
Learning a Nonlinear Embedding by Preserving
Class Neighbourhood Structure

(Salakhutdinov and Hinton, AISTATS 2007)

• Peut-on adapter la représentation à autre
chose qu’un classifieur réseau de neurones?

• Dans ce papier, on l’adapte à un classifieur
des K plus proches voisins

Learning a Nonlinear Embedding by Preserving
Class Neighbourhood Structure

(Salakhutdinov and Hinton, AISTATS 2007)

W

W

W +!

W +!

W +!

W +!

W +!

W +!

W +!

W +!

W +!

W +!

W +!

W +!

W +!

W +!

W +!

W +!

W

W

2

1

500

500

500

500

2000

2000

500

500

2000

2000

500

500

2 2

3 3

1 1

4 4

4
T

5

3
T

6

2
T

7

1
T

8

500

500

2000

2000

500

500

2 2

3 3

1 1

4 4

4
T

5

3
T

6

2
T

7

1
T

8

RBM

Pretraining

RBM

3

4

30

RBM

Top

RBM

3030

Fine!tuning

Encoder

Decoder

*NCA

Figure 3: Left panel: Pretraining consists of learning a stack of RBM’s in which the feature activations of one RBM are treated as data
by the next RBM. Right panel: After pretraining, the RBM’s are “unrolled”. Setting results in nonlinear NCA, setting
results in a deep multi-layer autoencoder. For , the NCA objective is combined with autoencoder reconstruction error to
create regularized nonlinear NCA. The network is fine-tuned by backpropagation.

where is the learning rate, denotes an expec-

tation with respect to the data distribution and

is an expectation with respect to the distribution defined

by the model. To circumvent the difficulty of computing

, we use 1-step Contrastive Divergence [11]:

(11)

The expectation defines the frequency with

which input and feature are on together when the fea-

tures are being driven by the observed data from the train-

ing set using Eq. 7. After stochastically activating the fea-

tures, Eq. 8 is used to “reconstruct” binary data. Then Eq.

7 is used again to activate the features and

is the corresponding frequency when the features are being

driven by the reconstructed data. The learning rule for the

biases is just a simplified version of Eq. 11.

3.2 Modeling Real-valued Data

Welling et. al. [19] introduced a class of two-layer undi-

rected graphical models that generalize Restricted Boltz-

mann Machines (RBM’s) to exponential family distribu-

tions. This allows them to model images with real-valued

pixels by using visible units that have a Gaussian distribu-

tion whose mean is determined by the hidden units:

(12)

(13)

The marginal distribution over visible units is given by

Eq. 9. with an energy term:

(14)

The gradient of the log-likelihood function is:

If we set variances for all visible units , the param-

eter updates are the same as defined in Eq. 11.

3.3 Greedy Recursive Pretraining

After learning the first layer of hidden features we have an

undirected model that defines via a consistent pair

of conditional probabilities, and . A differ-

ent way to express what has been learned is and

. Unlike a standard directed model, this does not

have its own separate parameters. It is a complicated, non-

factorial prior on that is defined implicitly by the weights.

This peculiar decomposition into and suggests

a recursive algorithm: keep the learned but replace

by a better prior over .

For any approximating distribution we can write:

Learning a Nonlinear Embedding by Preserving
Class Neighbourhood Structure

(Salakhutdinov and Hinton, AISTATS 2007)

• NCA (Neighbourhood Component Analysis)

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of labeled training cases ,

, where , and .

For each training vector , define the probability that point

selects one of its neighbours (as in [9, 13]) in the trans-

formed feature space as:

(3)

We focus on the Euclidean distance metric:

and is a multi-layer neural network parametrized

by the weight vector (see fig 1). The probability that

point belongs to class depends on the relative proximity

of all other data points that belong to class :

(4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

(5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

(6)

When is constrained to be a linear trans-

formation, we get linear NCA. When is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector through the layers of the

encoder network. In our experiments, the NCA objective

of Eq. 5 worked slightly better than . We sus-

pect that this is because is more robust to handling

outliers. , on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features and and the bottom
layer represents a vector of stochastic binary “visible” variables
. When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector into its low-dimensional

feature representation . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector and “hidden”

stochastic binary feature vector are modeled by products

of conditional Bernoulli distributions:

(7)

(8)

where is the logistic function, is

a symmetric interaction term between input and feature ,

and , are biases. The biases are part of the overall pa-

rameter vector, . The marginal distribution over visible

vector is:

(9)

where is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

(10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of labeled training cases ,

, where , and .

For each training vector , define the probability that point

selects one of its neighbours (as in [9, 13]) in the trans-

formed feature space as:

(3)

We focus on the Euclidean distance metric:

and is a multi-layer neural network parametrized

by the weight vector (see fig 1). The probability that

point belongs to class depends on the relative proximity

of all other data points that belong to class :

(4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

(5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

(6)

When is constrained to be a linear trans-

formation, we get linear NCA. When is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector through the layers of the

encoder network. In our experiments, the NCA objective

of Eq. 5 worked slightly better than . We sus-

pect that this is because is more robust to handling

outliers. , on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features and and the bottom
layer represents a vector of stochastic binary “visible” variables
. When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector into its low-dimensional

feature representation . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector and “hidden”

stochastic binary feature vector are modeled by products

of conditional Bernoulli distributions:

(7)

(8)

where is the logistic function, is

a symmetric interaction term between input and feature ,

and , are biases. The biases are part of the overall pa-

rameter vector, . The marginal distribution over visible

vector is:

(9)

where is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

(10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of labeled training cases ,

, where , and .

For each training vector , define the probability that point

selects one of its neighbours (as in [9, 13]) in the trans-

formed feature space as:

(3)

We focus on the Euclidean distance metric:

and is a multi-layer neural network parametrized

by the weight vector (see fig 1). The probability that

point belongs to class depends on the relative proximity

of all other data points that belong to class :

(4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

(5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

(6)

When is constrained to be a linear trans-

formation, we get linear NCA. When is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector through the layers of the

encoder network. In our experiments, the NCA objective

of Eq. 5 worked slightly better than . We sus-

pect that this is because is more robust to handling

outliers. , on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features and and the bottom
layer represents a vector of stochastic binary “visible” variables
. When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector into its low-dimensional

feature representation . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector and “hidden”

stochastic binary feature vector are modeled by products

of conditional Bernoulli distributions:

(7)

(8)

where is the logistic function, is

a symmetric interaction term between input and feature ,

and , are biases. The biases are part of the overall pa-

rameter vector, . The marginal distribution over visible

vector is:

(9)

where is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

(10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of labeled training cases ,

, where , and .

For each training vector , define the probability that point

selects one of its neighbours (as in [9, 13]) in the trans-

formed feature space as:

(3)

We focus on the Euclidean distance metric:

and is a multi-layer neural network parametrized

by the weight vector (see fig 1). The probability that

point belongs to class depends on the relative proximity

of all other data points that belong to class :

(4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

(5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

(6)

When is constrained to be a linear trans-

formation, we get linear NCA. When is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector through the layers of the

encoder network. In our experiments, the NCA objective

of Eq. 5 worked slightly better than . We sus-

pect that this is because is more robust to handling

outliers. , on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features and and the bottom
layer represents a vector of stochastic binary “visible” variables
. When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector into its low-dimensional

feature representation . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector and “hidden”

stochastic binary feature vector are modeled by products

of conditional Bernoulli distributions:

(7)

(8)

where is the logistic function, is

a symmetric interaction term between input and feature ,

and , are biases. The biases are part of the overall pa-

rameter vector, . The marginal distribution over visible

vector is:

(9)

where is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

(10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

probabilité que ‘a’
choisisse ‘b’

comme voisin

probabilité que ce
voisin soit de la

même classe Objectif: maximiser
cette probabilité

Représentations
réseau de neurones

Learning a Nonlinear Embedding by Preserving
Class Neighbourhood Structure

(Salakhutdinov and Hinton, AISTATS 2007)

• NCA: la fonction de coût est

• On optimise les paramètres de
par descente de gradient

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of labeled training cases ,

, where , and .

For each training vector , define the probability that point

selects one of its neighbours (as in [9, 13]) in the trans-

formed feature space as:

(3)

We focus on the Euclidean distance metric:

and is a multi-layer neural network parametrized

by the weight vector (see fig 1). The probability that

point belongs to class depends on the relative proximity

of all other data points that belong to class :

(4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

(5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

(6)

When is constrained to be a linear trans-

formation, we get linear NCA. When is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector through the layers of the

encoder network. In our experiments, the NCA objective

of Eq. 5 worked slightly better than . We sus-

pect that this is because is more robust to handling

outliers. , on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features and and the bottom
layer represents a vector of stochastic binary “visible” variables
. When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector into its low-dimensional

feature representation . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector and “hidden”

stochastic binary feature vector are modeled by products

of conditional Bernoulli distributions:

(7)

(8)

where is the logistic function, is

a symmetric interaction term between input and feature ,

and , are biases. The biases are part of the overall pa-

rameter vector, . The marginal distribution over visible

vector is:

(9)

where is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

(10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of labeled training cases ,

, where , and .

For each training vector , define the probability that point

selects one of its neighbours (as in [9, 13]) in the trans-

formed feature space as:

(3)

We focus on the Euclidean distance metric:

and is a multi-layer neural network parametrized

by the weight vector (see fig 1). The probability that

point belongs to class depends on the relative proximity

of all other data points that belong to class :

(4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

(5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

(6)

When is constrained to be a linear trans-

formation, we get linear NCA. When is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector through the layers of the

encoder network. In our experiments, the NCA objective

of Eq. 5 worked slightly better than . We sus-

pect that this is because is more robust to handling

outliers. , on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features and and the bottom
layer represents a vector of stochastic binary “visible” variables
. When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector into its low-dimensional

feature representation . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector and “hidden”

stochastic binary feature vector are modeled by products

of conditional Bernoulli distributions:

(7)

(8)

where is the logistic function, is

a symmetric interaction term between input and feature ,

and , are biases. The biases are part of the overall pa-

rameter vector, . The marginal distribution over visible

vector is:

(9)

where is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

(10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of labeled training cases ,

, where , and .

For each training vector , define the probability that point

selects one of its neighbours (as in [9, 13]) in the trans-

formed feature space as:

(3)

We focus on the Euclidean distance metric:

and is a multi-layer neural network parametrized

by the weight vector (see fig 1). The probability that

point belongs to class depends on the relative proximity

of all other data points that belong to class :

(4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

(5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

(6)

When is constrained to be a linear trans-

formation, we get linear NCA. When is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector through the layers of the

encoder network. In our experiments, the NCA objective

of Eq. 5 worked slightly better than . We sus-

pect that this is because is more robust to handling

outliers. , on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features and and the bottom
layer represents a vector of stochastic binary “visible” variables
. When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector into its low-dimensional

feature representation . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector and “hidden”

stochastic binary feature vector are modeled by products

of conditional Bernoulli distributions:

(7)

(8)

where is the logistic function, is

a symmetric interaction term between input and feature ,

and , are biases. The biases are part of the overall pa-

rameter vector, . The marginal distribution over visible

vector is:

(9)

where is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

(10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of labeled training cases ,

, where , and .

For each training vector , define the probability that point

selects one of its neighbours (as in [9, 13]) in the trans-

formed feature space as:

(3)

We focus on the Euclidean distance metric:

and is a multi-layer neural network parametrized

by the weight vector (see fig 1). The probability that

point belongs to class depends on the relative proximity

of all other data points that belong to class :

(4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

(5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

(6)

When is constrained to be a linear trans-

formation, we get linear NCA. When is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector through the layers of the

encoder network. In our experiments, the NCA objective

of Eq. 5 worked slightly better than . We sus-

pect that this is because is more robust to handling

outliers. , on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features and and the bottom
layer represents a vector of stochastic binary “visible” variables
. When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector into its low-dimensional

feature representation . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector and “hidden”

stochastic binary feature vector are modeled by products

of conditional Bernoulli distributions:

(7)

(8)

where is the logistic function, is

a symmetric interaction term between input and feature ,

and , are biases. The biases are part of the overall pa-

rameter vector, . The marginal distribution over visible

vector is:

(9)

where is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

(10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

où

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of labeled training cases ,

, where , and .

For each training vector , define the probability that point

selects one of its neighbours (as in [9, 13]) in the trans-

formed feature space as:

(3)

We focus on the Euclidean distance metric:

and is a multi-layer neural network parametrized

by the weight vector (see fig 1). The probability that

point belongs to class depends on the relative proximity

of all other data points that belong to class :

(4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

(5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

(6)

When is constrained to be a linear trans-

formation, we get linear NCA. When is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector through the layers of the

encoder network. In our experiments, the NCA objective

of Eq. 5 worked slightly better than . We sus-

pect that this is because is more robust to handling

outliers. , on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features and and the bottom
layer represents a vector of stochastic binary “visible” variables
. When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector into its low-dimensional

feature representation . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector and “hidden”

stochastic binary feature vector are modeled by products

of conditional Bernoulli distributions:

(7)

(8)

where is the logistic function, is

a symmetric interaction term between input and feature ,

and , are biases. The biases are part of the overall pa-

rameter vector, . The marginal distribution over visible

vector is:

(9)

where is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

(10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of labeled training cases ,

, where , and .

For each training vector , define the probability that point

selects one of its neighbours (as in [9, 13]) in the trans-

formed feature space as:

(3)

We focus on the Euclidean distance metric:

and is a multi-layer neural network parametrized

by the weight vector (see fig 1). The probability that

point belongs to class depends on the relative proximity

of all other data points that belong to class :

(4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

(5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

(6)

When is constrained to be a linear trans-

formation, we get linear NCA. When is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector through the layers of the

encoder network. In our experiments, the NCA objective

of Eq. 5 worked slightly better than . We sus-

pect that this is because is more robust to handling

outliers. , on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features and and the bottom
layer represents a vector of stochastic binary “visible” variables
. When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector into its low-dimensional

feature representation . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector and “hidden”

stochastic binary feature vector are modeled by products

of conditional Bernoulli distributions:

(7)

(8)

where is the logistic function, is

a symmetric interaction term between input and feature ,

and , are biases. The biases are part of the overall pa-

rameter vector, . The marginal distribution over visible

vector is:

(9)

where is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

(10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

.

