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Abstract

We consider learning a distance metric in a weakly su-
pervised setting where “bags” (or sets) of instances are
labeled with “bags” of labels. A general approach is
to formulate the problem as a Multiple Instance Learning
(MIL) problem where the metric is learned so that the dis-
tances between instances inferred to be similar are smaller
than the distances between instances inferred to be dissim-
ilar. Classic approaches alternate the optimization over
the learned metric and the assignment of similar instances.
In this paper, we propose an efficient method that jointly
learns the metric and the assignment of instances. In par-
ticular, our model is learned by solving an extension of
kmeans for MIL problems where instances are assigned to
categories depending on annotations provided at bag-level.
Our learning algorithm is much faster than existing metric
learning methods for MIL problems and obtains state-of-
the-art recognition performance in automated image anno-
tation and instance classification for face identification.

1. Introduction

Distance metric learning [33] aims at learning a distance
metric that satisfies some similarity relationships among
objects in the training dataset. Depending on the con-
text and the application task, the distance metric may be
learned to get similar objects closer to each other than dis-
similar objects [20, 33], to optimize some k nearest neigh-
bor criterion [31] or to organize similar objects into the
same clusters [15, 18]. Classic metric learning approaches
[15, 16, 17, 18, 20, 31, 33] usually consider that each ob-
ject is represented by a single feature vector. In the face
identification task, for instance, an object is the vector rep-
resentation of an image containing one face; two images are
considered similar if they represent the same person, and
dissimilar otherwise.

Although these approaches are appropriate when each
example of the dataset represents only one label, many vi-
sual benchmarks such as Labeled Yahoo! News [2], UCI
Corel5K [7] and Pascal VOC [8] contain images that in-

DOCUMENT DETECTED FACES BAG

Detected labels: 
- Elijah Wood
- Karl Urban
- Andy Serkis

Caption: Cast members of 
'The Lord of the Rings: The 
Two Towers,' Elijah Wood 
(L), Liv Tyler, Karl Urban 
and Andy Serkis (R) are seen 
prior to a news conference 
in Paris, December 10, 2002.

Figure 1. Labeled Yahoo! News document with the automatically
detected faces and labels on the right. The bag contains 4 instances
and 3 labels; the name of Liv Tyler was not detected from text.

clude multiple labels. We focus in this paper on such multi-
label contexts which may differ significantly. In particular,
the way in which labels are provided differs in the applica-
tions that we consider. To facilitate the presentation, Fig. 1
illustrates an example of the Labeled Yahoo! News dataset:
the item is a document which contains one image represent-
ing four celebrities. Their presence in the image is extracted
by a text detector applied on the caption related to the im-
age in the document; the labels extracted from text indicate
the presence of several persons in the image but do not indi-
cate their exact locations, i.e., the correspondence between
the labels and the faces in the image is unknown. In the
Corel5K dataset, image labels are tags (e.g., water, sky, tree,
people) provided at the image level.

Some authors [11, 12] have proposed to learn a distance
metric in such weakly supervised contexts where the labels
(e.g., tags) are provided only at the image level. Inspired by
a multiple instance learning (MIL) formulation [6] where
the objects to be compared are sets (called bags) that con-
tain one or multiple instances, they learn a metric so that the
distances between similar bags (i.e., bags that contain in-
stances in the same category) are smaller than the distances
between dissimilar bags (i.e., none of their instances are in
the same category). In the context of Fig. 1, the instances
of a bag are the feature vectors of the faces extracted in the
image with a face detector [28]. Two bags are considered
similar if at least one person is labeled to be present in both
images; they are dissimilar otherwise. In the context of im-
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age annotation [12] (e.g., in the Corel5K dataset), a bag is
an image and its instances are image regions extracted with
an image segmentation algorithm [25]. The similarity be-
tween bags also depends on the co-occurrence of at least
one tag provided at the image level.

Multiple Instance Metric Learning (MIML) approaches
[11, 12] decompose the problem into two steps: (1) they
first determine and select similar instances in the different
training bags, (2) and then solve a classic metric learning
problem over the selected instances. The optimization of
these two steps is done alternately, which is suboptimal, and
the metric learning approaches that they use in the second
step have high complexity and may thus not be scalable.

Contributions: In this paper, we propose a MIML
method that jointly learns a metric and the assignment of
instances in a MIL context by exploiting weakly supervised
labels. In particular, our approach jointly learns the two
steps of MIML approaches [11, 12] by formulating the set
of instances as a function of the learned metric. We also
present a nonlinear kernel extension of the model. Our
method obtains state-of-the-art performance for the stan-
dard tasks of weakly supervised face recognition and auto-
mated image annotation. It also has better algorithmic com-
plexity than classic MIML approaches and is much faster.

2. Proposed Model
In this section, we present our approach that we call

Multiple Instance Metric Learning for Cluster Analysis
(MIMLCA) which learns a metric in weakly supervised
multi-label contexts. We first introduce our notation and
variables. We explain in Section 2.2 how our model infers
which instances in the dataset are similar when both the sets
of labels in the respective bags and the distance metric to
compare instances are known and fixed. Finally, we present
our distance metric learning algorithm in Section 2.3.

2.1. Preliminaries and notation

Notation: Sd+ is the set of d × d symmetric positive
semidefinite (PSD) matrices. We note 〈A,B〉 := tr(AB>),
the Frobenius inner product where A and B are real-valued
matrices; and ‖A‖ :=

√
tr(AA>), the Frobenius norm of

A. 1 is the vector of all ones with appropriate dimensional-
ity and A† is the Moore-Penrose pseudoinverse of A.

Model: As in most distance metric learning work [14],
we consider the Mahalanobis distance metric dM that is pa-
rameterized by a d × d symmetric PSD matrix M = LL>

and is defined for all a,b ∈ Rd as:

dM (a,b) =
√

(a− b)>M(a− b) = ‖(a− b)>L‖ (1)

Training data: We consider the setting where the train-
ing dataset is provided as m (weakly) labeled bags. In
detail, each bag Xi ∈ Rni×d contains ni instances, each

of which is represented as a d-dimensional feature vector.
The whole training dataset can thus be assembled into a
single matrix X = [X>1 , · · · , X>m]> ∈ Rn×d that con-
catenates the m bags and where n =

∑m
i=1 ni is the to-

tal number of instances. We assume that (a subset of)
the instances in X belong to (a subset of) k training cat-
egories. In the weakly supervised MIL setting that we
consider, we are provided with the bag label matrix Y =
[y1, · · · ,ym]> ∈ {0, 1}m×k, where Yic (i.e., the c-th ele-
ment of yi ∈ {0, 1}k) is 1 if the c-th category is a candidate
category for the i-th bag (i.e., the c-th category is labeled as
being present in the i-th bag), and 0 otherwise. For instance,
the matrix Y is extracted from the image tags in the image
annotation task, and extracted from text in the Labeled Ya-
hoo! News dataset (see Fig. 1).

Instance assignment: As the annotations in Y are pro-
vided at the image level (i.e., we do not know exactly the
labels of the instances in the bags), our method has to per-
form inference to determine the categories of the instances
in X . We then introduce the instance assignment matrix
H ∈ {0, 1}n×k which is not observed and that we want to
infer. In the following, we write our inference problem so
that Hjc = 1 if the j-th instance is inferred to be in cate-
gory c, and 0 otherwise. We also assume that although a bag
can contain multiple categories, each instance is supposed
to belong to none or one of the k categories.

In many settings, as labels may be extracted automati-
cally, some categories may be mistakenly labeled as present
in some bags, or they may be missing (see Fig. 1). Many in-
stances also belong to none of the k training categories and
should thus be left unassigned. Following [11] and [12], if
a bag is labeled as containing a specific category, we assign
at most one instance of the bag to the category; this makes
the model robust to the possible noise in annotations. In
the ideal case, all the candidate categories and training in-
stances can be assigned and we then have ∀i,y>i 1 = ni.
However, in practice, due to uncertainty or detection errors,
it could happen that y>i 1 < ni (i.e., some instances in the
i-th bag are left unassigned) or y>i 1 > ni (i.e., some labels
in the i-th bag do not correspond to any instance).

Reference vectors: We also consider that each category
c ∈ {1, · · · , k} has a representative vector zc ∈ Rd that we
call reference vector. Our goal is to learn both M and the
reference vectors so that all the instances inferred to be in a
category are closer to the reference vector of their respective
category than to any other reference vector (whether they
are representatives of candidate categories or not). In the
following, we concatenate all the reference vectors into a
single matrix Z = [z1, . . . , zk]> ∈ Rk×d. We show in
Section 2.2 that the optimal value of Z can be written as a
function of X , H and M .

