy 34.8% 36.4%

Table 3. Standard classification accuracy for the various datasets.

diagonal matrix, for which the number of parameters only
grows linearly with the input space dimension. In [26], they
use an ad hoc classifier specifically designed for their local
metric. Instead, since we learn a global metric, we use a
standard classifier (linear SVM) to perform classification.

Test classification accuracies are reported in Table 3.
LMNN and a polynomial SVM are reported in [26] to per-
form a global accuracy of 24.4% and 33.2%, respectively.
Our method reaches a global accuracy of 36.4%, which is
1.6% better than [26]. It outperforms all the reported meth-
ods, globally and on each dataset except Fruit and Tool.
Even if our metric learning strategy is not significantly bet-
ter than a SVM scheme alone, the results are encouraging.
The sampling strategy to get useful quadruplet constraints
from these hierarchies has to be further investigated.

6. Temporal Metric Learning for Webpages

Inspired from the study of dynamics in webpages [1], a
novel application of our formalism is proposed. For Web
crawling purpose, it is useful to understand the change be-
havior of websites over time [3]. Significant changes be-
tween successive versions of a same webpage mean that a
robot has to revisit the page and index it.

In this study, we focus on news websites, where adver-
tisements or menus are not significant whereas the news
content is significant. In this context, having a metric able
to properly identify significant changes between webpage
versions is crucial. An important aspect is the localization
of these changes inside pages [1, 23]: each site has a se-
mantical spatial structure important to capture. Using many
manual annotations, [23] learn region weights inside pages.
[3] exploit this strategy to detect significant changes using
the source code of pages.

We propose to model this problem in a fully unsuper-
vised way, exploiting temporal information to define a vi-
sual quadruplet-wise similarity learning scheme. We intend
to learn (1) a semantical dissimilarity between versions, and
(2) region weights that help interpreting the results.



Websites CNN NPR New York Times BBC
Measures APS APD MAP APS APD MAP APS APD MAP APS APD MAP

Euclidian dist. 68.1 85.9 77.0 96.3 89.5 92.9 69.8 79.5 74.6 91.1 76.7 83.9
LMNN dist. 78.8 91.7 85.2 98.0 92.5 95.2 83.2 89.1 86.1 92.5 80.1 86.3
Qwise dist. 82.7 94.6 88.6 98.6 94.3 96.5 85.5 92.3 88.9 92.8 79.3 86.1

Table 4. Webpage metric learning results: Similar (APS), Dissimilar (APD) and MAP (in %) on CNN, NPR, NYTimes and BBC.

6.1. Ψ, A, B: Qwise formulation

Let pi be here a screen capture of a specific webpage
at time i. Following Section 3, we use a diagonal ma-
trix metric model and express our metric as: Dw(pi, pj) =
w>Ψ(pi, pj) with Ψ(pi, pj) = Φ2(pi, pj). In practice, we
use a non-overlapping grid of regions, and the dth term in
Φ2(pi, pj) is the squared `2 distance between GIST descrip-
tors in the dth regions of pi and pj (see section 6.2 for de-
tails). The vector w ≥ 0 directly weights spatial regions in
a webpage, allowing to learn a semantical spatial structure.

To generate our constraints, we assume that the dissimi-
larity between two successive screen captures pt and pt+1 is
smaller than the dissimilarity between a previous (pr) and
a later (distant enough) (pr+γ) versions: D(pr, pr+γ) >
D(pt, pt+1) if r ≤ t ≤ r + γ − 1. The parameter γ defines
the period beyond which a strict inequality holds. In this
case, the quadruplet (pt, pt+1, pr, pr+γ) lies in A. More-
over, we also consider dissimilarities between closer ver-
sions using a γ′ < γ, but we relax the inequalities to keep
consistent constraints: D(pr, pr+γ′) ≥ D(pt, pt+1). This
kind of quadruplet (pt, pt+1, pr, pr+γ′) belongs to B.