Learning a Nonlinear Embedding by Preserving
Class Neighbourhood Structure

(Salakhutdinov and Hinton, AISTATS 2007)

Résultats: classification (MNIST,)

 1 3 5 7

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Number of Nearest Neighbours

T
e

s
t

E
rr

o
r

(%
)

Nonlinear NCA 30D

Linear NCA 30D

Autoencoder 30D

PCA 30D

1

2
3

4

5

6

7

8

9

0

Linear NCA LDA PCA

Figure 4: The top left panel shows KNN results on the MNIST test set. The top right panel shows the 2-dimensional codes produced
by nonlinear NCA on the test data using a 784-500-500-2000-2 encoder. The bottom panels show the 2-dimensional codes produced by
linear NCA, Linear Discriminant Analysis, and PCA.

contains 60,000 training and 10,000 test images of

handwritten digits. Out of 60,000 training images, 10,000

were used for validation. The original pixel intensities were

normalized to lie in the interval and had a preponder-

ance of extreme values.

We used a 28 28 500 500 2000 30 architecture as

shown as fig. 3, similar to one used in [12]. The 30 code

units were linear and the remaining hidden units were lo-

gistic. Figure 4 shows that Nonlinear NCA, after 50 epochs

of training, achieves an error rate of 1.08%, 1.00%, 1.03%,

and 1.01% using 1,3,5, and 7 nearest neighbours. This

is compared to the best reported error rates (without us-

ing any domain-specific knowledge) of 1.6% for randomly

initialized backpropagation and 1.4% for Support Vector

Machines [5]. Linear methods such as linear NCA or

PCA are much worse than nonlinear NCA. Figure 4 (right

panel) shows the 2-dimensional codes produced by non-

linear NCA compared to linear NCA, Linear Discriminant

Analysis, and PCA.

5 Regularized Nonlinear NCA

In many application domains, a large supply of unlabeled

data is readily available but the amount of labeled data,

which can be expensive to obtain, is very limited so non-

linear NCA may suffer from overfitting.

After the pretraining stage, the individual RBM’s at each

level can be “unrolled” as shown in figure 3 to create a

deep autoencoder. If the stochastic activities of the binary

features are replaced by deterministic, real-valued proba-

bilities, we can then backpropagate through the entire net-

work to fine-tune the weights for optimal reconstruction of

the data. Training such deep autoencoders, which does not

require any labeled data, produces low-dimensional codes

that are good at reconstructing the input data vectors, and

tend to preserve class neighbourhood structure [14].

The NCA objective, that encourages codes to lie close to

other codes belonging to the same class, can be combined

with the autoencoder objective function (see fig. 3) to max-

imize:

E (16)

where is defined in Eq. 5, is the reconstruction

error, and is a trade-off parameter. When the derivative

of the reconstruction error is backpropagated through

the autoencoder, it is combined, at the code level, with the

derivatives of .

 1 3 5 7

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Number of Nearest Neighbours

T
e
s

t
E

rr
o

r
(%

)

Nonlinear NCA 30D

Linear NCA 30D

Autoencoder 30D

PCA 30D

1

2
3

4

5

6

7

8

9

0

Linear NCA LDA PCA

Figure 4: The top left panel shows KNN results on the MNIST test set. The top right panel shows the 2-dimensional codes produced
by nonlinear NCA on the test data using a 784-500-500-2000-2 encoder. The bottom panels show the 2-dimensional codes produced by
linear NCA, Linear Discriminant Analysis, and PCA.

contains 60,000 training and 10,000 test images of

handwritten digits. Out of 60,000 training images, 10,000

were used for validation. The original pixel intensities were

normalized to lie in the interval and had a preponder-

ance of extreme values.

We used a 28 28 500 500 2000 30 architecture as

shown as fig. 3, similar to one used in [12]. The 30 code

units were linear and the remaining hidden units were lo-

gistic. Figure 4 shows that Nonlinear NCA, after 50 epochs

of training, achieves an error rate of 1.08%, 1.00%, 1.03%,

and 1.01% using 1,3,5, and 7 nearest neighbours. This

is compared to the best reported error rates (without us-

ing any domain-specific knowledge) of 1.6% for randomly

initialized backpropagation and 1.4% for Support Vector

Machines [5]. Linear methods such as linear NCA or

PCA are much worse than nonlinear NCA. Figure 4 (right

panel) shows the 2-dimensional codes produced by non-

linear NCA compared to linear NCA, Linear Discriminant

Analysis, and PCA.

5 Regularized Nonlinear NCA

In many application domains, a large supply of unlabeled

data is readily available but the amount of labeled data,

which can be expensive to obtain, is very limited so non-

linear NCA may suffer from overfitting.

After the pretraining stage, the individual RBM’s at each

level can be “unrolled” as shown in figure 3 to create a

deep autoencoder. If the stochastic activities of the binary

features are replaced by deterministic, real-valued proba-

bilities, we can then backpropagate through the entire net-

work to fine-tune the weights for optimal reconstruction of

the data. Training such deep autoencoders, which does not

require any labeled data, produces low-dimensional codes

that are good at reconstructing the input data vectors, and

tend to preserve class neighbourhood structure [14].

The NCA objective, that encourages codes to lie close to

other codes belonging to the same class, can be combined

with the autoencoder objective function (see fig. 3) to max-

imize:

E (16)

where is defined in Eq. 5, is the reconstruction

error, and is a trade-off parameter. When the derivative

of the reconstruction error is backpropagated through

the autoencoder, it is combined, at the code level, with the

derivatives of .

λ = 1

Learning a Nonlinear Embedding by Preserving
Class Neighbourhood Structure

(Salakhutdinov and Hinton, AISTATS 2007)

Résultats: classification (MNIST, varie)λ

 1 3 5 7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

Number of Nearest Neighbours

T
e

s
t

E
rr

o
r

(%
)

Regularized NCA (!=0.99)

Nonlinear NCA 30D (!=1)

Linear NCA 30D

Autoencoder 30D (!=0)

KNN in pixel space

 1 3 5 7
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of Nearest Neighbours

T
e
s

t
E

rr
o

r
(%

)

Regularized NCA (!=0.99)

Nonlinear NCA 30D (!=1)

Linear NCA 30D

Autoencoder 30D (!=0)

KNN in pixel space

 1 3 5 7
2

2.5

3

3.5

4

4.5

5

5.5

6

Number of Nearest Neighbours

T
e
s
t

E
rr

o
r

(%
)

Regularized NCA (!=0.999)

Nonlinear NCA 30D (!=1)

Linear NCA 30D

Autoencoder 30D (!=0)

KNN in pixel space

1% labels 5% labels 10% labels

Figure 5: KNN on the MNIST test set when only a small fraction of class labels is available. Linear NCA and KNN in pixel space do
not take advantage of the unlabeled data.

30 20 30 20

.......

.......

.......

.......
*NCA

Figure 6: Left panel: The NCA objective function is only applied to the first 30
code units, but all 50 units are used for image reconstruction. Right panel: The
top row shows the reconstructed images as we vary the activation of code unit
25 from 1 to -23 with a stepsize of 4. The bottom row shows the reconstructed
images as we vary code unit 42 from 1 to -23.

This setting is particularly useful for semi-supervised

learning tasks. Consider having a set of labeled train-

ing data , where as before , and

, and a set of unlabeled training data .

Let . The overall objective to maximize can

be written as:

(17)

where is the reconstruction error for the input data vec-

tor . For the MNIST dataset we use the cross-entropy

error:

(18)

where is the intensity of pixel for the training

example , and is the intensity of its reconstruction.

When the number of labeled example is small, regular-

ized nonlinear NCA performs better than nonlinear NCA

(), which uses the unlabeled data for pretraining but

ignores it during the fine-tuning. It also performs better

than an autoencoder (), which ignores the labeled

set. To test the effect of the regularization when most of

the data is unlabeled, we randomly sampled 1%, 5% and

10% of the handwritten digits in each class and treated

them as labeled data. The remaining digits were treated

as unlabeled data. Figure 5 reveals that regularized non-

linear NCA()4 outperforms both nonlinear NCA

() and an autoencoder (). Even when the en-

tire training set is labeled, regularized NCA still performs

slightly better.

5.1 Splitting codes into class-relevant and

class-irrelevant parts

To allow accurate reconstruction of a digit image, the code

must contain information about aspects of the image such

as its orientation, slant, size and stroke thickness that are

not relevant to its classification. These irrelevant aspects in-

evitably contribute to the Euclidean distance between codes

and harm classification. To diminish this unwanted effect,

we used 50-dimensional codes but only used the first 30

dimensions in the NCA objective function. The remaining

20 dimensions were free to code all those aspects of an im-

age that do not affect its class label but are important for

reconstruction.

Figure 6 shows how the reconstruction is affected by

changing the activity level of a single code unit. Chang-

ing a unit among the first 30 changes the class; changing a

unit among the last 20 does not. With the split

codes achieve an error rate of 1.00% 0.97% 0.98% 0.97%

4The parameter was selected, using cross-validation, from
among the values .

Learning a Nonlinear Embedding by Preserving
Class Neighbourhood Structure

(Salakhutdinov and Hinton, AISTATS 2007)

Résultats: séparer l’information de classe
 1 3 5 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Number of Nearest Neighbours

T
e

s
t

E
rr

o
r

(%
)

Regularized NCA (!=0.99)

Nonlinear NCA 30D (!=1)

Linear NCA 30D

Autoencoder 30D (!=0)

KNN in pixel space

 1 3 5 7
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of Nearest Neighbours

T
e
s
t

E
rr

o
r

(%
)

Regularized NCA (!=0.99)

Nonlinear NCA 30D (!=1)

Linear NCA 30D

Autoencoder 30D (!=0)

KNN in pixel space

 1 3 5 7
2

2.5

3

3.5

4

4.5

5

5.5

6

Number of Nearest Neighbours

T
e

s
t

E
rr

o
r

(%
)

Regularized NCA (!=0.999)

Nonlinear NCA 30D (!=1)

Linear NCA 30D

Autoencoder 30D (!=0)

KNN in pixel space

1% labels 5% labels 10% labels

Figure 5: KNN on the MNIST test set when only a small fraction of class labels is available. Linear NCA and KNN in pixel space do
not take advantage of the unlabeled data.

30 20 30 20

.......

.......

.......

.......
*NCA

Figure 6: Left panel: The NCA objective function is only applied to the first 30
code units, but all 50 units are used for image reconstruction. Right panel: The
top row shows the reconstructed images as we vary the activation of code unit
25 from 1 to -23 with a stepsize of 4. The bottom row shows the reconstructed
images as we vary code unit 42 from 1 to -23.

This setting is particularly useful for semi-supervised

learning tasks. Consider having a set of labeled train-

ing data , where as before , and

, and a set of unlabeled training data .

Let . The overall objective to maximize can

be written as:

(17)

where is the reconstruction error for the input data vec-

tor . For the MNIST dataset we use the cross-entropy

error:

(18)

where is the intensity of pixel for the training

example , and is the intensity of its reconstruction.

When the number of labeled example is small, regular-

ized nonlinear NCA performs better than nonlinear NCA

(), which uses the unlabeled data for pretraining but

ignores it during the fine-tuning. It also performs better

than an autoencoder (), which ignores the labeled

set. To test the effect of the regularization when most of

the data is unlabeled, we randomly sampled 1%, 5% and

10% of the handwritten digits in each class and treated

them as labeled data. The remaining digits were treated

as unlabeled data. Figure 5 reveals that regularized non-

linear NCA()4 outperforms both nonlinear NCA

() and an autoencoder (). Even when the en-

tire training set is labeled, regularized NCA still performs

slightly better.

5.1 Splitting codes into class-relevant and

class-irrelevant parts

To allow accurate reconstruction of a digit image, the code

must contain information about aspects of the image such

as its orientation, slant, size and stroke thickness that are

not relevant to its classification. These irrelevant aspects in-

evitably contribute to the Euclidean distance between codes

and harm classification. To diminish this unwanted effect,

we used 50-dimensional codes but only used the first 30

dimensions in the NCA objective function. The remaining

20 dimensions were free to code all those aspects of an im-

age that do not affect its class label but are important for

reconstruction.

Figure 6 shows how the reconstruction is affected by

changing the activity level of a single code unit. Chang-

ing a unit among the first 30 changes the class; changing a

unit among the last 20 does not. With the split

codes achieve an error rate of 1.00% 0.97% 0.98% 0.97%

4The parameter was selected, using cross-validation, from
among the values .

Using Deep Belief Nets to Learn Covariance
Kernels for Gaussian Processes

(Salakhutdinov and Hinton, NIPS 2008)

• Peut-on adapter la représentation à une
tâche de régression?

• Dans ce papier, on l’adapte à un régresseur
par processus Gaussien (GP)

Using Deep Belief Nets to Learn Covariance
Kernels for Gaussian Processes

(Salakhutdinov and Hinton, NIPS 2008)

h

W

Binary
Hidden Features

x
Gaussian
Visible
Units

W

W

W

W

W

W

GP

Input X

target y

Feature
Representation

F(X|W)

1

RBM

1000
RBM

1000

1000

1000

2

3

1000

1000

3

RBM

1000

2

T

T

T

1000

1

Figure 1: Left panel: Markov random field of the generalized RBM. The top layer represents stochastic binary
hidden features h and and the bottom layer is composed of linear visible units x with Gaussian noise. When
using a Constrained Poisson Model, the top layer represents stochastic binary latent topic features h and the
bottom layer represents the Poisson visible word-count vector x. Middle panel: Pretraining consists of learning
a stack of RBM’s. Right panel: After pretraining, the RBM’s are used to initialize a covariance function of the
Gaussian process, which is then fine-tuned by backpropagation.

where g(x) = 1/(1+exp(−x)) is the logistic function, wij is a symmetric interaction term between

input i and feature j, σ2
i is the variance of input i, and bi, bj are biases. The marginal distribution

over visible vector x is:

p(x) =
∑

h

exp (−E(x,h))
∫

u

∑

g exp (−E(u,g))du
(9)

where E(x,h) is an energy term: E(x,h) =
∑

i
(xi−bi)

2

2σ2

i

−
∑

j bjhj −
∑

i,j hjwij
xi

σi
. The param-

eter updates required to perform gradient ascent in the log-likelihood is obtained from Eq. 9:

∆wij = ε
∂ log p(x)

∂wij
= ε(<zihj>data − <zihj>model) (10)

where ε is the learning rate, zi = xi/σi, < ·>data denotes an expectation with respect to the data
distribution and < ·>model is an expectation with respect to the distribution defined by the model.
To circumvent the difficulty of computing <·>model, we use 1-step Contrastive Divergence [5]:

∆wij = ε(<zihj>data − <zihj>recon) (11)

The expectation <zihj >data defines the expected sufficient statistics of the data distribution and
is computed as zip(hj = 1|x) when the features are being driven by the observed data from the
training set using Eq. 8. After stochastically activating the features, Eq. 7 is used to “reconstruct”
real-valued data. Then Eq. 8 is used again to activate the features and compute <zihj>recon when
the features are being driven by the reconstructed data. Throughout our experiments we set variances
σ2

i = 1 for all visible units i, which facilitates learning. The learning rule for the biases is just a
simplified version of Eq. 11.