Before introducing our metric learning approach, we ex-
plain how inference is performed when dM is fixed.



2.2. Weakly Supervised Multi-instance kmeans

We now explain how our method based on kmeans per-
forms inference on a given set of bags X in our weakly
supervised setting. The goal is to assign the instances in X
to candidate categories by exploiting both the provided bag
label matrix Y and a (fixed) Mahalanobis distance metric
dM . We show in Eq. (7) that our kmeans problem can be
reformulated as predicting a single clustering matrix.

To assign the instances in X to the candidate categories
(whose presence in the respective bags is known thanks to
Y ), one natural method is to assign each instance in X to
its closest reference vector zc belonging to a candidate cat-
egory. Given the bags X and the provided bag label matrix
Y = [y1, · · · ,ym]> ∈ {0, 1}m×k, the goal of our method
is then to infer both the instance assignment matrix H and
reference vector matrix Z that satisfy the conditions men-
tioned in Section 2.1. Therefore, we constrain H to belong
to the following consistency set:

QV := {H = [H>1 , · · · , H>m]> : ∀i, Hi ∈ Vi} (2)

Vi:={Hi∈{0, 1}ni×k : Hi1 ≤ 1, H>i 1 ≤ yi,1
>Hi1 = pi}

where Hi is the assignment matrix of the ni instances in
the i-th bag, and pi := min{ni,y>i 1}. The first condition
Hi1 ≤ 1 implies that each instance is assigned to at most
one category. The second condition H>i 1 ≤ yi, together
with the last condition 1>Hi1 = pi, ensures that at most
one instance in a bag is assigned to each candidate category
(i.e., the categories c satisfying Yic = 1).

For a fixed metric dM , our method finds the assignment
matrix H ∈ QV for the training bags X ∈ Rn×d and the
vectors Z = [z1, . . . , zk]> ∈ Rk×d that minimize:

min
H∈QV ,Z∈Rk×d

n∑
j=1

k∑
c=1

Hjc · d2
M (xj , zc) (3)

= min
H∈QV ,Z∈Rk×d

‖ diag(H1)XL−HZL‖2 (4)

where xj is the j-th instance (i.e., x>j is the j-th row of X)
and dM is the Mahalanobis distance defined in Eq. (1) with
M = LL>. The goal of Eq. (3) is to assign the instances
inX to the closest reference vectors of candidate categories
while satisfying the constraints defined in Eq. (2).

The details of the current paragraph can be found in the
supp. material, Section A.1. Our goal is to rewrite problem
(3) in a convenient way as a function of one variable. As
Z is unconstrained in Eq. (4), its minimizer can be found
in closed-form: Z = H†XLL† [34, Example 2]. From its
formulation, we observe that ZL = H†XL is the set of k
mean vectors (i.e., centroids) of the instances inX assigned
to the k respective clusters and mapped by L. By plugging
the closed-form expression of Z into Eq. (4), the kmeans

method in Eq. (4) is equivalent to the following problems:

min
H∈QV

‖ diag(H1)XL−HH†XL‖2 (5)

⇔ max
A∈PV

〈A,XMX>〉, (6)

where we define PV as PV := {I + HH† − diag(H1) :
H ∈ QV} and I is the identity matrix. Note that all the
matrices in PV are orthogonal projection matrices (hence
symmetric PSD). For a fixed Mahalanobis distance matrix
M , we have reduced the weakly supervised multi-instance
kmeans formulation (3) into optimizing a linear function
over the set PV in Eq. (6). We then define the following
prediction rule applied on the set of training bags X:

fM,PV (X) := arg max
A∈PV

〈A,XMX>〉 (7)

which is the set of solutions of Eq. (6). We remark that
our prediction rule in Eq. (7) assumes that the candidate
categories for each bag are known (via Vi).

2.3. Multi-instance Metric Learning for Clustering

We now present how to learn M so that the clustering
obtained with dM is as robust as possible to the case where
the candidate categories are unknown. We first write our
problem as learning a distance metric so that the clustering
predicted when knowing the candidate categories (i.e., Eq.
(7)) is as similar as possible to the clustering predicted when
the candidate categories are unknown. We then relax our
problem and show that it can be solved efficiently.

Our goal is to learnM so that the closest reference vector
(among the k categories) of any assigned instance is the ref-
erence vector of one of its candidate categories. In this way,
an instance can be assigned even when its candidate cate-
gories are unknown, by finding its closest reference vector
w.r.t. dM . A good metric dM should then produce a sensi-
ble clustering (i.e., solution of Eq. (7)) even when the set
of candidate categories is unknown. To achieve this goal,
we consider the set of predicted assignment matrices QG

(instead of QV ) which ignores Y and where G is defined as:

Gi := {Hi ∈ {0, 1}ni×k : Hi1 ≤ 1,1>Hi1 = pi} (8)

With QG , the ñ = 1>H1 assigned instances can be as-
signed to any of the k training categories instead of only the
candidate categories. We want to learn M ∈ Sd+ so that the
clustering fM,PG obtained under the non-informative sig-
nal G is as similar as possible to the clustering fM,PV under
the weak supervision signal V . Our approach then aims at
finding M ∈ Sd+ that maximizes the following problem:

max
M∈Sd+

min
C∈fM,PV (X)

min
Ĉ∈fM,PG (X)

〈C, Ĉ〉 (9)

where C and Ĉ are clusterings obtained with dM using dif-
ferent weak supervision signals V and G. We note that the



similarity 〈C, Ĉ〉 is in [0, n] as C and Ĉ are both n× n or-
thogonal projection matrices. In the ideal case, Eq. (9) is
maximized when the optimal Ĉ equals the optimal C. In
this case, the closest reference vectors of assigned instances
are reference vectors of candidate categories. Eq. (9) can
actually be seen as a large margin problem as explained in
the supp. material, Section A.2.

Since optimizing over PG is difficult, we simplify the
problem by using spectral relaxation [22, 32, 35]. Instead of
constraining Ĉ to be in fM,PG (X), we replace PG with its
supersetN defined as the set of n×n orthogonal projection
matrices. In other words, we constrain Ĉ to be in fM,N (X).
The set fM,N (X) := arg maxA∈N 〈A,XMX>〉 is the set
of orthogonal projectors onto the leading eigenvectors of
XMX> [9, 21]. However, just as in PCA, not all the eigen-
vectors need to be kept. We then propose to select the eigen-
vectors that lie in the linear space spanned by the columns
of the matrixXMX> (i.e., in its column space), and ignore
eigenvectors in its left null space. For this purpose, we con-
strain Ĉ to be in the following relaxed set: gM (X) = {B :
B ∈ fM,N (X), rank(B) ≤ rank(XMX>)}. Our relaxed
version of problem (9) is then written:

max
M∈Sd+

min
C∈fM,PV (X)

min
Ĉ∈gM (X)

〈C, Ĉ〉 (10)

Theorem 2.1. A global optimum matrix C ∈ fM,PV (X) in
problem (10) is found by solving the following problem:

C ∈ arg max
A∈PV

〈A,XX†〉 (11)

The proof can be found in the supp. material, Section
A.3. Finding C in Eq. (11) corresponds to solving an adap-
tation of kmeans (see supp. material, Section A.4):

min
H∈QV ,Z=[z1,··· ,zk]>∈Rk×s

n∑
j=1

k∑
c=1

Hjc · ‖uj − zc‖2, (12)

where u>j is the j-th row of U ∈ Rn×s which is a ma-
trix with orthonormal columns such that s := rank(X) and
XX† = UU>. To solve Eq. (12), we use an adaptation
of Lloyd’s algorithm [19] illustrated in Algorithm 1 where
Ui ∈ Rni×s is a submatrix of U and represents the eigen-
representation of the bag Xi ∈ Rni×d. As explained in the
supp. material, Algorithm 1 minimizes Eq. (12) by alter-
nately optimizing over Z and H . Convergence guarantees
of Algorithm 1 are studied in the supp. material.