To help understanding what the constraints in A and
B encode, we give two examples of region types that our
Qwise scheme is able to learn. First, quadruplets in B that
violate the constraint (i.e. the content between pr and ps
is more similar than their intermediate versions (pt, pt+1))
help to ignore regions where random and periodic changes
occur. Typically, this happens for advertisements. Second,
quadruplets in A that violate their corresponding constraint
penalize content that does not change much in some region,
although a change in the whole page is expected. These
static regions correspond for example to menus: the algo-
rithm learns to ignore these areas.

6.2. Experimental Results

Dataset: To evaluate the Qwise learning scheme, we
provide a new webpage dataset. For this, we crawled CNN,
BBC, NPR and New York Times homepages7 for about
50 days. The crawling is performed each hour, as done
in [1, 3]: pt+1 is visited one hour after pt. For an eval-
uation purpose, we manually annotate successive versions
(pt, pt+1) as dissimilar if a (semantical) significant change

7http://www.cnn.com, http://www.bbc.co.uk, http://www.npr.org,
http://www.nytimes.com

(a) Webpage screenshot (b) Learned spatial weights

Figure 2. Important change map for NPR. (a) Webpage screenshot,
with relevant area (news) in blue, irrelevant parts (menu and ad-
vertisement) in green and purple, respectively. (b) Spatial weights
learned by Qwise (larger values are darker).

occurs between pt and pt+1, and as similar otherwise.8

Evaluation Process: To evaluate the quality of the met-
ric, we use the Average Precision (AP). Since AP is not
symmetric, we compute APS and APD for the similar and
dissimilar classes, and report the Mean Average Precision
(MAP). For each website, we split the dataset in 10 train/test
subsets. For each split, a distance is learned on versions
crawled during 5 successive days, and the successive ver-
sions of the 45 remaining days are used for testing.

Visual descriptors: We consider screen captures of
page versions as images. Only the visible part of pages is
considered since it generally contains the most useful in-
formation [23]. Our images thus have a maximal height of
1000 pixels, and a width usually of about 1000 pixels. We
then use GIST descriptors [19] with an m × m grid over
images. Thus, Ψ(pi, pj) ∈ Rm2

is a vector where each el-
ement corresponds to the squared `2-distance between be-
tween bins that fall into the same cell of the grids of pi and
pj . We set m = 10 for results in Table 4.

Parameters to generate Qwise constraints: To
generate constraints, we sample version quadruplets
(pt, pt+1, pr, ps) in a temporal window (of 5 days) where
t varies and so that r ≥ t− 6, s ≤ t+ 7, γ = 4.

Baselines: We consider two baselines: (1) the Euclidean
distance (W = Id in Eq. (3)), (2) a learned metric using

8Some pages have been annotated as ambiguous if a clear annotation
could not be decided. They are ignored from test evaluations.



LMNN, for which the set A is used to generate triplets.
Results and Discussion: Table 4 gives quantitative re-

sults on the ranking of distances of test similar/dissimilar
page version pairs (pt, pt+1). Qwise favorably compares to
the Euclidean distance and LMNN metrics. It is worth men-
tioning that the results have been obtained with the same γ
parameter for all webpages. The performance gain is partic-
ularly noticeable compared to the Euclidean distance, espe-
cially in New York Times (+14.3%) and CNN (+11.6%).
This illustrates the Qwise ability to focus on relevant ar-
eas (news) and to ignore ”noisy” regions (advertisements or
menus). In BBC, the gain is smaller (+2.2%) because some
irrelevant changes take place from time to time in the only
region where relevant changes usually occur. In addition,
Qwise has an edge over LMNN, with a stable improvement,
except in BBC where the results are similar. Fig 2 (b) illus-
trates region weights learned by our Qwise approach. The
map plots the relative values of the learned w ≥ 0. The
highest values, represented by dark regions, match with the
significant content of the page (blue region). Menus and
advertisements are ignored by the map as expected.

7. Conclusion and Perspectives
In this paper, we introduce our Qwise framework to learn

similarities from quadruplets of images. It is specifically
adapted to incorporate knowledge from rich or complex
semantic label relations. The proposed metric parameter-
ization makes the approach robust to overfitting, and the
convexity of the objective function makes the learning ef-
fective. Our Qwise approach has been successfully evalu-
ated in three different scenarios: relative attribute learning,
metric learning on class hierarchy, and study of webpage
changes.
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