3.2 Modeling Count Data with the Constrained Poisson Model

We use a conditional “constrained” Poisson distribution for modeling observed “visible” word count
data x and a conditional Bernoulli distribution for modeling “hidden” topic features h:

p(xi = n|h) = Pois

(

n,
exp (λi +

∑

j hjwij)
∑

k exp
(

λk +
∑

j hjWkj

) × N

)

, p(hj = 1|x) = g(bj +
∑

i

wijxi) (12)

where Pois
(

n, λ
)

= e−λλn/n!, wij is a symmetric interaction term between word i and feature

j, N =
∑

i xi is the total length of the document, λi is the bias of the conditional Poisson model
for word i, and bj is the bias of feature j. The Poisson rate, whose log is shifted by the weighted
combination of the feature activations, is normalized and scaled up by N . We call this the “Con-
strained Poisson Model” since it ensures that the mean Poisson rates across all words sum up to the
length of the document. This normalization is significant because it makes learning stable and it
deals appropriately with documents of different lengths.

3

à la place d’une
couche de sortie de
réseau de neurones

Using Deep Belief Nets to Learn Covariance
Kernels for Gaussian Processes

(Salakhutdinov and Hinton, NIPS 2008)

• (Très court) rappel des GPs

maximizing the log probability of the labels with respect to W . In the final model most of the in-
formation for learning a covariance kernel will have come from modeling the input data. The very
limited information in the labels will be used only to slightly adjust the layers of features already
discovered by the DBN.

2 Gaussian Processes for Regression and Binary Classification

For a regression task, we are given a data set D of i .i .d . labeled input vectors Xl = {xn}N
n=1 and

their corresponding target labels {yn}N
n=1 ∈ R. We are interested in the following probabilistic

regression model:
yn = f(xn) + ε, ε ∼ N (ε|0, σ2) (1)

A Gaussian process regression places a zero-mean GP prior over the underlying latent function f
we are modeling, so that a-priori p(f |Xl) =N (f |0, K), where f = [f(x1), ..., f(xn)]T andK is the
covariance matrix, whose entries are specified by the covariance function Kij = K(xi,xj). The
covariance function encodes our prior notion of the smoothness of f , or the prior assumption that
if two input vectors are similar according to some distance measure, their labels should be highly
correlated. In this paper we will use the spherical Gaussian kernel, parameterized by θ = {α, β}:

Kij = α exp
(

−
1

2β
(xi − xj)

T (xi − xj)
)

(2)

Integrating out the function values f , the marginal log-likelihood takes form:

L = log p(y|Xl) = −
N

2
log 2π −

1

2
log |K + σ2I|−

1

2
yT (K + σ2I)−1y (3)

which can then be maximized with respect to the parameters θ and σ. Given a new test point x∗, a
prediction is obtained by conditioning on the observed data and θ. The distribution of the predicted
value y∗ at x∗ takes the form:

p(y∗|x∗,D, θ, σ2) = N (y∗|k
T
∗ (K + σ2I)−1y, k∗∗ − kT

∗ (K + σ2I)−1k∗ + σ2) (4)

where k∗ = K(x∗,Xl), and k∗∗ = K(x∗,x∗).

For a binary classification task, we similarly place a zero mean GP prior over the underlying latent
function f , which is then passed through the logistic function g(x) = 1/(1 + exp(−x)) to define a
prior p(yn = 1|xn) = g(f(xn)). Given a new test point x∗, inference is done by first obtaining the
distribution over the latent function f∗ = f(x∗):

p(f∗|x∗,D) =

∫

p(f∗|x∗,Xl, f)p(f |Xl,y)df (5)

which is then used to produce a probabilistic prediction:

p(y∗ = 1|x∗,D) =

∫

g(f∗)p(f∗|x∗,D)df∗ (6)

The non-Gaussian likelihoodmakes the integral in Eq. 5 analytically intractable. In our experiments,
we approximate the non-Gaussian posterior p(f |Xl,y) with a Gaussian one using expectation prop-
agation [12]. For more thorough reviews and implementation details refer to [13, 16].

3 Learning Deep Belief Networks (DBN’s)
In this section we describe an unsupervised way of learning a DBN model of the input data X =
[Xl,Xu], that contains both labeled and unlabeled data sets. A DBN can be trained efficiently by
using a Restricted Boltzmann Machine (RBM) to learn one layer of hidden features at a time [7].
Welling et. al. [18] introduced a class of two-layer undirected graphical models that generalize
RBM’s to exponential family distributions. This framework will allow us to model real-valued
images of face patches and word-count vectors of documents.

3.1 Modeling Real-valued Data

We use a conditional Gaussian distribution for modeling observed “visible” pixel values x (e.g.
images of faces) and a conditional Bernoulli distribution for modeling “hidden” features h (Fig. 1):

p(xi = x|h) = 1√
2πσi

exp(−
(x−bi−σi

∑

j
hjwij)

2

2σ2

i

) (7)

p(hj = 1|x) = g
(

bj +
∑

i wij
xi

σi

)

(8)

2

maximizing the log probability of the labels with respect to W . In the final model most of the in-
formation for learning a covariance kernel will have come from modeling the input data. The very
limited information in the labels will be used only to slightly adjust the layers of features already
discovered by the DBN.

2 Gaussian Processes for Regression and Binary Classification

For a regression task, we are given a data set D of i .i .d . labeled input vectors Xl = {xn}N
n=1 and

their corresponding target labels {yn}N
n=1 ∈ R. We are interested in the following probabilistic

regression model:
yn = f(xn) + ε, ε ∼ N (ε|0, σ2) (1)

A Gaussian process regression places a zero-mean GP prior over the underlying latent function f
we are modeling, so that a-priori p(f |Xl) =N (f |0, K), where f = [f(x1), ..., f(xn)]T andK is the
covariance matrix, whose entries are specified by the covariance function Kij = K(xi,xj). The
covariance function encodes our prior notion of the smoothness of f , or the prior assumption that
if two input vectors are similar according to some distance measure, their labels should be highly
correlated. In this paper we will use the spherical Gaussian kernel, parameterized by θ = {α, β}:

Kij = α exp
(

−
1

2β
(xi − xj)

T (xi − xj)
)

(2)

Integrating out the function values f , the marginal log-likelihood takes form:

L = log p(y|Xl) = −
N

2
log 2π −

1

2
log |K + σ2I|−

1

2
yT (K + σ2I)−1y (3)

which can then be maximized with respect to the parameters θ and σ. Given a new test point x∗, a
prediction is obtained by conditioning on the observed data and θ. The distribution of the predicted
value y∗ at x∗ takes the form:

p(y∗|x∗,D, θ, σ2) = N (y∗|k
T
∗ (K + σ2I)−1y, k∗∗ − kT

∗ (K + σ2I)−1k∗ + σ2) (4)

where k∗ = K(x∗,Xl), and k∗∗ = K(x∗,x∗).

For a binary classification task, we similarly place a zero mean GP prior over the underlying latent
function f , which is then passed through the logistic function g(x) = 1/(1 + exp(−x)) to define a
prior p(yn = 1|xn) = g(f(xn)). Given a new test point x∗, inference is done by first obtaining the
distribution over the latent function f∗ = f(x∗):

p(f∗|x∗,D) =

∫

p(f∗|x∗,Xl, f)p(f |Xl,y)df (5)

which is then used to produce a probabilistic prediction:

p(y∗ = 1|x∗,D) =

∫

g(f∗)p(f∗|x∗,D)df∗ (6)

The non-Gaussian likelihoodmakes the integral in Eq. 5 analytically intractable. In our experiments,
we approximate the non-Gaussian posterior p(f |Xl,y) with a Gaussian one using expectation prop-
agation [12]. For more thorough reviews and implementation details refer to [13, 16].

3 Learning Deep Belief Networks (DBN’s)
In this section we describe an unsupervised way of learning a DBN model of the input data X =
[Xl,Xu], that contains both labeled and unlabeled data sets. A DBN can be trained efficiently by
using a Restricted Boltzmann Machine (RBM) to learn one layer of hidden features at a time [7].
Welling et. al. [18] introduced a class of two-layer undirected graphical models that generalize
RBM’s to exponential family distributions. This framework will allow us to model real-valued
images of face patches and word-count vectors of documents.

3.1 Modeling Real-valued Data

We use a conditional Gaussian distribution for modeling observed “visible” pixel values x (e.g.
images of faces) and a conditional Bernoulli distribution for modeling “hidden” features h (Fig. 1):

p(xi = x|h) = 1√
2πσi

exp(−
(x−bi−σi

∑

j
hjwij)

2

2σ2

i

) (7)

p(hj = 1|x) = g
(

bj +
∑

i wij
xi

σi

)

(8)

2

où

maximizing the log probability of the labels with respect to W . In the final model most of the in-
formation for learning a covariance kernel will have come from modeling the input data. The very
limited information in the labels will be used only to slightly adjust the layers of features already
discovered by the DBN.

2 Gaussian Processes for Regression and Binary Classification

For a regression task, we are given a data set D of i .i .d . labeled input vectors Xl = {xn}N
n=1 and

their corresponding target labels {yn}N
n=1 ∈ R. We are interested in the following probabilistic

regression model:
yn = f(xn) + ε, ε ∼ N (ε|0, σ2) (1)

A Gaussian process regression places a zero-mean GP prior over the underlying latent function f
we are modeling, so that a-priori p(f |Xl) =N (f |0, K), where f = [f(x1), ..., f(xn)]T andK is the
covariance matrix, whose entries are specified by the covariance function Kij = K(xi,xj). The
covariance function encodes our prior notion of the smoothness of f , or the prior assumption that
if two input vectors are similar according to some distance measure, their labels should be highly
correlated. In this paper we will use the spherical Gaussian kernel, parameterized by θ = {α, β}:

Kij = α exp
(

−
1

2β
(xi − xj)

T (xi − xj)
)

(2)

Integrating out the function values f , the marginal log-likelihood takes form:

L = log p(y|Xl) = −
N

2
log 2π −

1

2
log |K + σ2I|−

1

2
yT (K + σ2I)−1y (3)

which can then be maximized with respect to the parameters θ and σ. Given a new test point x∗, a
prediction is obtained by conditioning on the observed data and θ. The distribution of the predicted
value y∗ at x∗ takes the form:

p(y∗|x∗,D, θ, σ2) = N (y∗|k
T
∗ (K + σ2I)−1y, k∗∗ − kT

∗ (K + σ2I)−1k∗ + σ2) (4)

where k∗ = K(x∗,Xl), and k∗∗ = K(x∗,x∗).

For a binary classification task, we similarly place a zero mean GP prior over the underlying latent
function f , which is then passed through the logistic function g(x) = 1/(1 + exp(−x)) to define a
prior p(yn = 1|xn) = g(f(xn)). Given a new test point x∗, inference is done by first obtaining the
distribution over the latent function f∗ = f(x∗):

p(f∗|x∗,D) =

∫

p(f∗|x∗,Xl, f)p(f |Xl,y)df (5)

which is then used to produce a probabilistic prediction:

p(y∗ = 1|x∗,D) =

∫

g(f∗)p(f∗|x∗,D)df∗ (6)

The non-Gaussian likelihoodmakes the integral in Eq. 5 analytically intractable. In our experiments,
we approximate the non-Gaussian posterior p(f |Xl,y) with a Gaussian one using expectation prop-
agation [12]. For more thorough reviews and implementation details refer to [13, 16].

3 Learning Deep Belief Networks (DBN’s)
In this section we describe an unsupervised way of learning a DBN model of the input data X =
[Xl,Xu], that contains both labeled and unlabeled data sets. A DBN can be trained efficiently by
using a Restricted Boltzmann Machine (RBM) to learn one layer of hidden features at a time [7].
Welling et. al. [18] introduced a class of two-layer undirected graphical models that generalize
RBM’s to exponential family distributions. This framework will allow us to model real-valued
images of face patches and word-count vectors of documents.

3.1 Modeling Real-valued Data

We use a conditional Gaussian distribution for modeling observed “visible” pixel values x (e.g.
images of faces) and a conditional Bernoulli distribution for modeling “hidden” features h (Fig. 1):

p(xi = x|h) = 1√
2πσi

exp(−
(x−bi−σi

∑

j
hjwij)

2

2σ2

i

) (7)

p(hj = 1|x) = g
(

bj +
∑

i wij
xi

σi

)

(8)

2

maximizing the log probability of the labels with respect to W . In the final model most of the in-
formation for learning a covariance kernel will have come from modeling the input data. The very
limited information in the labels will be used only to slightly adjust the layers of features already
discovered by the DBN.

2 Gaussian Processes for Regression and Binary Classification

For a regression task, we are given a data set D of i .i .d . labeled input vectors Xl = {xn}N
n=1 and

their corresponding target labels {yn}N
n=1 ∈ R. We are interested in the following probabilistic

regression model:
yn = f(xn) + ε, ε ∼ N (ε|0, σ2) (1)

A Gaussian process regression places a zero-mean GP prior over the underlying latent function f
we are modeling, so that a-priori p(f |Xl) =N (f |0, K), where f = [f(x1), ..., f(xn)]T andK is the
covariance matrix, whose entries are specified by the covariance function Kij = K(xi,xj). The
covariance function encodes our prior notion of the smoothness of f , or the prior assumption that
if two input vectors are similar according to some distance measure, their labels should be highly
correlated. In this paper we will use the spherical Gaussian kernel, parameterized by θ = {α, β}:

Kij = α exp
(

−
1

2β
(xi − xj)

T (xi − xj)
)

(2)

Integrating out the function values f , the marginal log-likelihood takes form:

L = log p(y|Xl) = −
N

2
log 2π −

1

2
log |K + σ2I|−

1

2
yT (K + σ2I)−1y (3)

which can then be maximized with respect to the parameters θ and σ. Given a new test point x∗, a
prediction is obtained by conditioning on the observed data and θ. The distribution of the predicted
value y∗ at x∗ takes the form:

p(y∗|x∗,D, θ, σ2) = N (y∗|k
T
∗ (K + σ2I)−1y, k∗∗ − kT

∗ (K + σ2I)−1k∗ + σ2) (4)

where k∗ = K(x∗,Xl), and k∗∗ = K(x∗,x∗).