Once an optimal instance assignment matrix H ∈ QV
has been inferred, we can use any type of classifier or metric
learning approach to discriminate the different categories.
We propose to use the approach in [18] which learns a met-
ric dM in the context where each object is a bag that con-
tains one instance and there is only one candidate category
for each bag. It can be viewed as a special case of Eq. (10)

Algorithm 1 MIML for Cluster Analysis (MIMLCA)
input : Training set X ∈ Rn×d, training labels Y ∈ {0, 1}m×k

1: Create U = [U>1 , · · · , U>m]> ∈ Rn×s s.t. s = rank(X), XX† =
UU>, ∀i ∈ {1, · · · ,m} Ui ∈ Rni×s

2: Initialize assignments (e.g., randomly): H ∈ QV
3: repeat

4: let hc be the c-th column of H , h>c
max{1,h>c 1} is the c-th row of H†

5: Z ← H†U ∈ Rk×s

6: For each bag i = 1 to m, Hi ← assign(Ui, Z, Y )% solve Eq. (13)
7: H ← [H>1 , · · · , H>m]> ∈ QV
8: until convergence
9: % Select the rows j of X and H for which

∑
c Hjc = 1. We use

the logical indexing Matlab notation: H1 is a Boolean vector/logical
array. A(H1, :) is the submatrix of A obtained by dropping the zero
rows of H (i.e. dropping the rows of A corresponding to the indices
of the false elements of H1) while keeping all the columns of A.

10: X ← X(H1, :), n← 1>H1, H ← H(H1, :)
11: M ← X†HH†(X†)>

where {C} = fM,PV (X) is a singleton that does not de-
pend onM (i.e., the same matrixC is returned for any value
of M ) and Ĉ is now constrained to be in the set: {B : B ∈
fM,N (X), rank(B) = rank(C), C ∈ fM,PV (X)} as the
rank of C (and thus of Ĉ) is now known. An optimal Ma-
halanobis matrix in this case is M = X†C(X†)> [18].

In detail, Algorithm 1 first creates in step 1 the matrix U
whose columns are the left-singular vectors of the nonzero
singular values of X . Next, Algorithm 1 alternates between
computing the centroids Z (step 5) and inferring the in-
stance assignment matrix H (steps 6-7). The latter step is
decoupled among them bags; the function assign(Ui, Z, Y )
returns a solution of the following assignment problem:

Hi ∈ arg min
G∈Vi

‖diag(G1)Ui −GZ‖2, (13)

which is solved exactly with the Hungarian algorithm [13]
by exploiting the cost matrix that contains the squared Eu-
clidean distances between the rows of Ui and the centroids
zc for which Yic = 1. Let us note qi := max{ni,y>i 1},
computing the cost matrix costs O(spiqi) and the Hungar-
ian algorithm costs in practiceO

(
p2
i qi
)

[3]. It is efficient in
our experiments as qi is small (∀i, pi ≤ qi ≤ 15).

In conclusion, we have proposed an efficient metric
learning algorithm that takes weak supervision into account.
We explain below how to extend it to the nonlinear case.

Nonlinear Kernel Extension: We now briefly explain
how to learn a nonlinear Mahalanobis metric by using ker-
nels [24]. We first consider the case where each bag con-
tains a single instance and has only one candidate category,
this case corresponds to [18] (i.e., steps 10-11 of Algo 1).

Let k be a kernel function whose feature map φ(·)
maps the instance xj to φ(xj) in some reproducing ker-
nel Hilbert space (RKHS) H. Using the generalized rep-
resenter theorem [23], we can write the Mahalanobis ma-
trix M (in the RKHS) as: M = ΦP>PΦ>, where Φ =



[φ(x1), · · · , φ(xn)] and P ∈ Rk×n. Let K ∈ Sn+ be the
kernel matrix on the training instances: K = Φ>Φ, where
Kij = 〈φ(xi), φ(xj)〉 = k(xi, xj). Eq. (7) is then written:

f(ΦP>PΦ>),PV (Φ>) = arg max
A∈PV

〈A,KP>PK〉 (14)

A solution of [18, Eq. (13)] isM = ΦK†J(ΦK†J)> where
JJ> = HH† is the desired clustering matrix.1 We then
replace Step 11 of Algo 1 by M ← ΦK†J(ΦK†J)>.

To extend Eq. (11) to the nonlinear case in the MIL
context, the matrix U ∈ Rn×s in step 1 can be formu-
lated as UU> = KK† where s = rank(K). Note that
XX† = XX>(XX>)† = KK† when ∀x, φ(x) = x.

The complexity of our method is O(ndmin{d, n}) in
practice: it is linear in the number of instances n and
quadratic in the dimensionality d as d < n in our experi-
ments (see details in supp. material, Section A.5).

3. Related work
MIL was introduced in the context of drug activity pre-

diction [6] to distinguish positive bags from negative bags.
Most MIL problems [1, 4, 5, 10, 27, 36, 37] consider only 2
categories: bags are considered either positive or negative.
In this paper, we focus on multi-label contexts (i.e., k ≥ 2)
wherein MIML approaches were proven successful.

MIML: the Mahalanobis distance was already used
[11, 12] in the weakly supervised context where the objects
to be compared are bags containing multiple instances and
the category membership labels of instances are provided
at bag-level. Jin et al. [12] learn a distance metric opti-
mized to group similar instances from different bags into
common clusters. Their method decomposes their learning
algorithm into three sets of variables which are: (1) the ref-
erence vectors (called centroids) of their categories, (2) an
assignment matrix that determines instances that are closest
to the centroids of their categories, (3) their Mahalanobis
distance metric dM . They use an iterative algorithm that al-
ternates the optimization over these three sets of variables
and has high algorithmic complexity. Our approach also
decomposes the problem into three variables, but our vari-
ables can all be written as a function of each other, which
means that we only have to optimize the problem over one
variable to get the formulation of the other variables. In
this way, all the variables of our method are learned jointly,
and optimizing over them has low computational complex-
ity (i.e., the complexity of our method is O(nd2)). More-
over, the method in [12] is not appropriate for nonlinear
kernelized Mahalanobis distances as it explicitly formulates
centroids and optimizes over them; this is problematic if the

1A matrix J such that JJ> = HH† and H ∈ QV can be computed
efficiently: let hc be the c-th column of H , then the c-th column of J can
be written jc = 1√

max{1,h>c 1}
hc.

codomain of the (kernel) feature map is infinite-dimensional
(e.g., most RBF kernels) or even high-dimensional.

Guillaumin et al. [11] also consider weak supervision:
their metric is learned so that distances between the closest
instances of similar bags are smaller than distances between
instances of dissimilar bags. As in [12], their method suffers
from the decomposition of the similarity matching of in-
stances and the learned metric as they depend on each other.
Moreover, they only consider local matching between pairs
of bags instead of global matching of the whole dataset to
group similar instances into common clusters. Furthermore,
as mentioned in [11, Section 5] and unlike our approach,
their method does not scale linearly in n.

Wang et al. [29] learn multiple metrics (one per cate-
gory) in a MIL setting. For each category, their distance is
the average distance between all the instances in bags that
contain the category and their respective closest instance in
a given bag. As all the instances in bags that contain a given
category are taken into account, their Class-to-Bag (C2B)
method is less robust to outlier instances than our method
that assigns at most one instance per bag to a candidate cate-
gory. Their method is then not appropriate for contexts such
as face recognition where a small proportion of instances
in the different bags is relevant to the category. Moreover,
their method requires subsampling a large number of con-
straints to be scalable. Indeed, their complexity is linear in
the number of instances n thanks to subsampling and the
complexity of each iteration of their iterative algorithm is
cubic in the dimensionality d.

Closed-form training in the supervised setting: In the
fully supervised context where each object can be seen as
a bag that contains only one instance and where the label
of each instance is provided without uncertainty, an effi-
cient metric learning approach optimized to group a set of
vectors into k desired clusters was proposed in [18]. The
method assumes that the ground truth partition of the train-
ing set is known. It finds an optimal metric such that the
partition obtained by applying kmeans with the metric is
as close as possible to the ground truth partition. In con-
trast, our approach extends [18] to the weakly supervised
case where the objects are multiple instance bags and the
ground truth clustering assignment is unknown. A main dif-
ficulty is that the set of candidate assignment matrices QV
in Eq. (2) that satisfy the provided weak annotations can
be very large. Moreover, [18] did not provide a criterion to
determine which matrix in QV is optimal in our context.

Our contribution wrt [18] includes: 1) the kmeans adap-
tation to optimize over weakly supervised bags (Section
2.2), 2) the derivation of the (relaxed) metric learning prob-
lem to learn a metric that is robust to the case where the
bag labels are not provided, 3) the efficient algorithm (Al-
gorithm 1) that returns the optimal assignment matrix, 4) a
nonlinear kernel version.



4. Experiments

We evaluate our method called MIMLCA in the face
identification and image annotation tasks where the dataset
is labeled in a weakly supervised way. We implemented
our method in Matlab and ran the experiments on a 2.6GHz
machine with 4 cores and 16GB of RAM.

4.1. Weakly labeled face identification

We use the subset of the Labeled Yahoo! News dataset2

introduced in [2] and manually annotated by [11] for the
context of face recognition with weak supervision. The
dataset is composed of 20,071 documents containing a total
of 31,147 faces detected with a Viola-Jones face detector
[28]. The number of categories (i.e., identified persons) is
k = 5, 873 (mostly politicians and athletes). An example
document is illustrated in Fig. 1. Each document contains
an image and some text, it also contains at least one de-
tected face or name in the text. Each face is represented
by a d-dimensional vector where d = 4, 992. 9,594 of the
31,147 detected faces are unknown persons (i.e., they be-
long to none of the k training categories), undetected names
or not face images. As already explained, we consider doc-
uments as bags and detected faces as instances. See supp.
material, Section A.7 for additional details on the dataset.

Setup: We randomly partition the dataset into 10 equal
sized subsets to perform 10-fold cross-validation: each sub-
set then contains 2,007 documents (except one that contains
2,008 documents). The training dataset of each split thus
contains m ≈ 18, 064 documents and n ≈ 28, 000 faces.

Classification protocol: To compare the different meth-
ods, we consider two evaluation metrics: the average classi-
fication accuracy across all training categories and the pre-
cision (defined in [11] as the ratio of correctly named faces
over the total number of faces in the test dataset). At test
time, a face whose category membership is known is as-
signed to one of the k = 5, 873 categories. To avoid a strong
bias of the evaluation metrics due to under-represented cat-
egories, we classify at test time only the instances in cat-
egories that contain at least 5 elements in the test dataset
(this arbitrary threshold seemed sensible to us as it is small
enough without being too small). This corresponds to se-
lecting about 50 test categories (depending on the split). We
note that test instances can be assigned to any of the k cate-
gories and not only to the 50 selected categories.

Scenarios/Settings: To train the different models, we
consider the same three scenarios/settings as [11]:

(a) Instance-level ground truth. We know here for each
training instance its actual category; it corresponds to a su-
pervised single-instance context. In this setting, our method
is equivalent to MLCA [18] and provides an upper bound on

2We use the features available at http://lear.inrialpes.fr/
people/guillaumin/data.php

the performance of models learned with weak supervision.
(b) Bag-level ground truth. The presence of identified

persons in an image is provided at bag-level by humans,
which corresponds to a weakly supervised context.

(c) Bag-level automatic annotation. The presence of
identified persons in an image is automatically extracted
from text. This setting is unsupervised in the sense that it
does not require human input and may be noisy. The label
matrix Y is automatically extracted as described in Fig. 1.

Classification of test instances: In the task that we con-
sider, we are given the vector representation of a face and
the model has to determine which of the k training cate-
gories it belongs to. In the linear case, the category of a test
instance xt ∈ Rd can be naturally determined by solving:

arg min
c∈{1,··· ,k}

d2
M (xt, zc) (15)

where zc is the mean vector of the training instances as-
signed to category c, and dM is a learned metric.

In the case of MIMLCA, the learned metric (in step 11)
can be written M = LL> where L = X†J and J is con-
structed as explained in Footnote 1. For any training in-
stance xj (inferred to be) in category c, the matrix M is
then learned so that the maximum element of the vector
(L>xj) ∈ Rk is its c-th element and all the other elements
are zeros. We can then also use the prediction function:

arg max
c∈{1,··· ,k}

x>t X
†jc − α‖L>zc‖2 (16)

where jc is the c-th column of J , the value of x>t X
†jc is the

c-th element of L>xt, and α ∈ R is a parameter manually
chosen (see experiments below). The term−α‖L>zc‖2 ac-
counts for the fact that the metric is learned with clusters
having different sizes. Note that α is not used during train-
ing. See supp. material, Section A.6 for the nonlinear case.

Experimental results: Table 1 reports the average
classification accuracy across categories and the precision
scores obtained by the different baselines and our method in
the linear case. Since we are interested in the weakly super-
vised settings (b) and (c), we cannot evaluate classic met-
ric learning approaches, such as LMNN [31], that require
instance-level annotations (i.e., scenario (a)). We reimple-
mented [12] as best as we could as the code is not available
(see supp. material, Section A.10). The codes of the other
baselines are publicly available (except [29] that we also
reimplemented, see supp. material, Section A.11).

We do not cross-validate our method as it does not have
hyperparameters. For all the other methods, to create the
best possible baselines, we report the best scores that we
obtained on the test set when tuning the hyperparameters.
We tested different MIL baselines [1, 4, 5, 10, 29, 36, 37],
most of them are optimized for MIL classification in the bi-
class case (i.e., when there are 2 categories of bags which

http://lear.inrialpes.fr/people/guillaumin/data.php
http://lear.inrialpes.fr/people/guillaumin/data.php


Method Scenario/Setting (see text) Accuracy (closest centroid) Precision (closest centroid) Training time (in seconds)
Euclidean Distance None 57.0± 2.4 56.7± 2.0 No training
Linear MLCA [18] (a) = Instance gt 66.8± 4.2 77.7± 2.2 59
MIML (our reimplementation of [12]) (b) = Bag gt 56.1± 3.3 55.5± 2.6 17,728
MildML [11] (b) 54.9± 3.6 54.6± 3.3 7,352
Linear MIMLCA (ours) (b) 65.3± 3.7 76.6± 2.1 163
MIML (our reimplementation of [12]) (c) = Bag auto 52.6± 13.0 52.2± 13.8 19,091
MildML [11] (c) 33.9± 3.0 31.2± 2.9 7,520
Linear MIMLCA (ours) (c) 63.2± 4.7 74.9± 3.0 180

Table 1. Test classification accuracies and precision scores (mean and standard deviation in %) on Labeled Yahoo! News

Method Scenario Accuracy Precision Training time Scenario Accuracy Precision Training time
MildML [11] (b) 52.4± 4.7 62.2± 2.9 7,352 seconds (c) 55.7± 4.4 66.0± 2.1 7,520 seconds

Table 2. Test scores of MildML on Labeled Yahoo! News when assigning test instances to the category of their closest training instances

Method Scenario Eval. metric α = 0 α = 0.2 α = 0.25 α = 0.5 α = 1 α = 1.2 Training time
Accuracy 77.6± 3.1 88.0± 2.2 88.5± 2.1 89.5± 2.0 89.3± 1.8 88.9± 2.0Linear MLCA (a) Precision 78.0± 2.0 88.8± 1.3 89.4± 1.4 90.8± 1.1 91.5± 1.0 91.4± 1.0

59 seconds

Accuracy 74.2± 2.7 85.9± 2.1 86.5± 2.0 87.7± 1.9 87.4± 1.8 87.1± 2.0(b) Precision 74.8± 1.8 87.0± 1.4 87.7± 1.3 89.3± 1.0 89.9± 1.2 90.0± 1.3 163 seconds

Accuracy 69.9± 2.5 81.2± 2.6 81.9± 2.5 83.6± 2.3 83.9± 2.1 83.7± 2.0
Linear MIMLCA

(c) Precision 71.7± 1.5 83.0± 1.4 83.8± 1.4 85.6± 1.4 86.9± 1.5 87.0± 1.5 180 seconds

Accuracy 77.2± 3.0 94.4± 1.6 94.5± 1.8 92.5± 2.0 87.1± 2.2 84.5± 2.9
kRBF
χ2 MLCA (a) Precision 73.6± 1.8 95.3± 1.0 95.5± 1.2 94.9± 1.1 92.3± 1.4 91.0± 1.7

50 seconds

Accuracy 74.0± 2.9 92.6± 1.8 92.8± 1.6 91.1± 2.0 84.5± 2.5 82.0± 2.6(b) Precision 70.6± 1.8 93.6± 1.2 94.0± 1.0 93.7± 1.1 90.6± 1.5 89.4± 1.6
154 seconds

Accuracy 67.1± 2.9 88.2± 1.9 88.5± 2.1 87.2± 1.8 81.1± 3.3 78.6± 3.6
kRBF
χ2 MIMLCA

(c) Precision 63.7± 1.8 89.0± 1.3 89.7± 1.5 90.0± 1.3 87.5± 2.2 86.3± 2.4
172 seconds

Table 3. Test classification accuracies and precision scores in % of the linear and nonlinear models for the 10-fold cross-validation
evaluation for different values of α in Eq. (16)

are “positive” and “negative”); as proposed in [4], we ap-
ply for these baselines the one-against-the-rest heuristic to
adapt them to the multi-label context. However, there are
more than 5,000 training categories. Since most categories
contain very few examples and these baselines learn clas-
sifiers independently, the scale of classification scores may
differ. They then obtain less than 10% accuracy and preci-
sion in this task (see supp. material, Section A.8 for scores).