For a binary classification task, we similarly place a zero mean GP prior over the underlying latent
function f , which is then passed through the logistic function g(x) = 1/(1 + exp(−x)) to define a
prior p(yn = 1|xn) = g(f(xn)). Given a new test point x∗, inference is done by first obtaining the
distribution over the latent function f∗ = f(x∗):

p(f∗|x∗,D) =

∫

p(f∗|x∗,Xl, f)p(f |Xl,y)df (5)

which is then used to produce a probabilistic prediction:

p(y∗ = 1|x∗,D) =

∫

g(f∗)p(f∗|x∗,D)df∗ (6)

The non-Gaussian likelihoodmakes the integral in Eq. 5 analytically intractable. In our experiments,
we approximate the non-Gaussian posterior p(f |Xl,y) with a Gaussian one using expectation prop-
agation [12]. For more thorough reviews and implementation details refer to [13, 16].

3 Learning Deep Belief Networks (DBN’s)
In this section we describe an unsupervised way of learning a DBN model of the input data X =
[Xl,Xu], that contains both labeled and unlabeled data sets. A DBN can be trained efficiently by
using a Restricted Boltzmann Machine (RBM) to learn one layer of hidden features at a time [7].
Welling et. al. [18] introduced a class of two-layer undirected graphical models that generalize
RBM’s to exponential family distributions. This framework will allow us to model real-valued
images of face patches and word-count vectors of documents.

3.1 Modeling Real-valued Data

We use a conditional Gaussian distribution for modeling observed “visible” pixel values x (e.g.
images of faces) and a conditional Bernoulli distribution for modeling “hidden” features h (Fig. 1):

p(xi = x|h) = 1√
2πσi

exp(−
(x−bi−σi

∑

j
hjwij)

2

2σ2

i

) (7)

p(hj = 1|x) = g
(

bj +
∑

i wij
xi

σi

)

(8)

2

maximizing the log probability of the labels with respect to W . In the final model most of the in-
formation for learning a covariance kernel will have come from modeling the input data. The very
limited information in the labels will be used only to slightly adjust the layers of features already
discovered by the DBN.

2 Gaussian Processes for Regression and Binary Classification

For a regression task, we are given a data set D of i .i .d . labeled input vectors Xl = {xn}N
n=1 and

their corresponding target labels {yn}N
n=1 ∈ R. We are interested in the following probabilistic

regression model:
yn = f(xn) + ε, ε ∼ N (ε|0, σ2) (1)

A Gaussian process regression places a zero-mean GP prior over the underlying latent function f
we are modeling, so that a-priori p(f |Xl) =N (f |0, K), where f = [f(x1), ..., f(xn)]T andK is the
covariance matrix, whose entries are specified by the covariance function Kij = K(xi,xj). The
covariance function encodes our prior notion of the smoothness of f , or the prior assumption that
if two input vectors are similar according to some distance measure, their labels should be highly
correlated. In this paper we will use the spherical Gaussian kernel, parameterized by θ = {α, β}:

Kij = α exp
(

−
1

2β
(xi − xj)

T (xi − xj)
)

(2)

Integrating out the function values f , the marginal log-likelihood takes form:

L = log p(y|Xl) = −
N

2
log 2π −

1

2
log |K + σ2I|−

1

2
yT (K + σ2I)−1y (3)

which can then be maximized with respect to the parameters θ and σ. Given a new test point x∗, a
prediction is obtained by conditioning on the observed data and θ. The distribution of the predicted
value y∗ at x∗ takes the form:

p(y∗|x∗,D, θ, σ2) = N (y∗|k
T
∗ (K + σ2I)−1y, k∗∗ − kT

∗ (K + σ2I)−1k∗ + σ2) (4)

where k∗ = K(x∗,Xl), and k∗∗ = K(x∗,x∗).

For a binary classification task, we similarly place a zero mean GP prior over the underlying latent
function f , which is then passed through the logistic function g(x) = 1/(1 + exp(−x)) to define a
prior p(yn = 1|xn) = g(f(xn)). Given a new test point x∗, inference is done by first obtaining the
distribution over the latent function f∗ = f(x∗):

p(f∗|x∗,D) =

∫

p(f∗|x∗,Xl, f)p(f |Xl,y)df (5)

which is then used to produce a probabilistic prediction:

p(y∗ = 1|x∗,D) =

∫

g(f∗)p(f∗|x∗,D)df∗ (6)

The non-Gaussian likelihoodmakes the integral in Eq. 5 analytically intractable. In our experiments,
we approximate the non-Gaussian posterior p(f |Xl,y) with a Gaussian one using expectation prop-
agation [12]. For more thorough reviews and implementation details refer to [13, 16].

3 Learning Deep Belief Networks (DBN’s)
In this section we describe an unsupervised way of learning a DBN model of the input data X =
[Xl,Xu], that contains both labeled and unlabeled data sets. A DBN can be trained efficiently by
using a Restricted Boltzmann Machine (RBM) to learn one layer of hidden features at a time [7].
Welling et. al. [18] introduced a class of two-layer undirected graphical models that generalize
RBM’s to exponential family distributions. This framework will allow us to model real-valued
images of face patches and word-count vectors of documents.

3.1 Modeling Real-valued Data

We use a conditional Gaussian distribution for modeling observed “visible” pixel values x (e.g.
images of faces) and a conditional Bernoulli distribution for modeling “hidden” features h (Fig. 1):

p(xi = x|h) = 1√
2πσi

exp(−
(x−bi−σi

∑

j
hjwij)

2

2σ2

i

) (7)

p(hj = 1|x) = g
(

bj +
∑

i wij
xi

σi

)

(8)

2

GP

matrice
covariance

vraisemblance
à maximiser

Using Deep Belief Nets to Learn Covariance
Kernels for Gaussian Processes

(Salakhutdinov and Hinton, NIPS 2008)

• Apprendre la matrice de covariance

• Procède par descente de gradient

The marginal distribution over visible count vectors x is given in Eq. 9 with an “energy” given by

E(x,h) = −
∑

i

λixi +
∑

i

log (xi!) −
∑

j

bjhj −
∑

i,j

xihjwij (13)

The gradient of the log-likelihood function is:

∆wij = ε
∂ log p(v)

∂wij
= ε(<xihj>data − <xihj>model) (14)

3.3 Greedy Recursive Learning of Deep Belief Nets

A single layer of binary features is not the best way to capture the structure in the input data. We
now describe an efficient way to learn additional layers of binary features.

After learning the first layer of hidden features we have an undirected model that defines p(v,h)
by defining a consistent pair of conditional probabilities, p(h|v) and p(v|h) which can be used to
sample from the model distribution. A different way to express what has been learned is p(v|h) and
p(h). Unlike a standard, directed model, this p(h) does not have its own separate parameters. It is a
complicated, non-factorial prior on h that is defined implicitly by p(h|v) and p(v|h). This peculiar
decomposition into p(h) and p(v|h) suggests a recursive algorithm: keep the learned p(v|h) but
replace p(h) by a better prior over h, i.e. a prior that is closer to the average, over all the data
vectors, of the conditional posterior over h. So after learning an undirected model, the part we keep
is part of a multilayer directed model.

We can sample from this average conditional posterior by simply using p(h|v) on the training data
and these samples are then the “data” that is used for training the next layer of features. The only
difference from learning the first layer of features is that the “visible” units of the second-level RBM
are also binary [6, 3]. The learning rule provided in the previous section remains the same [5].
We could initialize the new RBM model by simply using the existing learned model but with the
roles of the hidden and visible units reversed. This ensures that p(v) in our new model starts out
being exactly the same as p(h) in our old one. Provided the number of features per layer does not
decrease, [7] show that each extra layer increases a variational lower bound on the log probability
of data. To suppress noise in the learning signal, we use the real-valued activation probabilities for
the visible units of every RBM, but to prevent hidden units from transmitting more than one bit of
information from the data to its reconstruction, the pretraining always uses stochastic binary values
for the hidden units.

The greedy, layer-by-layer training can be repeated several times to learn a deep, hierarchical model
in which each layer of features captures strong high-order correlations between the activities of
features in the layer below.

4 Learning the Covariance Kernel for a Gaussian Process

After pretraining, the stochastic activities of the binary features in each layer are replaced by deter-
ministic, real-valued probabilities and the DBN is used to initialize a multi-layer, non-linear map-
ping f(x|W) as shown in figure 1. We define a Gaussian covariance function, parameterized by
θ = {α, β} andW as:

Kij = α exp
(

−
1

2β
||F (xi|W) − F (xj |W)||2

)

(15)

Note that this covariance function is initialized in an entirely unsupervised way. We can now maxi-
mize the log-likelihood of Eq. 3 with respect to the parameters of the covariance function using the
labeled training data[9]. The derivative of the log-likelihood with respect to the kernel function is:

∂L

∂Ky
=

1

2

(

K−1
y yyT K−1

y − K−1
y

)

(16)

whereKy = K +σ2I is the covariance matrix. Using the chain rule we readily obtain the necessary
gradients:

∂L

∂θ
=

∂L

∂Ky

∂Ky

∂θ
and

∂L

W
=

∂L

∂Ky

∂Ky

∂F (x|W)

∂F (x|W)

∂W
(17)

4

The marginal distribution over visible count vectors x is given in Eq. 9 with an “energy” given by

E(x,h) = −
∑

i

λixi +
∑

i

log (xi!) −
∑

j

bjhj −
∑

i,j

xihjwij (13)

The gradient of the log-likelihood function is:

∆wij = ε
∂ log p(v)

∂wij
= ε(<xihj>data − <xihj>model) (14)

3.3 Greedy Recursive Learning of Deep Belief Nets

A single layer of binary features is not the best way to capture the structure in the input data. We
now describe an efficient way to learn additional layers of binary features.

After learning the first layer of hidden features we have an undirected model that defines p(v,h)
by defining a consistent pair of conditional probabilities, p(h|v) and p(v|h) which can be used to
sample from the model distribution. A different way to express what has been learned is p(v|h) and
p(h). Unlike a standard, directed model, this p(h) does not have its own separate parameters. It is a
complicated, non-factorial prior on h that is defined implicitly by p(h|v) and p(v|h). This peculiar
decomposition into p(h) and p(v|h) suggests a recursive algorithm: keep the learned p(v|h) but
replace p(h) by a better prior over h, i.e. a prior that is closer to the average, over all the data
vectors, of the conditional posterior over h. So after learning an undirected model, the part we keep
is part of a multilayer directed model.

We can sample from this average conditional posterior by simply using p(h|v) on the training data
and these samples are then the “data” that is used for training the next layer of features. The only
difference from learning the first layer of features is that the “visible” units of the second-level RBM
are also binary [6, 3]. The learning rule provided in the previous section remains the same [5].
We could initialize the new RBM model by simply using the existing learned model but with the
roles of the hidden and visible units reversed. This ensures that p(v) in our new model starts out
being exactly the same as p(h) in our old one. Provided the number of features per layer does not
decrease, [7] show that each extra layer increases a variational lower bound on the log probability
of data. To suppress noise in the learning signal, we use the real-valued activation probabilities for
the visible units of every RBM, but to prevent hidden units from transmitting more than one bit of
information from the data to its reconstruction, the pretraining always uses stochastic binary values
for the hidden units.

The greedy, layer-by-layer training can be repeated several times to learn a deep, hierarchical model
in which each layer of features captures strong high-order correlations between the activities of
features in the layer below.

4 Learning the Covariance Kernel for a Gaussian Process

After pretraining, the stochastic activities of the binary features in each layer are replaced by deter-
ministic, real-valued probabilities and the DBN is used to initialize a multi-layer, non-linear map-
ping f(x|W) as shown in figure 1. We define a Gaussian covariance function, parameterized by
θ = {α, β} andW as:

Kij = α exp
(

−
1

2β
||F (xi|W) − F (xj |W)||2

)

(15)

Note that this covariance function is initialized in an entirely unsupervised way. We can now maxi-
mize the log-likelihood of Eq. 3 with respect to the parameters of the covariance function using the
labeled training data[9]. The derivative of the log-likelihood with respect to the kernel function is:

∂L

∂Ky
=

1

2

(

K−1
y yyT K−1

y − K−1
y

)

(16)

whereKy = K +σ2I is the covariance matrix. Using the chain rule we readily obtain the necessary
gradients:

∂L

∂θ
=

∂L

∂Ky

∂Ky

∂θ
and

∂L

W
=

∂L

∂Ky

∂Ky

∂F (x|W)

∂F (x|W)

∂W
(17)

4

The marginal distribution over visible count vectors x is given in Eq. 9 with an “energy” given by

E(x,h) = −
∑

i

λixi +
∑

i

log (xi!) −
∑

j

bjhj −
∑

i,j

xihjwij (13)

The gradient of the log-likelihood function is:

∆wij = ε
∂ log p(v)

∂wij
= ε(<xihj>data − <xihj>model) (14)

3.3 Greedy Recursive Learning of Deep Belief Nets

A single layer of binary features is not the best way to capture the structure in the input data. We
now describe an efficient way to learn additional layers of binary features.

After learning the first layer of hidden features we have an undirected model that defines p(v,h)
by defining a consistent pair of conditional probabilities, p(h|v) and p(v|h) which can be used to
sample from the model distribution. A different way to express what has been learned is p(v|h) and
p(h). Unlike a standard, directed model, this p(h) does not have its own separate parameters. It is a
complicated, non-factorial prior on h that is defined implicitly by p(h|v) and p(v|h). This peculiar
decomposition into p(h) and p(v|h) suggests a recursive algorithm: keep the learned p(v|h) but
replace p(h) by a better prior over h, i.e. a prior that is closer to the average, over all the data
vectors, of the conditional posterior over h. So after learning an undirected model, the part we keep
is part of a multilayer directed model.

We can sample from this average conditional posterior by simply using p(h|v) on the training data
and these samples are then the “data” that is used for training the next layer of features. The only
difference from learning the first layer of features is that the “visible” units of the second-level RBM
are also binary [6, 3]. The learning rule provided in the previous section remains the same [5].
We could initialize the new RBM model by simply using the existing learned model but with the
roles of the hidden and visible units reversed. This ensures that p(v) in our new model starts out
being exactly the same as p(h) in our old one. Provided the number of features per layer does not
decrease, [7] show that each extra layer increases a variational lower bound on the log probability
of data. To suppress noise in the learning signal, we use the real-valued activation probabilities for
the visible units of every RBM, but to prevent hidden units from transmitting more than one bit of
information from the data to its reconstruction, the pretraining always uses stochastic binary values
for the hidden units.