Table 1 reports the test performance of the different dif-
ferent methods when assigning a test instance to the cate-
gory with closest centroid w.r.t. the metric (i.e., using the
prediction function in Eq. (15)). We use this evaluation be-
cause (MI)MLCA and MIML [12] are learned to optimize
this criterion. The set of centroids exploited by MIMLCA
in settings (b) and (c) is determined in Algorithm 1. MIML
also exploits the set of centroids that it learns. To evaluate
MildML and the Euclidean distance, we exploit the ground
truth instance centroids (i.e., the mean vectors of instances
in the k categories in the context where we know the cate-
gory of each instance) although these ground truth centroids
are normally not available in settings (b) and (c) as annota-
tions are provided at bag-level and not at instance-level.

In Table 2, a test instance is assigned to the category
of the closest training instance w.r.t. the metric. We use
this evaluation as MildML is optimized for this criterion al-
though the category of the closest training instance is nor-
mally available only in setting (a). MildML then improves
its precision scores compared to Table 1.

We see in Table 1 that our linear method MIMLCA

learned in weakly supervised scenarios (b) and (c) performs
almost as well as the fully supervised model MLCA [18]
in setting (a). Our method can then be learned fully auto-
matically in scenario (c) at the expense of a slight loss in
accuracy. Moreover, our method learned with scenario (c)
outperforms other MIL baselines learned with scenario (b).

Nonlinear model: Table 3 reports the recognition
performances of (MI)MLCA in the linear and nonlin-
ear cases when we exploit the prediction function in
Eq. (16) for different values of α. In the nonlinear case,
we choose the generalized radial basis function (RBF)
kRBF
χ2 (a,b) = e

−D2
χ2 (a,b) where a and b are `1-normalized

and D2
χ2(a,b) =

∑d
i=1

(ai−bi)2
ai+bi

. This kernel function is
known to work well for face recognition [20]. With the RBF
kernel, we reach 90% classification accuracy and precision.
We observe a gain in accuracy of about 5% with the nonlin-
ear version compared to the linear version when α'0.25.

Training times: Tables 1 to 3 report the wall-clock train-
ing time of the different methods. We assume that the ma-
trices X and Y (and K in the nonlinear case) are already
loaded in memory. Both MLCA and MIMLCA are efficient
as they are trained in less than 5 minutes. MIMLCA is 3
times slower than MLCA because it requires computing 2
(economy size) SVDs to compute U and X† (steps 1 and
11 of Algo 1), each of them takes about 1 minute, whereas
MLCA requires only one SVD. Moreover, besides the two
SVDs already mentioned, MIMLCA performs an adapted
kmeans (steps 3 to 8 of Algo 1) which takes less than 1



Method OE (↓) Cov. (↓) AP (↑) Training time (↓) Method OE (↓) Cov. (↓) AP (↑) Training time (↓)

MIMLCA (ours) 0.516 4.829 0.575 24 seconds MILES [4] 0.722 7.626 0.412 511 seconds
MIML (best scores reported in [12]) 0.565 5.507 0.535 Not available miSVM [1] 0.790 9.730 0.261 504 seconds
MIML (our reimplementation of [12]) 0.673 6.403 0.462 884 seconds MILBoost [36] 0.948 13.412 0.174 106 seconds
MildML [11] 0.619 5.646 0.499 59 seconds EM-DD [37] 0.892 10.527 0.239 38,724 seconds
Citation-kNN [30] (Euclidean dist.) 0.595 5.559 0.513 No training MInD [5] (meanmin) 0.759 8.246 0.373 103 seconds
M-C2B [29] 0.691 6.968 0.440 211 seconds MInD [5] (minmin) 0.703 7.337 0.424 138 seconds
Minimax MI-Kernel [10] 0.734 7.955 0.398 172 seconds MInD [5] (maxmin) 0.721 7.857 0.413 95 seconds

Table 4. Annotation performance on the Corel5K dataset, ↓: the lower the metric, the better, ↑: the larger the metric, the better. OE:
One-error, Cov.: Coverage. AP: Average Precision (see definitions in [12, Section 5.1])

minute: the adapted kmeans converges in less than 10 iter-
ations and each iteration takes 5 seconds. We note that our
method is one order of magnitude faster than MildML.

In conclusion, our weakly supervised method outper-
forms the current state-of-the-art MIML methods both in
recognition accuracy and training time. It is worth noting
that if we apply mean centering on X then the matrix U ,
whose columns form an orthonormal basis of X , contains
the eigenfaces [26] of the training face images (one eigen-
face per row). Our approach then assigns instances to clus-
ters depending on their distance in the eigenface space.

4.2. Automated image annotation

We next evaluate our method using the same evaluation
protocol as [12] in the context of automated image annota-
tion. We use the dataset3 of Duygulu et al. [7] which in-
cludes 4,500 training images and 500 test images selected
from the UCI Corel5K dataset. Each image was segmented
into no more than 10 regions (i.e., instances) by Normalized
Cut [25], and each region is represented by a d-dimensional
vector where d = 36. The image regions are clustered into
500 blobs using kmeans, and a total of 371 keywords was
assigned to 5,000 images. As in [12], we only consider the
k = 20 most popular keywords since most keywords are
used to annotate a small number of images. In the end, the
dataset that we consider includes m = 3, 947 training im-
ages containing n = 37, 083 instances, and 444 test images.

To annotate test images, we evaluate our method in the
same way as [12] by including our metric in the citation-
kNN [30] algorithm which adapts kNN to the multiple in-
stance problem. The citation-kNN [30] algorithm proposes
different extensions of the Hausdorff distance to compute
distances between bags that contain multiple instances. As
proposed in [30], we tested both the Maximal and Mini-
mal Hausdorff distances (see definitions in [30, Section 2]).
For example, the Minimal Hausdorff Distance between two
bagsE and F is the smallest distance between the instances
of the different bags: Dmin(E,F ) = Dmin(F,E) =
mine∈E minf∈F dM (e, f) where e and f are instances of the
bags E and F , respectively. In [30], dM is the Euclidean

3We use the features available at http://kobus.ca/research/
data/eccv_2002/

distance, we replace it by the different learned metrics of
MIML approaches in the same way as [12].

Given a test bagE, we define its references as the r near-
est bags in the training set, and its citers as the training bags
for which E is one of the c nearest neighbors. The class
label of E is decided by a majority vote of the r reference
bags and c citing bags. We follow the exact same protocol as
[12] and use the same evaluation metrics (see definitions in
[12, Section 5.1]). We report in Table 4 the results obtained
with minimal Hausdorff distances since they obtained the
best performances for all the metric learning methods. As
in [12], we tested different values of c = r ∈ {5, 10, 15, 20}
and report the results for c = r = 20 as they performed the
best for all the methods.

We tuned all the baselines and report their best scores
on the test set. Our method outperforms the other MIL ap-
proaches w.r.t. all the evaluation metrics and it is faster. Our
method can then also be used for image annotation.

5. Conclusion
We have presented an efficient MIML approach op-

timized to perform clustering. Unlike classic MIL ap-
proaches, our method does not alternate the optimization
over the learned metric and the assignment of instances.
Our method only performs an adaptation of kmeans over
the rows of the matrix U whose columns form an orthonor-
mal basis of X . Our method is much faster than classic
approaches and obtains state-of-the-art performance in the
face identification (in the weakly supervised and fully un-
supervised cases) and automated image annotation tasks.
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A. Supplementary Material of “Efficient Multiple Instance Metric Learning using Weakly Super-
vised Data”

A.1. About the reference vectors

A.1.1 Closed-form solution of the reference vectors Z

As mentioned in [34, Example 2], the problem:

min
C
‖A−BCD‖2 (17)

can be solved in closed-form: C = B†AD†.
In Eq. (4), we can write A = diag(H1)XL, B = H and D = L. The matrix Z = H† diag(H1)XLL† is then optimal

for Eq. (4).
We recall that H ∈ QV . We prove in the following that: ∀H ∈ QV , H† diag(H1) = H†.

Proof. For anyH ∈ QV satisfyingH1 6= 1, there exists a permutation matrix Pπ such that PπH =

[
H̃
0

]
and diag(PπH1) =

diag

([
1
0

])
. Therefore,

H† diag(H1) =

(
P>π

[
H̃
0

])†
diag(H1) =

([
H̃
0

])†
Pπ diag(H1) =

[
H̃† 0

]
diag(PπH1)Pπ

=
[
H̃† 0

]
diag

([
1
0

])
Pπ =

[
H̃† 0

]
Pπ = H†.

On the other hand, if H1 = 1, diag(H1) is the identity matrix and we then also have H† diag(H1) = H†.

It is then clear that ∀H ∈ QV , Z = H† diag(H1)XLL† = H†XLL† is optimal for Eq. (4).

A.1.2 Mean vector of assigned instances

We explain why ZL = H†XLL†L = H†XL is the set of k mean vectors (i.e., centroids) of the instances in X assigned to
the k respective clusters and mapped by L.

By definition, XL is the set of instances in X mapped by L. We note hc the c-th column of H ∈ QV , ∀c ∈ {1, · · · , k},
we can write the c-th row of H† = (H>H)†H> as 1

max{1,h>c 1}h
>
c where h>c 1 = ‖hc‖2 is the number of instances assigned

to cluster c. The c-th row of ZL which corresponds to z>c L can then be written z>c L = 1
max{1,h>c 1}h

>
c XL. As hc ∈ {0, 1}n,

h>c XL selects and sums the instances assigned to the c-th cluster and mapped by L, z>c L = 1
max{1,h>c 1}h

>
c XL then

computes their mean vector (i.e., centroid).
Note that if for some c, hc = 0, then (z>c L)> = 0 is the closest centroid (of a candidate category) to none of the assigned

instances as it would otherwise lead to hc 6= 0 in order to minimize Eq. (4) (ignoring ties).

A.1.3 Equivalence between Eq. (5) and Eq. (6)

Once the closed-form expression of Z is plugged into Eq. (4), the problem can be written as:

min
H∈QV

‖ diag(H1)XL−HH†XL‖2 (18)

= min
H∈QV

tr(diag(H1)XLL>X> diag(H1))− 2 tr(diag(H1)XLL>X>HH†) + tr(HH†XLL>X>HH†) (19)

= min
H∈QV

tr(XLL>X> diag(H1) diag(H1))− 2 tr(XLL>X>HH† diag(H1)) + tr(XLL>X>HH†HH†) (20)

= min
H∈QV

tr(XLL>X> diag(H1))− 2 tr(XLL>X>HH†) + tr(XLL>X>HH†) (21)

⇔ max
H∈QV

tr([I − diag(H1) +HH†]XLL>X>) (22)

= max
A∈PV

〈A,XMX>〉. (23)



All the matrices in PV are orthogonal projection matrices:
The proof in Section A.1.1 implies that, for any H ∈ QV , [diag(H1)−HH†] is an orthogonal projection matrix because:
• it is symmetric (as it is a difference of symmetric matrices).
• it is idempotent by using the proof in Section A.1.1: [diag(H1) −HH†]2 = diag(H1) + HH† −HH† diag(H1) −

diag(H1)HH† = diag(H1) + HH† − HH† − HH† = diag(H1) − HH†. Indeed, diag(H1)HH† =
((HH†)> diag(H1)>)> = (HH† diag(H1))> = (HH†)> = HH†.

And for all orthogonal projection matrix that is written P = V DV > where D is a diagonal matrix whose elements are
either 0 or 1 and V is an orthogonal matrix, I − P = V (I −D)V > is also an orthogonal projection matrix (as (I −D) is a
diagonal matrix whose elements are either 0 or 1).

A.2. Large margin formulation

Eq. (9) is equivalent to the following large margin problem:

min
M∈Sd+

max
C∈fM,PV (X)

max
Ĉ∈fM,PG (X)

∆(C, Ĉ) (24)

where ∆(C, Ĉ) = n− 〈C, Ĉ〉 ≥ 0 measures the discrepancy between the two predictions C and Ĉ.

A.3. Proof of Theorem 2.1

We recall that problem (10) is written:

max
M∈Sd+

min
C∈fM,PV (X)

min
Ĉ∈gM (X)

〈C, Ĉ〉 (25)

Upper bound of Eq. (10): Eq. (10) is naturally upper bounded by

max
M∈Sd+

max
C∈fM,PV (X)

min
Ĉ∈gM (X)

〈C, Ĉ〉 (26)

By using the definition of fM,PV (X) in Eq. (7), we have fM,PV (X) ⊆ PV , Eq. (26) is then upper bounded by:

max
M∈Sd+

max
C∈PV

min
Ĉ∈gM (X)

〈C, Ĉ〉 = max
C∈PV

max
M∈Sd+

min
Ĉ∈gM (X)

〈C, Ĉ〉 (27)

Let us note U ∈ Rn×s a matrix defined as UU> = XX† and s = rank(X). By using the definition of gM (X), the column
space of Ĉ is included in the column space ofX and Ĉ is a rank-e orthogonal projection matrix where e = rank(XMX>) ≤
rank(X) = s. Ĉ can then be written: Ĉ = UQQ>U> where Q ∈ Rs×e and U ∈ Rn×s are matrices with orthonormal
columns.

Eq. (27) is then upper bounded by:

max
C∈PV

〈C,UQQ>U>〉 = max
C∈PV

〈U>CU,QQ>〉 ≤ max
C∈PV

tr(U>CU) (28)

Indeed, as Q ∈ Rs×e is a matrix with orthonormal columns, 〈U>CU,QQ>〉 is upper bounded by the sum of the e largest
eigenvalues of U>CU [21], which is itself upper bounded by tr(U>CU) (as it is the sum of all the eigenvalues of U>CU
and all the eigenvalues are nonnegative since U>CU is symmetric PSD).

Optimal value of Eq. (10): Let us now assume that M = X†(X†)>. In this case, we have the following properties:

fM,PV (X) = arg max
A∈PV

〈A,XMX>〉 = arg max
A∈PV

〈A,XX†(X†)>X>〉 = arg max
A∈PV

〈A,XX†〉 = arg max
A∈PV

〈A,UU>〉 (29)

gM (X) = {B : B ∈ fM,N (X), rank(B) ≤ rank(XX†(X†)>X>)} = {UU>} (30)

The objective value when M = X†(X†)> is then:

min
C∈fM,PV (X)

min
Ĉ∈gM (X)

〈C, Ĉ〉 = min
C∈arg maxA∈PV 〈A,UU>〉

〈C,UU>〉 = max
C∈PV

tr(U>CU) = max
A∈PV

〈A,XX†〉 (31)

The upper bound in Eq. (28) is then obtained, which proves the optimality of the problem for this value. Eq. (11) thus finds
an optimal value of C in Eq. (31) (i.e. a matrix C that reaches the global optimum value of Eq. (10)).



A.4. MIL kmeans extension

A.4.1 Why do we optimize Eq. (12)?

We define U ∈ Rn×s as a matrix with orthonormal columns such that s = rank(X) and XX† = UU>. U is constructed
with the “economy size” singular value decomposition ofX and corresponds to the matrix containing the left-singular vectors
of the nonzero singular values of X .

By using the results in Section A.1, the problem in Eq. (11) is equivalent to the following problems:

max
A∈PV

〈A,XX†〉 = max
A∈PV

tr(AXX†) = max
A∈PV

tr(AUU>) = max
H∈QV

tr([I +HH† − diag(H1)]UU>) (32)

⇔ min
H∈QV

tr([diag(H1)−HH†]UU>) = min
H∈QV

tr([diag(H1)−HH†]UU>[diag(H1)−HH†]>) (33)

= min
H∈QV

‖[diag(H1)−HH†]U‖2 (34)

= min
H∈QV

‖diag(H1)U −HH†U‖2 (35)

= min
H∈QV ,Z∈Rk×s

‖diag(H1)U −HZ‖2 (36)

= min
H∈QV ,Z=[z1,··· ,zk]>∈Rk×s

n∑
j=1

k∑
c=1

Hjc · ‖uj − zc‖2 where u>j is the j-th row of U (37)

We then solve Eq. (12) by alternating the optimization over Z and H in Algorithm 1.

A.4.2 Convergence of Algorithm 1

We now prove the convergence of Algorithm 1.
We note H(t) and Z(t) the values at iteration t of H ∈ QV and Z ∈ Rk×s, respectively.
• We first prove that, with Algorithm 1, the sequence of objective values in Eq. (36) (which is equal to Eq. (12)) is

monotonically nonincreasing. To this end, we show that:

∀t, ‖ diag(H(t)1)U −H(t)Z(t)‖2
(a)

≥ ‖ diag(H(t)1)U −H(t)Z(t+1)‖2
(b)

≥ ‖ diag(H(t+1)1)U −H(t+1)Z(t+1)‖2 (38)

- Inequality (a) comes from the fact that Z(t+1) = (H(t))† diag(H(t)1)U = (H(t))†U is a global minimizer of
min
Z
‖diag(H(t)1)U −H(t)Z‖2 as demonstrated in Section A.1.1.