The greedy, layer-by-layer training can be repeated several times to learn a deep, hierarchical model
in which each layer of features captures strong high-order correlations between the activities of
features in the layer below.

4 Learning the Covariance Kernel for a Gaussian Process

After pretraining, the stochastic activities of the binary features in each layer are replaced by deter-
ministic, real-valued probabilities and the DBN is used to initialize a multi-layer, non-linear map-
ping f(x|W) as shown in figure 1. We define a Gaussian covariance function, parameterized by
θ = {α, β} andW as:

Kij = α exp
(

−
1

2β
||F (xi|W) − F (xj |W)||2

)

(15)

Note that this covariance function is initialized in an entirely unsupervised way. We can now maxi-
mize the log-likelihood of Eq. 3 with respect to the parameters of the covariance function using the
labeled training data[9]. The derivative of the log-likelihood with respect to the kernel function is:

∂L

∂Ky
=

1

2

(

K−1
y yyT K−1

y − K−1
y

)

(16)

whereKy = K +σ2I is the covariance matrix. Using the chain rule we readily obtain the necessary
gradients:

∂L

∂θ
=

∂L

∂Ky

∂Ky

∂θ
and

∂L

W
=

∂L

∂Ky

∂Ky

∂F (x|W)

∂F (x|W)

∂W
(17)

4

Using Deep Belief Nets to Learn Covariance
Kernels for Gaussian Processes

(Salakhutdinov and Hinton, NIPS 2008)

Résultats: régression
32.99 !41.15 66.38!22.07 27.49 Unlabeled

Training Data Test Data

A

B

Figure 2: Top panelA: Randomly sampled examples of the training and test data. Bottom panelB: The same
sample of the training and test images but with rectangular occlusions.

Training GPstandard GP-DBNgreedy GP-DBNfine GPpca
labels Sph. ARD Sph. ARD Sph. ARD Sph. ARD

A 100 22.24 28.57 17.94 18.37 15.28 15.01 18.13 (10) 16.47 (10)
500 17.25 18.16 12.71 8.96 7.25 6.84 14.75 (20) 10.53 (80)
1000 16.33 16.36 11.22 8.77 6.42 6.31 14.86 (20) 10.00 (160)

B 100 26.94 28.32 23.15 19.42 19.75 18.59 25.91 (10) 19.27 (20)
500 20.20 21.06 15.16 11.01 10.56 10.12 17.67 (10) 14.11 (20)
1000 19.20 17.98 14.15 10.43 9.13 9.23 16.26 (10) 11.55 (80)

Table 1: Performance results on the face-orientation regression task. The root mean squared error (RMSE) on
the test set is shown for each method using spherical Gaussian kernel and Gaussian kernel with ARD hyper-
parameters. By row: A) Non-occluded face data, B) Occluded face data. For the GPpca model, the number of
principal components that performs best on the test data is shown in parenthesis.

where ∂F (x|W)/∂W is computed using standard backpropagation. We also optimize the observa-
tion noise σ2. It is necessary to compute the inverse of Ky , so each gradient evaluation has O(N3)
complexity whereN is the number of the labeled training cases. When learning the restricted Boltz-
mann machines that are composed to form the initial DBN, however, each gradient evaluation scales
linearly in time and space with the number of unlabeled training cases. So the pretraining stage
can make efficient use of very large sets of unlabeled data to create sensible, high-level features and
when the amount of labeled data is small. Then the very limited amount of information in the labels
can be used to slightly refine those features rather than to create them.

5 Experimental Results

In this section we present experimental results for several regression and classification tasks that
involve high-dimensional, highly-structured data. The first regression task is to extract the orienta-
tion of a face from a gray-level image of a large patch of the face. The second regression task is
to map images of handwritten digits to a single real-value that is as close as possible to the integer
represented by the digit in the image. The first classification task is to discriminate between images
of odd digits and images of even digits. The second classification task is to discriminate between
two different classes of news story based on the vector of word counts in each story.

5.1 Extracting the Orientation of a Face Patch

The Olivetti face data set contains ten 64×64 images of each of forty different people. We con-
structed a data set of 13,000 28×28 images by randomly rotating (−90◦ to +90◦), cropping, and
subsampling the original 400 images. The data set was then subdivided into 12,000 training images,
which contained the first 30 people, and 1,000 test images, which contained the remaining 10 peo-
ple. 1,000 randomly sampled face patches from the training set were assigned an orientation label.
The remaining 11,000 training images were used as unlabeled data. We also made a more difficult
version of the task by occluding part of each face patch with randomly chosen rectangles. Panel A
of figure 2 shows randomly sampled examples from the training and test data.

For training on the Olivetti face patches we used the 784-1000-1000-1000 architecture shown in
figure 1. The entire training set of 12,000 unlabeled images was used for greedy, layer-by-layer
training of a DBN model. The 2.8 million parameters of the DBN model may seem excessive for
12,000 training cases, but each training case involves modeling 625 real-values rather than just a
single real-valued label. Also, we only train each layer of features for a few passes through the
training data and we penalize the squared weights.

5

32.99 !41.15 66.38!22.07 27.49 Unlabeled

Training Data Test Data

A

B

Figure 2: Top panelA: Randomly sampled examples of the training and test data. Bottom panelB: The same
sample of the training and test images but with rectangular occlusions.

Training GPstandard GP-DBNgreedy GP-DBNfine GPpca
labels Sph. ARD Sph. ARD Sph. ARD Sph. ARD

A 100 22.24 28.57 17.94 18.37 15.28 15.01 18.13 (10) 16.47 (10)
500 17.25 18.16 12.71 8.96 7.25 6.84 14.75 (20) 10.53 (80)
1000 16.33 16.36 11.22 8.77 6.42 6.31 14.86 (20) 10.00 (160)

B 100 26.94 28.32 23.15 19.42 19.75 18.59 25.91 (10) 19.27 (20)
500 20.20 21.06 15.16 11.01 10.56 10.12 17.67 (10) 14.11 (20)
1000 19.20 17.98 14.15 10.43 9.13 9.23 16.26 (10) 11.55 (80)

Table 1: Performance results on the face-orientation regression task. The root mean squared error (RMSE) on
the test set is shown for each method using spherical Gaussian kernel and Gaussian kernel with ARD hyper-
parameters. By row: A) Non-occluded face data, B) Occluded face data. For the GPpca model, the number of
principal components that performs best on the test data is shown in parenthesis.

where ∂F (x|W)/∂W is computed using standard backpropagation. We also optimize the observa-
tion noise σ2. It is necessary to compute the inverse of Ky , so each gradient evaluation has O(N3)
complexity whereN is the number of the labeled training cases. When learning the restricted Boltz-
mann machines that are composed to form the initial DBN, however, each gradient evaluation scales
linearly in time and space with the number of unlabeled training cases. So the pretraining stage
can make efficient use of very large sets of unlabeled data to create sensible, high-level features and
when the amount of labeled data is small. Then the very limited amount of information in the labels
can be used to slightly refine those features rather than to create them.

5 Experimental Results

In this section we present experimental results for several regression and classification tasks that
involve high-dimensional, highly-structured data. The first regression task is to extract the orienta-
tion of a face from a gray-level image of a large patch of the face. The second regression task is
to map images of handwritten digits to a single real-value that is as close as possible to the integer
represented by the digit in the image. The first classification task is to discriminate between images
of odd digits and images of even digits. The second classification task is to discriminate between
two different classes of news story based on the vector of word counts in each story.

5.1 Extracting the Orientation of a Face Patch

The Olivetti face data set contains ten 64×64 images of each of forty different people. We con-
structed a data set of 13,000 28×28 images by randomly rotating (−90◦ to +90◦), cropping, and
subsampling the original 400 images. The data set was then subdivided into 12,000 training images,
which contained the first 30 people, and 1,000 test images, which contained the remaining 10 peo-
ple. 1,000 randomly sampled face patches from the training set were assigned an orientation label.
The remaining 11,000 training images were used as unlabeled data. We also made a more difficult
version of the task by occluding part of each face patch with randomly chosen rectangles. Panel A
of figure 2 shows randomly sampled examples from the training and test data.

For training on the Olivetti face patches we used the 784-1000-1000-1000 architecture shown in
figure 1. The entire training set of 12,000 unlabeled images was used for greedy, layer-by-layer
training of a DBN model. The 2.8 million parameters of the DBN model may seem excessive for
12,000 training cases, but each training case involves modeling 625 real-values rather than just a
single real-valued label. Also, we only train each layer of features for a few passes through the
training data and we penalize the squared weights.

5

Using Deep Belief Nets to Learn Covariance
Kernels for Gaussian Processes

(Salakhutdinov and Hinton, NIPS 2008)

Résultats: visualisation

Feature 992

F
e
a
tu

re
 3

1
2

 0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

log !

!1 0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

log !

More Relevant

Input Pixel Space

Feature Space

Figure 3: Left panel shows a scatter plot of the two most relevant features, with each point replaced by the
corresponding input test image. For better visualization, overlapped images are not shown. Right panel displays
the histogram plots of the learned ARD hyper-parameters log β.

After the DBN has been pretrained on the unlabeled data, a GP model was fitted to the labeled
data using the top-level features of the DBN model as inputs. We call this model GP-DBNgreedy.
GP-DBNgreedy can be significantly improved by slightly altering the weights in the DBN. The
GP model gives error derivatives for its input vectors which are the top-level features of the DBN.
These derivatives can be backpropagated through the DBN to allow discriminative fine-tuning of
the weights. Each time the weights in the DBN are updated, the GP model is also refitted. We call
this model GP-DBNfine. For comparison, we fitted a GP model that used the pixel intensities of
the labeled images as its inputs. We call this model GPstandard. We also used PCA to reduce the
dimensionality of the labeled images and fitted several different GP models using the projections
onto the first m principal components as the input. Since we only want a lower bound on the error
of this model, we simply use the value of m that performs best on the test data. We call this model
GPpca. Table 1 shows the root mean squared error (RMSE) of the predicted face orientations using
all four types of GP model on varying amounts of labeled data. The results show that both GP-
DBNgreedy and GP-DBNfine significantly outperform a regular GP model. Indeed, GP-DBNfine
with only 100 labeled training cases outperforms GPstandard with 1000.

To test the robustness of our approach to noise in the input we took the same data set and created
artificial rectangular occlusions (see Fig. 2, panel B). The number of rectangles per image was
drawn from a Poisson with λ = 2. The top-left location, length and width of each rectangle was
sampled from a uniform [0,25]. The pixel intensity of each occluding rectangle was set to the mean
pixel intensity of the entire image. Table 1 shows that the performance of all models degrades, but
their relative performances remain the same and GP-DBNfine on occluded data is still much better
than GPstandard on non-occluded data.

We have also experimented with using a Gaussian kernel with ARD hyper-parameters, which is a
common practice when the input vectors are high-dimensional:

Kij = α exp
(

−
1

2
(xi − xj)

T D(xi − xj)
)

(18)

where D is the diagonal matrix with Dii = 1/βi, so that the covariance function has a separate
length-scale parameter for each dimension. ARD hyper-parameters were optimized by maximizing
the marginal log-likelihood of Eq. 3. Table 1 shows that ARD hyper-parameters do not improve
GPstandard, but they do slightly improve GP-DBNfine and they strongly improve GP-DBNgreedy
and GPpca when there are 500 or 1000 labeled training cases.

The histogram plot of log β in figure 3 reveals that there are a few extracted features that are very
relevant (small β) to our prediction task. The same figure (left panel) shows a scatter plot of the two
most relevant features of GP-DBNgreedy model, with each point replaced by the corresponding in-
put test image. Clearly, these two features carry a lot of information about the orientation of the face.

6

Y a pas juste les réseaux de
neurones dans la vie...

• Adaptation à KNN et GP particulièrement
utile pour des petits jeux de données (avec
beaucoup de données non-étiquetées)

• Y a-t-il d’autres algorithmes pour lesquels un
critère d’entraînement pour réseau profond
pourrat être dérivé?

! Piste de recherche !

Implicit Mixtures of
Restricted Boltzmann Machines

(Nair and Hinton, NIPS 2009)

• Classification d’objets 3D

• On a besoin d’un module RBM plus puissant

R. Salakhutdinov and G. Hinton

4000 units

4000 units

4000 units

Preprocessed
transformation

Stereo pair

Gaussian visible units
(raw pixel data)

Deep Boltzmann Machine Training Samples Generated Samples

Figure 5: Left: The architecture of deep Boltzmann machine used for NORB. Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

Table 1: Results of estimating partition functions of BMmodels,
along with the estimates of lower bound on the average training
and test log-probabilities. For all BM’s we used 20,000 interme-
diate distributions. Results were averaged over 100 AIS runs.

Estimates Avg. log-prob.

ln Ẑ ln (Ẑ ± σ̂) Test Train

2-layer BM 356.18 356.06, 356.29 −84.62 −83.61
3-layer BM 456.57 456.34, 456.75 −85.10 −84.49

To estimate how loose the variational bound is, we ran-

domly sampled 100 test cases, 10 of each class, and ran

AIS to estimate the true test log-probability3 for the 2-layer

Boltzmann machine. The estimate of the variational bound

was -83.35 per test case, whereas the estimate of the true

test log-probability was -82.86. The difference of about

0.5 nats shows that the bound is rather tight.

For a simple comparison we also trained several mix-

ture of Bernoullis models with 10, 100, and 500 compo-

nents. The corresponding average test log-probabilities

were −168.95, −142.63, and −137.64. Compared to

DBM’s, a mixture of Bernoullis performs very badly. The

difference of over 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the 2-layer BM

achieves an error rate of 0.95% on the full MNIST test

set. This is, to our knowledge, the best published result

on the permutation-invariant version of the MNIST task.

The 3-layer BM gives a slightly worse error rate of 1.01%.

This is compared to 1.4% achieved by SVM’s (Decoste and

Schölkopf, 2002), 1.6% achieved by randomly initialized

backprop, and 1.2% achieved by the deep belief network,

described in Hinton et al. (2006).

3Note that computationally, this is equivalent to estimating
100 partition functions.

4.2 NORB

Results on MNIST show that DBM’s can significantly out-

perform many other models on the well-studied but rela-

tively simple task of handwritten digit recognition. In this

section we present results on NORB, which is consider-

ably more difficult dataset than MNIST. NORB (LeCun

et al., 2004) contains images of 50 different 3D toy ob-

jects with 10 objects in each of five generic classes: cars,

trucks, planes, animals, and humans. Each object is cap-

tured from different viewpoints and under various lighting

conditions. The training set contains 24,300 stereo image

pairs of 25 objects, 5 per class, while the test set contains

24,300 stereo pairs of the remaining, different 25 objects.