- Inequality (b) comes from the fact that we can decompose the global problem as the sum of m independent subproblems
(when the value of Z is fixed):

min
H∈QV

‖ diag(H1)U −HZ(t+1)‖2 =

m∑
i=1

min
Hi∈Vi

‖ diag(Hi1)Ui −HiZ
(t+1)‖2 (39)

As mentioned in the paper, each subproblem in Eq. (13) is solved exactly with the Hungarian algorithm. The matrix H(t+1)

is the concatenation into a single matrix of all the global optimum solutions of the different independent subproblems. It is
then a global optimum solution of Eq. (39).
• Our clustering algorithm terminates in a finite number of steps at a partition that is locally optimal (i.e., the total

objective value cannot be decreased by either (a) or (b)). This result follows since the sequence of objective values in Eq.
(36) is monotonically nonincreasing with Algorithm 1, and the number of distinct clusterings (i.e. the cardinality of PV , or
equivalently the cardinality of QV ) is finite.

A.5. Complexity of Algorithm 1

In the linear case, the complexity of steps 1 and 11 of Algo 1 is dominated by the (economy size) SVDs to compute U
and X† which cost O(ndmin{d, n}) where d is the dimensionality and n is the number of instances. The adapted kmeans
costs O(r

∑m
i=1(spiqi + p2

i qi)) where r is the number of iterations (steps 3 to 8 of Algo 1). Since, in practice, we have
∀i, pi = min{ni,y>i 1} ≤ qi = max{ni,y>i 1} � n, the complexity of Algo 1 is dominated by steps 1 and 11 which scale



linearly in n as we have n > d. In the nonlinear case, computing K†J ∈ Rn×k costs O(n3); it is efficiently done with a
Cholesky solver if K is symmetric positive definite.

In the linear case, the complexity of step 11 of Algorithm 1 does not depend on k and is dominated by the computation
of X† which costs O(ndmin{d, n}); this is due to the sparsity of H . Indeed, each row of H ∈ {0, 1}n×k contains at
most one nonzero element. H then contains at most n nonnzero elements. As explained in Footnote 1, the complexity of
computing J such that JJ> = HH† scales linearly in n and J has the same number of nonzero elements as H (i.e. at most
one per row). Let us note νc the number of nonzero elements in the c-th column of J . Once X† ∈ Rd×n has been computed
(i.e. the value of X† is known and fixed), computing the c-th row of X†J costs O(dνc). Computing L = X†J then costs
O(
∑k
c=1 dνc) = O(d

∑k
c=1 νc). As

∑k
c=1 νc ≤ n, computing X†J costs O(dn). We actually do not need to compute

M = LL>, computing L is sufficient and then costs O(ndmin{d, n}) as explained in this section.

A.6. Classification of instances in the nonlinear case

In this section, we extend the classification of test instances in the nonlinear case. To simplify the equations, we assume
that the nonlinear kernel function is chosen so that K is invertible (i.e., K† = K−1).

(·)nj=1 denotes concatenation in a n-dimensional vector.

A.6.1 Solving Eq. (15)

The squared distance of a (test) instance φ(xt) to a centroid φ(zc) = 1
max{1,h>c 1}Φhc where hc ∈ {0, 1}n is the c-th column

of H is:

‖PΦ>φ(xt)− PΦ>φ(zc)‖2

=((k(xj , xt))
n
j=1)>P>P (k(xj , xt))

n
j=1 + ((k(xj , zc))

n
j=1)>P>P (k(xj , zc))

n
j=1 − 2((k(xj , zc))

n
j=1)>P>P (k(xj ,xt))

n
j=1

We recall that P = J>K−1 and J is defined as explained in Footnote 1, Eq. (15) is then equivalent in the nonlinear case to:

arg max
c∈{1,··· ,k}

((k(xj , zc))
n
j=1)>P>P (k(xj ,xt))

n
j=1 −

1

2
((k(xj , zc))

n
j=1)>P>P (k(xj , zc))

n
j=1 (40)

The second (rescaled) term of Eq. (40) can be written:

((k(xj , zc))
n
j=1)>P>P (k(xj , zc))

n
j=1 =

1

max{1,h>c 1}
h>c Φ>ΦK−1JJ>K−1Φ>Φ(

1

max{1,h>c 1}
hc) (41)

=
1

(max{1,h>c 1})2
h>c KK

−1JJ>K−1Khc (42)

=
1

(max{1,h>c 1})2
h>c JJ

>hc =
1

(max{1,h>c 1})2
h>c HH

†hc (43)

=
1

(max{1,h>c 1})2
h>c hc (44)

We also note that ‖hc‖2 = h>c hc = h>c 1 =
∑
j Hjc is the number of instances assigned to category c. Eq. (44) is then

equal to the inverse of the number of elements assigned to category c (i.e. the inverse of the size of cluster c) if hc 6= 0, and
0 otherwise.

The first term of Eq. (40) can be written:

((k(xj , zc))
n
j=1)>P>P (k(xj ,xt))

n
j=1 =

1

max{1,h>c 1}
h>c Φ>ΦK−1JJ>K−1(k(xj ,xt))

n
j=1 (45)

=
1

max{1,h>c 1}
h>c KK

−1JJ>K−1(k(xj ,xt))
n
j=1 (46)

=
1

max{1,h>c 1}
h>c HH

†K−1(k(xj ,xt))
n
j=1 (47)

=
1

max{1,h>c 1}
h>c K

−1(k(xj ,xt))
n
j=1 (48)



Number of instances in a bag 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of bags 12562 5109 1675 480 146 61 17 8 6 0 1 3 1 1 1

Table 5. Distribution of the number of instances per bag: 12562 bags contain one instance, 5109 bags contain 2 instances etc.

Number of training categories in bags 0 1 2 3 4 5 6 7 8 9

Scenario (b) 1384 16196 2295 181 8 3 1 2 0 1
Scenario (c) 0 12225 6247 1325 216 46 8 3 0 1

Table 6. Distribution of the number of training categories (i.e., among the k = 5873) labeled as present in the bags depending on the
scenarios. 1384 bags contain 0 training category in scenario (b) as instances correspond to other persons or are not face instances. etc.

Scenario Evaluation M-C2B [29] miSVM [1] MILES [4] MILBoost [36] EM-DD [37] Minimax MI-Kernel [10] MinD (minmin) [5] MinD (maxmin) MinD (meanmin)
Accuracy (%) 6.6 ± 2.2 4.5 ± 2.7 8.2 ± 2.3 8.8 ± 2.4 1.3 ± 0.5 5.5 ± 1.7 6.8 ± 2.5 3.2 ± 1.5 5.1 ± 1.9

(b) Precision (%) 7.2 ± 2.5 2.3 ± 1.5 9.2 ± 2.7 9.7 ± 2.7 1.8 ± 0.8 6.2 ± 2.5 7.1 ± 2.4 3.1 ± 1.4 5.5 ± 1.8
Train. Time (s) 2, 572 610 240 182 13, 163 358 276 259 265
Accuracy (%) 4.5 ± 1.8 3.6 ± 1.2 6.7 ± 2.0 6.9 ± 2.3 0.8 ± 0.2 4.8 ± 1.0 5.5 ± 1.3 1.8 ± 1.0 3.6 ± 1.2

(c) Precision (%) 5.3 ± 1.9 1.5 ± 0.8 7.0 ± 1.2 7.6 ± 1.8 1.1 ± 0.3 4.6 ± 1.3 5.3 ± 1.3 1.5 ± 0.7 3.4 ± 0.8
Train. Time (s) 2, 762 653 265 205 13, 484 391 296 281 291

Table 7. Performance of the different baselines on the Labeled Yahoo! News dataset.

A.6.2 Solving Eq. (16)

Following Section A.6.1, Eq. (16) can be adapted in the following way:

arg max
c∈{1,··· ,k}

1√
max{1,h>c 1}

h>c K
−1(k(xj ,xt))

n
j=1 −

α

(max{1,h>c 1})2
h>c hc (49)

⇔ arg max
c∈{1,··· ,k}

j>c K
−1(k(xj ,xt))

n
j=1 −

α

(max{1,h>c 1})2
h>c hc (50)

where jc = 1√
max{1,h>c 1}

hc is the c-th column of J as explained in Footnote 1.

A.7. Statistics of Labeled Yahoo News! dataset

We give some statistics of the Labeled Yahoo News! dataset in Tables 5 and 6.