The goal is to classify each previously unseen object into

its generic class. From the training data, 4,300 were set

aside for validation.

Each image has 96×96 pixels with integer greyscale values
in the range [0,255]. To speed-up experiments, we reduced

the dimensionality of each image from 9216 down to 4488

by using larger pixels around the edge of the image4. A ran-

dom sample from the training data used in our experiments

is shown in Fig. 5.

To model raw pixel data, we use an RBM with Gaussian

visible and binary hidden units. Gaussian-binary RBM’s

have been previously successfully applied for modeling

greyscale images, such as images of faces (Hinton and

Salakhutdinov, 2006). However, learning an RBM with

Gaussian units can be slow, particularly when the input di-

mensionality is quite large. In this paper we follow the

approach of (Nair and Hinton, 2008) by first learning a

Gaussian-binary RBM and then treating the the activities

of its hidden layer as “preprocessed” data. Effectively, the

learned low-level RBM acts as a preprocessor that converts

4The resulting dimensionality of each training vector, repre-
senting a stereo pair, was 2×4488 = 8976.

• Modèle RBM avec interaction d’ordre 3

Implicit Mixtures of
Restricted Boltzmann Machines

(Nair and Hinton, NIPS 2009)

Hidden units

Visible units

Wij

i

j

(a)

Hidden units

Visible units

1-of-K
activation

i

j

k

Wijk

K component
RBMs

(b)

Hidden units

Visible units

Wijk

1-of-K
activation

i

j

k

(c)

Figure 1: (a) Schematic representation of an RBM, (b) an implicit mixture of RBMs as a third-order
Boltzmann machine, (c) schematic representation of an implicit mixture.

It can also be viewed as a product of N “uni-Bernoulli” models (plus one Bernoulli model that is
implemented by the visible biases). A uni-Bernoulli model is a mixture of a uniform and a Bernoulli.
The weights of a hidden unit define the ith probability in its Bernoulli model as pi = σ(wi), and the
bias, b, of a hidden unit defines the mixing proportion of the Bernoulli in its uni-Bernoulli as σ(b),
where σ(x) = (1 + exp(−x))−1.

The modeling power of an RBM can always be increased by increasing the number of hidden units
[10] or by adding extra hidden layers [12], but for datasets that contain several distinctly differ-
ent types of data, such as images of different object classes, it would be more appropriate to use a
mixture of RBM’s. The mixture could be used to model the raw data or some preprocessed rep-
resentation that has already extracted features that are shared by different classes. Unfortunately,
RBM’s cannot easily be used as the components of mixture models because they lack property 1:
It is easy to compute the unnormalized density that an RBM assigns to a datapoint, but the normal-
ization term is exponentially expensive to compute exactly and even approximating it is extremely
time-consuming [11]. There is also no efficient way to modify the parameters of an RBM so that
the log probability of the data is guaranteed to increase, but there are good approximate methods [5]
so this is not the main problem. This paper describes a way of fitting a mixture of RBM’s without
explicitly computing the partition function of each RBM.

2 The model

We start with the energy function for a Restricted Boltzmann Machine (RBM) and then modify it
to define the implicit mixture of RBMs. To simplify the description, we assume that the visible and
hidden variables of the RBM are binary. The formulation below can be easily adapted to other types
of variables (e.g., see [13]).

The energy function for a Restricted Boltzmann Machine (RBM) is

E(v,h) = −
∑

i,j

WR
ij vihj , (1)

where v is a vector of visible (observed) variables, h is a vector of hidden variables, and WR is
a matrix of parameters that capture pairwise interactions between the visible and hidden variables.
Now consider extending this model by including a discrete variable z with K possible states, rep-
resented as a K-dimensional binary vector with 1-of-K activation. Defining the energy function in
terms of three-way interactions among the components of v, h, and z gives

E(v,h, z) = −
∑

i,j,k

W I
ijkvihjzk, (2)

whereW I is a 3D tensor of parameters. Each slice of this tensor along the z-dimension is a matrix
that corresponds to the parameters of each of theK component RBMs. The joint distribution for the
mixture model is

P (v,h, z) =
exp(−E(v,h, z))

ZI
, (3)

2

Hidden units

Visible units

Wij

i

j

(a)

Hidden units

Visible units

1-of-K
activation

i

j

k

Wijk

K component
RBMs

(b)

Hidden units

Visible units

Wijk

1-of-K
activation

i

j

k

(c)

Figure 1: (a) Schematic representation of an RBM, (b) an implicit mixture of RBMs as a third-order
Boltzmann machine, (c) schematic representation of an implicit mixture.

It can also be viewed as a product of N “uni-Bernoulli” models (plus one Bernoulli model that is
implemented by the visible biases). A uni-Bernoulli model is a mixture of a uniform and a Bernoulli.
The weights of a hidden unit define the ith probability in its Bernoulli model as pi = σ(wi), and the
bias, b, of a hidden unit defines the mixing proportion of the Bernoulli in its uni-Bernoulli as σ(b),
where σ(x) = (1 + exp(−x))−1.

The modeling power of an RBM can always be increased by increasing the number of hidden units
[10] or by adding extra hidden layers [12], but for datasets that contain several distinctly differ-
ent types of data, such as images of different object classes, it would be more appropriate to use a
mixture of RBM’s. The mixture could be used to model the raw data or some preprocessed rep-
resentation that has already extracted features that are shared by different classes. Unfortunately,
RBM’s cannot easily be used as the components of mixture models because they lack property 1:
It is easy to compute the unnormalized density that an RBM assigns to a datapoint, but the normal-
ization term is exponentially expensive to compute exactly and even approximating it is extremely
time-consuming [11]. There is also no efficient way to modify the parameters of an RBM so that
the log probability of the data is guaranteed to increase, but there are good approximate methods [5]
so this is not the main problem. This paper describes a way of fitting a mixture of RBM’s without
explicitly computing the partition function of each RBM.

2 The model

We start with the energy function for a Restricted Boltzmann Machine (RBM) and then modify it
to define the implicit mixture of RBMs. To simplify the description, we assume that the visible and
hidden variables of the RBM are binary. The formulation below can be easily adapted to other types
of variables (e.g., see [13]).

The energy function for a Restricted Boltzmann Machine (RBM) is

E(v,h) = −
∑

i,j

WR
ij vihj , (1)

where v is a vector of visible (observed) variables, h is a vector of hidden variables, and WR is
a matrix of parameters that capture pairwise interactions between the visible and hidden variables.
Now consider extending this model by including a discrete variable z with K possible states, rep-
resented as a K-dimensional binary vector with 1-of-K activation. Defining the energy function in
terms of three-way interactions among the components of v, h, and z gives

E(v,h, z) = −
∑

i,j,k

W I
ijkvihjzk, (2)

whereW I is a 3D tensor of parameters. Each slice of this tensor along the z-dimension is a matrix
that corresponds to the parameters of each of theK component RBMs. The joint distribution for the
mixture model is

P (v,h, z) =
exp(−E(v,h, z))

ZI
, (3)

2

• Correspond à un mélange de RBMs, mais dont les
probabilités des composantes sont “implicites

Implicit Mixtures of
Restricted Boltzmann Machines

(Nair and Hinton, NIPS 2009)

Hidden units

Visible units

Wij

i

j

(a)

Hidden units

Visible units

1-of-K
activation

i

j

k

Wijk

K component
RBMs

(b)

Hidden units

Visible units

Wijk

1-of-K
activation

i

j

k

(c)

Figure 1: (a) Schematic representation of an RBM, (b) an implicit mixture of RBMs as a third-order
Boltzmann machine, (c) schematic representation of an implicit mixture.

It can also be viewed as a product of N “uni-Bernoulli” models (plus one Bernoulli model that is
implemented by the visible biases). A uni-Bernoulli model is a mixture of a uniform and a Bernoulli.
The weights of a hidden unit define the ith probability in its Bernoulli model as pi = σ(wi), and the
bias, b, of a hidden unit defines the mixing proportion of the Bernoulli in its uni-Bernoulli as σ(b),
where σ(x) = (1 + exp(−x))−1.

The modeling power of an RBM can always be increased by increasing the number of hidden units
[10] or by adding extra hidden layers [12], but for datasets that contain several distinctly differ-
ent types of data, such as images of different object classes, it would be more appropriate to use a
mixture of RBM’s. The mixture could be used to model the raw data or some preprocessed rep-
resentation that has already extracted features that are shared by different classes. Unfortunately,
RBM’s cannot easily be used as the components of mixture models because they lack property 1:
It is easy to compute the unnormalized density that an RBM assigns to a datapoint, but the normal-
ization term is exponentially expensive to compute exactly and even approximating it is extremely
time-consuming [11]. There is also no efficient way to modify the parameters of an RBM so that
the log probability of the data is guaranteed to increase, but there are good approximate methods [5]
so this is not the main problem. This paper describes a way of fitting a mixture of RBM’s without
explicitly computing the partition function of each RBM.

2 The model

We start with the energy function for a Restricted Boltzmann Machine (RBM) and then modify it
to define the implicit mixture of RBMs. To simplify the description, we assume that the visible and
hidden variables of the RBM are binary. The formulation below can be easily adapted to other types
of variables (e.g., see [13]).

The energy function for a Restricted Boltzmann Machine (RBM) is

E(v,h) = −
∑

i,j

WR
ij vihj , (1)

where v is a vector of visible (observed) variables, h is a vector of hidden variables, and WR is
a matrix of parameters that capture pairwise interactions between the visible and hidden variables.
Now consider extending this model by including a discrete variable z with K possible states, rep-
resented as a K-dimensional binary vector with 1-of-K activation. Defining the energy function in
terms of three-way interactions among the components of v, h, and z gives

E(v,h, z) = −
∑

i,j,k

W I
ijkvihjzk, (2)

whereW I is a 3D tensor of parameters. Each slice of this tensor along the z-dimension is a matrix
that corresponds to the parameters of each of theK component RBMs. The joint distribution for the
mixture model is

P (v,h, z) =
exp(−E(v,h, z))

ZI
, (3)

2

where

ZI =
∑

u,g,y

exp(−E(u,g,y)) (4)

is the partition function of the implicit mixture model. Re-writing the joint distribution in the usual
mixture model form gives

P (v) =
∑

h,z

P (v,h, z) =
K

∑

k=1

∑

h

P (v,h|zk = 1)P (zk = 1). (5)

Equation 5 defines the implicit mixture of RBMs. P (v,h|zk = 1) is the kth component RBM’s
distribution, with WR being the kth slice of W I . Unlike in a typical mixture model, the mixing
proportion P (zk = 1) is not a separate parameter in our model. Instead, it is implicitly defined
via the energy function in equation 2. Changing the bias of the kth unit in z changes the mixing
proportion of the kth RBM, but all of the weights of all the RBM’s also influence it. Figure 1 gives
a visual description of the implicit mixture model’s structure.

3 Learning

Given a set of N training cases {v1, ...,vN}, we want to learn the parameters of the implicit mix-

ture model by maximizing the log likelihood L =
∑N

n=1 log P (vn) with respect to W I . We use
gradient-based optimization to do this. The expression for the gradient is

∂L

∂W I
= N

〈

∂E(v,h, z)

∂W I

〉

P (v,h,z)

−
N

∑

n=1

〈

∂E(vn,h, z)

∂W I

〉

P (h,z|vn)

, (6)

where 〈〉P () denotes an expectation with respect to the distribution P (). The two expectations in
equation 6 can be estimated by sample means if unbiased samples can be generated from the corre-
sponding distributions. The conditional distributionP (h, z|vα) is easy to sample from, but sampling
the joint distribution P (v,h, z) requires prolonged Gibbs sampling and is intractable in practice. We
get around this problem by using the contrastive divergence (CD) learning algorithm [5], which has
been found to be effective for training a variety of energy-based models (e.g. [8],[9],[13],[4]).

Sampling the conditional distributions: We now describe how to sample the conditional distri-
butions P (h, z|v) and P (v|h, z), which are the main operations required for CD learning. The
second case is easy: given zk = 1, we select the kth component RBM of the mixture model and
then sample from its conditional distribution Pk(v|h). The bipartite structure of the RBM makes
this distribution factorial. So the ith visible unit is drawn independently of the other units from the
Bernoulli distribution

P (vi = 1|h, zk = 1) =
1

1 + exp(−
∑

j W I
ijkhj)

. (7)

Sampling P (h, z|v) is done in two steps. First, theK-way discrete distribution P (z|v) is computed
(see below) and sampled. Then, given zk = 1, we select the kth component RBM and sample from
its conditional distribution Pk(h|v). Again, this distribution is factorial, and the jth hidden unit is
drawn from the Bernoulli distribution

P (hj = 1|v, zk = 1) =
1

1 + exp(−
∑

i W I
ijkvi)

. (8)

To compute P (z|v) we first note that

P (zk = 1|v) ∝ exp(−F (v, zk = 1)), (9)

where the free energy F (v, zk = 1) is given by

F (v, zk = 1) = −
∑

j

log(1 + exp(
∑

i

W I
ijkvi)). (10)

3

where

ZI =
∑

u,g,y

exp(−E(u,g,y)) (4)

is the partition function of the implicit mixture model. Re-writing the joint distribution in the usual
mixture model form gives

P (v) =
∑

h,z

P (v,h, z) =
K

∑

k=1

∑

h

P (v,h|zk = 1)P (zk = 1). (5)

Equation 5 defines the implicit mixture of RBMs. P (v,h|zk = 1) is the kth component RBM’s
distribution, with WR being the kth slice of W I . Unlike in a typical mixture model, the mixing
proportion P (zk = 1) is not a separate parameter in our model. Instead, it is implicitly defined
via the energy function in equation 2. Changing the bias of the kth unit in z changes the mixing
proportion of the kth RBM, but all of the weights of all the RBM’s also influence it. Figure 1 gives
a visual description of the implicit mixture model’s structure.

3 Learning

Given a set of N training cases {v1, ...,vN}, we want to learn the parameters of the implicit mix-

ture model by maximizing the log likelihood L =
∑N

n=1 log P (vn) with respect to W I . We use
gradient-based optimization to do this. The expression for the gradient is

∂L

∂W I
= N

〈

∂E(v,h, z)

∂W I

〉

P (v,h,z)

−
N

∑

n=1

〈

∂E(vn,h, z)

∂W I

〉

P (h,z|vn)

, (6)

where 〈〉P () denotes an expectation with respect to the distribution P (). The two expectations in
equation 6 can be estimated by sample means if unbiased samples can be generated from the corre-
sponding distributions. The conditional distributionP (h, z|vα) is easy to sample from, but sampling
the joint distribution P (v,h, z) requires prolonged Gibbs sampling and is intractable in practice. We
get around this problem by using the contrastive divergence (CD) learning algorithm [5], which has
been found to be effective for training a variety of energy-based models (e.g. [8],[9],[13],[4]).