A.8. Scores of biclass MIL classifiers

Baselines results are reported in Table 7. As M-C2B [29] uses an iterative algorithm and the complexity of each of its
iterations is cubic in d, we had to reduce the dimensionality to d = 1000 via PCA to make it scalable.

As explained in Section 3, M-C2B [29] is not appropriate for the face recognition task as it considers that all the instances
in bags that contain a given category are relevant to the category. In the case of face verification, at most one instance per bag
is relevant to a given category.

A.9. Interpretation of the results of MIMLCA on Labeled Yahoo! News

On test categories (i.e., the ∼ 50 selected categories per split), our model actually finds the correct instance assignments
of training instances with an error of 8.6% in scenario (b) and 16.2% in scenario (c); the larger the number of instances in the
categories, the smaller the detection error.

A.10. Our reimplementation of [12]

We contacted in April 2016 the authors of [12] and asked for their code. They replied that their code was not available.
Here is our reimplementation of their method:

1 function [A, Z, Obj] = MIML_metric(X, Y, N, r, params)
2 % X : [N_1, N_2, ...] in Rˆ{d x t}
3 % Y : bool valued in {0,1}ˆ{n x m}



4 % d: feature dimension
5 % n : number of bags
6 % m : number of labels
7 % t : total number of instances
8 % N : n x 1, N(ii) is the number of instances in bag ii
9 % for equal sized bags, N can be 1 x 1

10 % r : reduced dimension of the metric
11 % params : parameters, structure
12 % params.iter, max outer iteration
13 % params.inner, max inner iteration
14 % params.TOL, tolerance
15 %
16 % A : AA' is the distance metric, A orthogonal
17 % in Rˆ{d x r}
18 % Z : centroids, in Rˆ{d x m}
19 % each class has only one centroid (as in the experiments of Rong Jin et al.)
20

21 [d, t] = size(X);
22 [n, m] = size(Y);
23

24 % convenience for equal size of bags
25 if length(N) == 1, N = repmat(N, n, 1); end
26 if nargin < 4
27 error('not enough inputs');
28 elseif nargin == 4
29 params = [];
30 end
31 if isempty(params)
32 params.iter = 50;
33 params.inner = 20;
34 params.TOL = 1e-4;
35 end
36 max_iter = params.iter;
37 max_inner = params.inner;
38 TOL = params.TOL;
39

40 % initialize Mahalanobis metric
41 [A, ¬] = qr(randn(d, r), 0);
42 % initialize the centers;
43 % each class has one center (as in the experiments of Rong Jin et al.)
44 Z = randn(d, m);
45 % initialize Q
46 Q = zeros(n, m);
47 Obj = zeros(max_iter, 1);
48 for iter = 1:max_iter
49

50 % Optimizing Q with A and Z fixed
51 Xhat = A' * X;
52 Zhat = A' * Z;
53 Sim = Xhat' * Zhat;
54 LenX = sum(Xhat.ˆ2, 1)'; % COL
55 LenZ = sum(Zhat.ˆ2, 1); % ROW
56 % (squared) distance between X and Z: t x m
57 Dist = repmat(LenX,1,m) - 2*Sim + repmat(LenZ,t,1);
58

59 % find Q bag by bag
60 cum = 0;
61 for ii = 1:n
62 [¬, Q(ii,:)] = min(Dist(cum+1:cum+N(ii), :), [], 1);
63 % fix the index
64 Q(ii, :) = Q(ii, :) + cum;
65 cum = cum + N(ii);
66 end
67

68 % Optimizing A with Q and Z fixed
69 % forming U by replication
70 Xsel = X(:, Q(:)); % [n n ... n]



71 Zrep = repelem(Z, 1, n); % [n n ... n]
72 U = (Xsel - Zrep) * diag(Y(:)) * (Xsel - Zrep)';
73 % forming V by Laplacian
74 V = 2 * Z * (m*eye(m) - ones(m)) * Z';
75 % generalized eigen-decomposition
76

77 %% debug
78 % Diff = A'*Xsel - repelem(A'*Z, 1, n);
79 % obj = sum(Diff.ˆ2, 1) * Y(:);
80 %%
81 sigma = 0;
82 for ii = 1:max_inner
83 D = V - sigma*U;
84 D = (D+D') / 2;
85 [A, ¬] = eigs(D, r, 'LA');
86 sigma_new = trace(A'*V*A) / (trace(A'*U*A)+eps);
87 if abs(sigma_new - sigma) ≤ sigma*TOL
88 break;
89 end
90 sigma = sigma_new;
91 %% debug
92 % Diff = A'*Xsel - repelem(A'*Z, 1, n);
93 % obj = sum(Diff.ˆ2, 1) * Y(:);
94 %%
95 end
96

97

98 % Optimizing Z with Q and A fixed
99 Xhat = A' * Xsel;

100 Zhat = A' * Z;
101

102 % maintain some invariants
103 sumZ = sum(Zhat, 2);
104 InnerProd = Zhat' * Zhat;
105 sqNormZ = trace(InnerProd);
106 simZ = sum(InnerProd(:));
107

108 tmp = Xhat .* repmat(Y(:)', r, 1);
109 tmp = reshape(tmp, r, n, m);
110 % not to confuse with V
111 VV = squeeze(sum(tmp, 2));
112

113 %% h is not needed
114 % sqNormX = sum(Xhat.ˆ2, 1);
115 % sqNormX = repmat(sqNormX, n, m);
116 % h = sum(sqNormX.*Y, 1);
117

118 % not to confuse with A
119 AA = sum(Y, 1);
120

121 % not to confuse with t, total number of instances
122 tfix = trace(Zhat * ((m+1)*eye(m) - ones(m)) * Zhat') / 2;
123

124 Diff = Xhat - repelem(Zhat, 1, n);
125 obj = sum(Diff.ˆ2, 1) * Y(:);
126 for ii = 1:max_inner
127 for jj = 1:m
128 z = Zhat(:, jj);
129 u = (sumZ - z) / (m-1);
130 s = (tfix - m*sqNormZ + (m+1)*(z'*z) + simZ - 2*z'*sumZ) / (m-1);
131 a = AA(jj);
132 v = VV(:, jj);
133

134 den = s + norm(u)ˆ2;
135 if den > 0
136 lambda = a - min(a, norm(v-a*u)/sqrt(den));
137 else



138 lambda = 0;
139 end
140 znew = (v-lambda*u) / (a-lambda);
141

142 Zhat(:, jj) = znew;
143

144 % update the invariants
145 simZ = simZ - 2*z'*sumZ;
146 sumZ = sumZ - z + znew;
147 sqNormZ = sqNormZ - z'*z + znew'*znew;
148 simZ = simZ + 2*znew'*sumZ;
149 end
150

151 Diff = Xhat - repelem(Zhat, 1, n);
152 obj_new = sum(Diff.ˆ2, 1) * Y(:);
153 if abs(obj - obj_new) ≤ TOL*obj_new
154 break; % converged
155 end
156 obj = obj_new;
157 end
158

159 fprintf('iter = %d, obj = %f \n', iter, obj);
160 if iter > 1 && abs(Obj(iter-1) - obj) ≤ TOL*obj
161 break; % converged
162 end
163

164 Obj(iter) = obj;
165

166 % recover Z in full dimension
167 Z = A * Zhat;
168 end
169 Obj = Obj(1:iter);

A.11. Reimplementation of [29]

The reimplementation of [29, Algorithm 1] is straightforward. We use the same variable names as in the original paper:

1 function [ L, tElapsed ] = robust_mil(U,A,B, max_nbiterations, epsilon)
2 best_obj = inf;
3 obj = inf;
4 tStart = tic;
5 for iter=1:max_nbiterations
6 % step 2: construct lambda
7 lambda = sum(sqrt(sum((A * U).ˆ2,2))) / sum(sqrt(sum((B * U).ˆ2,2)));
8 % step 3: construct D
9 D = diag(1 ./ (2 * sqrt(sum((A * U).ˆ2,2))));

10 % step 4: construct S
11 bU = (B * U)';
12 norm_bU = sqrt(sum(bU.ˆ2,1));
13 S = (bsxfun(@rdivide,bU,norm_bU))';
14 % we use pinv instead of the operator \ because 2*(A'*D*A) is sometimes ill-conditioned
15 U = lambda * pinv(2 * (A' * D * A)) * (B' * S);
16 old_obj = obj;
17 obj = trace(U'*A'*D*A*U) - lambda * trace(U'*B'*S);
18 if obj ≤ best_obj
19 best_obj = obj;
20 best_U = U;
21 end
22 if abs(old_obj - obj) < epsilon
23 break;
24 end
25 end
26 tElapsed = toc(tStart)
27 L = best_U;
28 end