Sampling the conditional distributions: We now describe how to sample the conditional distri-
butions P (h, z|v) and P (v|h, z), which are the main operations required for CD learning. The
second case is easy: given zk = 1, we select the kth component RBM of the mixture model and
then sample from its conditional distribution Pk(v|h). The bipartite structure of the RBM makes
this distribution factorial. So the ith visible unit is drawn independently of the other units from the
Bernoulli distribution

P (vi = 1|h, zk = 1) =
1

1 + exp(−
∑

j W I
ijkhj)

. (7)

Sampling P (h, z|v) is done in two steps. First, theK-way discrete distribution P (z|v) is computed
(see below) and sampled. Then, given zk = 1, we select the kth component RBM and sample from
its conditional distribution Pk(h|v). Again, this distribution is factorial, and the jth hidden unit is
drawn from the Bernoulli distribution

P (hj = 1|v, zk = 1) =
1

1 + exp(−
∑

i W I
ijkvi)

. (8)

To compute P (z|v) we first note that

P (zk = 1|v) ∝ exp(−F (v, zk = 1)), (9)

where the free energy F (v, zk = 1) is given by

F (v, zk = 1) = −
∑

j

log(1 + exp(
∑

i

W I
ijkvi)). (10)

3

distribution
jointe

constante de
normalization

distribution
des entrées sous forme de mixture de RBMs

• Possible d’échantillonner étant donné

• Étant donné et , on peut échantillonner

Implicit Mixtures of
Restricted Boltzmann Machines

(Nair and Hinton, NIPS 2009)

If the number of possible states of z is small enough, then it is practical to compute the quantity
F (v, zk = 1) for every k by brute-force. So we can compute

P (zk = 1|v) =
exp(−F (v, zk = 1))

∑

l exp(−F (v, zl = 1))
. (11)

Equation 11 defines the responsibility of the kth component RBM for the data vector v.

Contrastive divergence learning: Below is a summary of the steps in the CD learning for the
implicit mixture model.

1. For a training vector v+, pick a component RBM by sampling the responsibilities
P (zk = 1|v+). Let l be the index of the selected RBM.

2. Sample h+ ∼ Pl(h|v+).

3. Compute the outer productD+
l = v+hT

+.

4. Sample v− ∼ Pl(v|h+).

5. Pick a component RBM by sampling the responsibilities P (zk = 1|v−). Let m be the
index of the selected RBM.

6. Sample h− ∼ Pm(h|v−).

7. Compute the outer productD−
m = v−hT

−.

Repeating the above steps for a mini-batch of Nb training cases results in two sets of outer products
for each component k in the mixture model: S+

k = {D+
k1, ...,D

+
kM} and S−

k {D−
k1, ...,D

−
kL}. Then

the approximate likelihood gradient (averaged over the mini-batch) for the kth component RBM is

1

Nb

∂L

∂W I
k

≈
1

Nb





M
∑

i=1

D+
ki −

L
∑

j=1

D−
kj



 . (12)

Note that to compute the outer products D+ and D− for a given training vector, the component
RBMs are selected through two separate stochastic picks. Therefore the sets S+

k and S−
k need not

be of the same size because the choice of the mixture component can be different for v+ and v−.

Scaling free energies with a temperature parameter: In practice, the above learning algorithm
causes all the training cases to be captured by a single component RBM, and the other components to
be left unused. This is because free energy is an unnormalized quantity that can have very different
numerical scales across the RBMs. One RBM may happen to produce much smaller free energies
than the rest because of random differences in the initial parameter values, and thus end up with
high responsibilities for most training cases. Even if all the component RBMs are initialized to the
exact same initial parameter values, the problem can still arise after a few noisy weight updates. The
solution is to use a temperature parameter T when computing the responsibilities:

P (zk = 1|v) =
exp(−F (v, zk = 1)/T)

∑

l exp(−F (v, zl = 1)/T)
. (13)

By choosing a large enough T , we can make sure that random scale differences in the free energies
do not lead to the above collapse problem. One possibility is to start with a large T and then gradually
anneal it as learning progresses. In our experiments we found that using a constant T works just as
well as annealing, so we keep it fixed.

4 Results

We apply the implicit mixture of RBMs to two datasets, MNIST [1] and NORB [7]. MNIST is a
set of handwritten digit images belonging to ten different classes (the digits 0 to 9). NORB contains
stereo-pair images of 3D toy objects taken under different lighting conditions and viewpoints. There
are five classes of objects in this set (human, car, plane, truck and animal). We use MNIST mainly
as a sanity check, and most of our results are for the much more difficult NORB dataset.

Evaluation method: Since computing the exact partition function of an RBM is intractable, it is
not possible to directly evaluate the quality of our mixture model’s fit to the data, e.g., by computing

4

where

ZI =
∑

u,g,y

exp(−E(u,g,y)) (4)

is the partition function of the implicit mixture model. Re-writing the joint distribution in the usual
mixture model form gives

P (v) =
∑

h,z

P (v,h, z) =
K

∑

k=1

∑

h

P (v,h|zk = 1)P (zk = 1). (5)

Equation 5 defines the implicit mixture of RBMs. P (v,h|zk = 1) is the kth component RBM’s
distribution, with WR being the kth slice of W I . Unlike in a typical mixture model, the mixing
proportion P (zk = 1) is not a separate parameter in our model. Instead, it is implicitly defined
via the energy function in equation 2. Changing the bias of the kth unit in z changes the mixing
proportion of the kth RBM, but all of the weights of all the RBM’s also influence it. Figure 1 gives
a visual description of the implicit mixture model’s structure.

3 Learning

Given a set of N training cases {v1, ...,vN}, we want to learn the parameters of the implicit mix-

ture model by maximizing the log likelihood L =
∑N

n=1 log P (vn) with respect to W I . We use
gradient-based optimization to do this. The expression for the gradient is

∂L

∂W I
= N

〈

∂E(v,h, z)

∂W I

〉

P (v,h,z)

−
N

∑

n=1

〈

∂E(vn,h, z)

∂W I

〉

P (h,z|vn)

, (6)

where 〈〉P () denotes an expectation with respect to the distribution P (). The two expectations in
equation 6 can be estimated by sample means if unbiased samples can be generated from the corre-
sponding distributions. The conditional distributionP (h, z|vα) is easy to sample from, but sampling
the joint distribution P (v,h, z) requires prolonged Gibbs sampling and is intractable in practice. We
get around this problem by using the contrastive divergence (CD) learning algorithm [5], which has
been found to be effective for training a variety of energy-based models (e.g. [8],[9],[13],[4]).

Sampling the conditional distributions: We now describe how to sample the conditional distri-
butions P (h, z|v) and P (v|h, z), which are the main operations required for CD learning. The
second case is easy: given zk = 1, we select the kth component RBM of the mixture model and
then sample from its conditional distribution Pk(v|h). The bipartite structure of the RBM makes
this distribution factorial. So the ith visible unit is drawn independently of the other units from the
Bernoulli distribution

P (vi = 1|h, zk = 1) =
1

1 + exp(−
∑

j W I
ijkhj)

. (7)

Sampling P (h, z|v) is done in two steps. First, theK-way discrete distribution P (z|v) is computed
(see below) and sampled. Then, given zk = 1, we select the kth component RBM and sample from
its conditional distribution Pk(h|v). Again, this distribution is factorial, and the jth hidden unit is
drawn from the Bernoulli distribution

P (hj = 1|v, zk = 1) =
1

1 + exp(−
∑

i W I
ijkvi)

. (8)

To compute P (z|v) we first note that

P (zk = 1|v) ∝ exp(−F (v, zk = 1)), (9)

where the free energy F (v, zk = 1) is given by

F (v, zk = 1) = −
∑

j

log(1 + exp(
∑

i

W I
ijkvi)). (10)

3

If the number of possible states of z is small enough, then it is practical to compute the quantity
F (v, zk = 1) for every k by brute-force. So we can compute

P (zk = 1|v) =
exp(−F (v, zk = 1))

∑

l exp(−F (v, zl = 1))
. (11)

Equation 11 defines the responsibility of the kth component RBM for the data vector v.

Contrastive divergence learning: Below is a summary of the steps in the CD learning for the
implicit mixture model.

1. For a training vector v+, pick a component RBM by sampling the responsibilities
P (zk = 1|v+). Let l be the index of the selected RBM.

2. Sample h+ ∼ Pl(h|v+).

3. Compute the outer productD+
l = v+hT

+.

4. Sample v− ∼ Pl(v|h+).

5. Pick a component RBM by sampling the responsibilities P (zk = 1|v−). Let m be the
index of the selected RBM.

6. Sample h− ∼ Pm(h|v−).

7. Compute the outer productD−
m = v−hT

−.

Repeating the above steps for a mini-batch of Nb training cases results in two sets of outer products
for each component k in the mixture model: S+

k = {D+
k1, ...,D

+
kM} and S−

k {D−
k1, ...,D

−
kL}. Then

the approximate likelihood gradient (averaged over the mini-batch) for the kth component RBM is

1

Nb

∂L

∂W I
k

≈
1

Nb





M
∑

i=1

D+
ki −

L
∑

j=1

D−
kj



 . (12)

Note that to compute the outer products D+ and D− for a given training vector, the component
RBMs are selected through two separate stochastic picks. Therefore the sets S+

k and S−
k need not

be of the same size because the choice of the mixture component can be different for v+ and v−.

Scaling free energies with a temperature parameter: In practice, the above learning algorithm
causes all the training cases to be captured by a single component RBM, and the other components to
be left unused. This is because free energy is an unnormalized quantity that can have very different
numerical scales across the RBMs. One RBM may happen to produce much smaller free energies
than the rest because of random differences in the initial parameter values, and thus end up with
high responsibilities for most training cases. Even if all the component RBMs are initialized to the
exact same initial parameter values, the problem can still arise after a few noisy weight updates. The
solution is to use a temperature parameter T when computing the responsibilities:

P (zk = 1|v) =
exp(−F (v, zk = 1)/T)

∑

l exp(−F (v, zl = 1)/T)
. (13)

By choosing a large enough T , we can make sure that random scale differences in the free energies
do not lead to the above collapse problem. One possibility is to start with a large T and then gradually
anneal it as learning progresses. In our experiments we found that using a constant T works just as
well as annealing, so we keep it fixed.

4 Results

We apply the implicit mixture of RBMs to two datasets, MNIST [1] and NORB [7]. MNIST is a
set of handwritten digit images belonging to ten different classes (the digits 0 to 9). NORB contains
stereo-pair images of 3D toy objects taken under different lighting conditions and viewpoints. There
are five classes of objects in this set (human, car, plane, truck and animal). We use MNIST mainly
as a sanity check, and most of our results are for the much more difficult NORB dataset.

Evaluation method: Since computing the exact partition function of an RBM is intractable, it is
not possible to directly evaluate the quality of our mixture model’s fit to the data, e.g., by computing

4

where

ZI =
∑

u,g,y

exp(−E(u,g,y)) (4)

is the partition function of the implicit mixture model. Re-writing the joint distribution in the usual
mixture model form gives

P (v) =
∑

h,z

P (v,h, z) =
K

∑

k=1

∑

h

P (v,h|zk = 1)P (zk = 1). (5)

Equation 5 defines the implicit mixture of RBMs. P (v,h|zk = 1) is the kth component RBM’s
distribution, with WR being the kth slice of W I . Unlike in a typical mixture model, the mixing
proportion P (zk = 1) is not a separate parameter in our model. Instead, it is implicitly defined
via the energy function in equation 2. Changing the bias of the kth unit in z changes the mixing
proportion of the kth RBM, but all of the weights of all the RBM’s also influence it. Figure 1 gives
a visual description of the implicit mixture model’s structure.

3 Learning

Given a set of N training cases {v1, ...,vN}, we want to learn the parameters of the implicit mix-

ture model by maximizing the log likelihood L =
∑N

n=1 log P (vn) with respect to W I . We use
gradient-based optimization to do this. The expression for the gradient is

∂L

∂W I
= N

〈

∂E(v,h, z)

∂W I

〉

P (v,h,z)

−
N

∑

n=1

〈

∂E(vn,h, z)

∂W I

〉

P (h,z|vn)

, (6)

where 〈〉P () denotes an expectation with respect to the distribution P (). The two expectations in
equation 6 can be estimated by sample means if unbiased samples can be generated from the corre-
sponding distributions. The conditional distributionP (h, z|vα) is easy to sample from, but sampling
the joint distribution P (v,h, z) requires prolonged Gibbs sampling and is intractable in practice. We
get around this problem by using the contrastive divergence (CD) learning algorithm [5], which has
been found to be effective for training a variety of energy-based models (e.g. [8],[9],[13],[4]).

Sampling the conditional distributions: We now describe how to sample the conditional distri-
butions P (h, z|v) and P (v|h, z), which are the main operations required for CD learning. The
second case is easy: given zk = 1, we select the kth component RBM of the mixture model and
then sample from its conditional distribution Pk(v|h). The bipartite structure of the RBM makes
this distribution factorial. So the ith visible unit is drawn independently of the other units from the
Bernoulli distribution

P (vi = 1|h, zk = 1) =
1

1 + exp(−
∑

j W I
ijkhj)

. (7)

Sampling P (h, z|v) is done in two steps. First, theK-way discrete distribution P (z|v) is computed
(see below) and sampled. Then, given zk = 1, we select the kth component RBM and sample from
its conditional distribution Pk(h|v). Again, this distribution is factorial, and the jth hidden unit is
drawn from the Bernoulli distribution

P (hj = 1|v, zk = 1) =
1

1 + exp(−
∑

i W I
ijkvi)

. (8)

To compute P (z|v) we first note that

P (zk = 1|v) ∝ exp(−F (v, zk = 1)), (9)

where the free energy F (v, zk = 1) is given by

F (v, zk = 1) = −
∑

j

log(1 + exp(
∑

i

W I
ijkvi)). (10)

3

where

ZI =
∑

u,g,y

exp(−E(u,g,y)) (4)

is the partition function of the implicit mixture model. Re-writing the joint distribution in the usual
mixture model form gives

P (v) =
∑

h,z

P (v,h, z) =
K

∑

k=1

∑

h

P (v,h|zk = 1)P (zk = 1). (5)

Equation 5 defines the implicit mixture of RBMs. P (v,h|zk = 1) is the kth component RBM’s
distribution, with WR being the kth slice of W I . Unlike in a typical mixture model, the mixing
proportion P (zk = 1) is not a separate parameter in our model. Instead, it is implicitly defined
via the energy function in equation 2. Changing the bias of the kth unit in z changes the mixing
proportion of the kth RBM, but all of the weights of all the RBM’s also influence it. Figure 1 gives
a visual description of the implicit mixture model’s structure.

3 Learning

Given a set of N training cases {v1, ...,vN}, we want to learn the parameters of the implicit mix-

ture model by maximizing the log likelihood L =
∑N

n=1 log P (vn) with respect to W I . We use
gradient-based optimization to do this. The expression for the gradient is

∂L

∂W I
= N

〈

∂E(v,h, z)

∂W I

〉

P (v,h,z)

−
N

∑

n=1

〈

∂E(vn,h, z)

∂W I

〉

P (h,z|vn)

, (6)

where 〈〉P () denotes an expectation with respect to the distribution P (). The two expectations in
equation 6 can be estimated by sample means if unbiased samples can be generated from the corre-
sponding distributions. The conditional distributionP (h, z|vα) is easy to sample from, but sampling
the joint distribution P (v,h, z) requires prolonged Gibbs sampling and is intractable in practice. We
get around this problem by using the contrastive divergence (CD) learning algorithm [5], which has
been found to be effective for training a variety of energy-based models (e.g. [8],[9],[13],[4]).

Sampling the conditional distributions: We now describe how to sample the conditional distri-
butions P (h, z|v) and P (v|h, z), which are the main operations required for CD learning. The
second case is easy: given zk = 1, we select the kth component RBM of the mixture model and
then sample from its conditional distribution Pk(v|h). The bipartite structure of the RBM makes
this distribution factorial. So the ith visible unit is drawn independently of the other units from the
Bernoulli distribution

P (vi = 1|h, zk = 1) =
1

1 + exp(−
∑

j W I
ijkhj)

. (7)

Sampling P (h, z|v) is done in two steps. First, theK-way discrete distribution P (z|v) is computed
(see below) and sampled. Then, given zk = 1, we select the kth component RBM and sample from
its conditional distribution Pk(h|v). Again, this distribution is factorial, and the jth hidden unit is
drawn from the Bernoulli distribution

P (hj = 1|v, zk = 1) =
1

1 + exp(−
∑

i W I
ijkvi)

. (8)

To compute P (z|v) we first note that

P (zk = 1|v) ∝ exp(−F (v, zk = 1)), (9)

where the free energy F (v, zk = 1) is given by

F (v, zk = 1) = −
∑

j

log(1 + exp(
∑

i

W I
ijkvi)). (10)

3

where

ZI =
∑

u,g,y

exp(−E(u,g,y)) (4)

is the partition function of the implicit mixture model. Re-writing the joint distribution in the usual
mixture model form gives

P (v) =
∑

h,z

P (v,h, z) =
K

∑

k=1

∑

h

P (v,h|zk = 1)P (zk = 1). (5)

Equation 5 defines the implicit mixture of RBMs. P (v,h|zk = 1) is the kth component RBM’s
distribution, with WR being the kth slice of W I . Unlike in a typical mixture model, the mixing
proportion P (zk = 1) is not a separate parameter in our model. Instead, it is implicitly defined
via the energy function in equation 2. Changing the bias of the kth unit in z changes the mixing
proportion of the kth RBM, but all of the weights of all the RBM’s also influence it. Figure 1 gives
a visual description of the implicit mixture model’s structure.

3 Learning

Given a set of N training cases {v1, ...,vN}, we want to learn the parameters of the implicit mix-

ture model by maximizing the log likelihood L =
∑N

n=1 log P (vn) with respect to W I . We use
gradient-based optimization to do this. The expression for the gradient is

∂L

∂W I
= N

〈

∂E(v,h, z)

∂W I

〉

P (v,h,z)

−
N

∑

n=1

〈

∂E(vn,h, z)

∂W I

〉

P (h,z|vn)

, (6)

where 〈〉P () denotes an expectation with respect to the distribution P (). The two expectations in
equation 6 can be estimated by sample means if unbiased samples can be generated from the corre-
sponding distributions. The conditional distributionP (h, z|vα) is easy to sample from, but sampling
the joint distribution P (v,h, z) requires prolonged Gibbs sampling and is intractable in practice. We
get around this problem by using the contrastive divergence (CD) learning algorithm [5], which has
been found to be effective for training a variety of energy-based models (e.g. [8],[9],[13],[4]).

Sampling the conditional distributions: We now describe how to sample the conditional distri-
butions P (h, z|v) and P (v|h, z), which are the main operations required for CD learning. The
second case is easy: given zk = 1, we select the kth component RBM of the mixture model and
then sample from its conditional distribution Pk(v|h). The bipartite structure of the RBM makes
this distribution factorial. So the ith visible unit is drawn independently of the other units from the
Bernoulli distribution

P (vi = 1|h, zk = 1) =
1

1 + exp(−
∑

j W I
ijkhj)

. (7)

Sampling P (h, z|v) is done in two steps. First, theK-way discrete distribution P (z|v) is computed
(see below) and sampled. Then, given zk = 1, we select the kth component RBM and sample from
its conditional distribution Pk(h|v). Again, this distribution is factorial, and the jth hidden unit is
drawn from the Bernoulli distribution

P (hj = 1|v, zk = 1) =
1

1 + exp(−
∑

i W I
ijkvi)

. (8)

To compute P (z|v) we first note that

P (zk = 1|v) ∝ exp(−F (v, zk = 1)), (9)

where the free energy F (v, zk = 1) is given by

F (v, zk = 1) = −
∑

j

log(1 + exp(
∑

i

W I
ijkvi)). (10)

3

If the number of possible states of z is small enough, then it is practical to compute the quantity
F (v, zk = 1) for every k by brute-force. So we can compute

P (zk = 1|v) =
exp(−F (v, zk = 1))

∑

l exp(−F (v, zl = 1))
. (11)

Equation 11 defines the responsibility of the kth component RBM for the data vector v.

Contrastive divergence learning: Below is a summary of the steps in the CD learning for the
implicit mixture model.

1. For a training vector v+, pick a component RBM by sampling the responsibilities
P (zk = 1|v+). Let l be the index of the selected RBM.

2. Sample h+ ∼ Pl(h|v+).

3. Compute the outer productD+
l = v+hT

+.

4. Sample v− ∼ Pl(v|h+).

5. Pick a component RBM by sampling the responsibilities P (zk = 1|v−). Let m be the
index of the selected RBM.

6. Sample h− ∼ Pm(h|v−).

7. Compute the outer productD−
m = v−hT

−.

Repeating the above steps for a mini-batch of Nb training cases results in two sets of outer products
for each component k in the mixture model: S+

k = {D+
k1, ...,D

+
kM} and S−

k {D−
k1, ...,D

−
kL}. Then

the approximate likelihood gradient (averaged over the mini-batch) for the kth component RBM is

1

Nb

∂L

∂W I
k

≈
1

Nb





M
∑

i=1

D+
ki −

L
∑

j=1

D−
kj



 . (12)

Note that to compute the outer products D+ and D− for a given training vector, the component
RBMs are selected through two separate stochastic picks. Therefore the sets S+

k and S−
k need not

be of the same size because the choice of the mixture component can be different for v+ and v−.

Scaling free energies with a temperature parameter: In practice, the above learning algorithm
causes all the training cases to be captured by a single component RBM, and the other components to
be left unused. This is because free energy is an unnormalized quantity that can have very different
numerical scales across the RBMs. One RBM may happen to produce much smaller free energies
than the rest because of random differences in the initial parameter values, and thus end up with
high responsibilities for most training cases. Even if all the component RBMs are initialized to the
exact same initial parameter values, the problem can still arise after a few noisy weight updates. The
solution is to use a temperature parameter T when computing the responsibilities:

P (zk = 1|v) =
exp(−F (v, zk = 1)/T)

∑

l exp(−F (v, zl = 1)/T)
. (13)

By choosing a large enough T , we can make sure that random scale differences in the free energies
do not lead to the above collapse problem. One possibility is to start with a large T and then gradually
anneal it as learning progresses. In our experiments we found that using a constant T works just as
well as annealing, so we keep it fixed.

4 Results

We apply the implicit mixture of RBMs to two datasets, MNIST [1] and NORB [7]. MNIST is a
set of handwritten digit images belonging to ten different classes (the digits 0 to 9). NORB contains
stereo-pair images of 3D toy objects taken under different lighting conditions and viewpoints. There
are five classes of objects in this set (human, car, plane, truck and animal). We use MNIST mainly
as a sanity check, and most of our results are for the much more difficult NORB dataset.

Evaluation method: Since computing the exact partition function of an RBM is intractable, it is
not possible to directly evaluate the quality of our mixture model’s fit to the data, e.g., by computing

4

where

ZI =
∑

u,g,y

exp(−E(u,g,y)) (4)

is the partition function of the implicit mixture model. Re-writing the joint distribution in the usual
mixture model form gives

P (v) =
∑

h,z

P (v,h, z) =
K

∑

k=1

∑

h

P (v,h|zk = 1)P (zk = 1). (5)

Equation 5 defines the implicit mixture of RBMs. P (v,h|zk = 1) is the kth component RBM’s
distribution, with WR being the kth slice of W I . Unlike in a typical mixture model, the mixing
proportion P (zk = 1) is not a separate parameter in our model. Instead, it is implicitly defined
via the energy function in equation 2. Changing the bias of the kth unit in z changes the mixing
proportion of the kth RBM, but all of the weights of all the RBM’s also influence it. Figure 1 gives
a visual description of the implicit mixture model’s structure.

3 Learning

Given a set of N training cases {v1, ...,vN}, we want to learn the parameters of the implicit mix-

ture model by maximizing the log likelihood L =
∑N

n=1 log P (vn) with respect to W I . We use
gradient-based optimization to do this. The expression for the gradient is

∂L

∂W I
= N

〈

∂E(v,h, z)

∂W I

〉

P (v,h,z)

−
N

∑

n=1

〈

∂E(vn,h, z)

∂W I

〉

P (h,z|vn)

, (6)

where 〈〉P () denotes an expectation with respect to the distribution P (). The two expectations in
equation 6 can be estimated by sample means if unbiased samples can be generated from the corre-
sponding distributions. The conditional distributionP (h, z|vα) is easy to sample from, but sampling
the joint distribution P (v,h, z) requires prolonged Gibbs sampling and is intractable in practice. We
get around this problem by using the contrastive divergence (CD) learning algorithm [5], which has
been found to be effective for training a variety of energy-based models (e.g. [8],[9],[13],[4]).

Sampling the conditional distributions: We now describe how to sample the conditional distri-
butions P (h, z|v) and P (v|h, z), which are the main operations required for CD learning. The
second case is easy: given zk = 1, we select the kth component RBM of the mixture model and
then sample from its conditional distribution Pk(v|h). The bipartite structure of the RBM makes
this distribution factorial. So the ith visible unit is drawn independently of the other units from the
Bernoulli distribution

P (vi = 1|h, zk = 1) =
1

1 + exp(−
∑

j W I
ijkhj)

. (7)

Sampling P (h, z|v) is done in two steps. First, theK-way discrete distribution P (z|v) is computed
(see below) and sampled. Then, given zk = 1, we select the kth component RBM and sample from
its conditional distribution Pk(h|v). Again, this distribution is factorial, and the jth hidden unit is
drawn from the Bernoulli distribution

P (hj = 1|v, zk = 1) =
1

1 + exp(−
∑

i W I
ijkvi)

. (8)

To compute P (z|v) we first note that

P (zk = 1|v) ∝ exp(−F (v, zk = 1)), (9)

where the free energy F (v, zk = 1) is given by

F (v, zk = 1) = −
∑

j

log(1 + exp(
∑

i

W I
ijkvi)). (10)

3

Implicit Mixtures of
Restricted Boltzmann Machines

(Nair and Hinton, NIPS 2009)

If the number of possible states of z is small enough, then it is practical to compute the quantity
F (v, zk = 1) for every k by brute-force. So we can compute

P (zk = 1|v) =
exp(−F (v, zk = 1))

∑

l exp(−F (v, zl = 1))
. (11)

Equation 11 defines the responsibility of the kth component RBM for the data vector v.

Contrastive divergence learning: Below is a summary of the steps in the CD learning for the
implicit mixture model.

1. For a training vector v+, pick a component RBM by sampling the responsibilities
P (zk = 1|v+). Let l be the index of the selected RBM.

2. Sample h+ ∼ Pl(h|v+).

3. Compute the outer productD+
l = v+hT

+.

4. Sample v− ∼ Pl(v|h+).

5. Pick a component RBM by sampling the responsibilities P (zk = 1|v−). Let m be the
index of the selected RBM.

6. Sample h− ∼ Pm(h|v−).

7. Compute the outer productD−
m = v−hT

−.

Repeating the above steps for a mini-batch of Nb training cases results in two sets of outer products
for each component k in the mixture model: S+

k = {D+
k1, ...,D

+
kM} and S−

k {D−
k1, ...,D

−
kL}. Then

the approximate likelihood gradient (averaged over the mini-batch) for the kth component RBM is

1

Nb

∂L

∂W I
k

≈
1

Nb





M
∑

i=1

D+
ki −

L
∑

j=1

D−
kj



 . (12)

Note that to compute the outer products D+ and D− for a given training vector, the component
RBMs are selected through two separate stochastic picks. Therefore the sets S+

k and S−
k need not

be of the same size because the choice of the mixture component can be different for v+ and v−.

Scaling free energies with a temperature parameter: In practice, the above learning algorithm
causes all the training cases to be captured by a single component RBM, and the other components to
be left unused. This is because free energy is an unnormalized quantity that can have very different
numerical scales across the RBMs. One RBM may happen to produce much smaller free energies
than the rest because of random differences in the initial parameter values, and thus end up with
high responsibilities for most training cases. Even if all the component RBMs are initialized to the
exact same initial parameter values, the problem can still arise after a few noisy weight updates. The
solution is to use a temperature parameter T when computing the responsibilities:

P (zk = 1|v) =
exp(−F (v, zk = 1)/T)

∑

l exp(−F (v, zl = 1)/T)
. (13)

By choosing a large enough T , we can make sure that random scale differences in the free energies
do not lead to the above collapse problem. One possibility is to start with a large T and then gradually
anneal it as learning progresses. In our experiments we found that using a constant T works just as
well as annealing, so we keep it fixed.

4 Results

We apply the implicit mixture of RBMs to two datasets, MNIST [1] and NORB [7]. MNIST is a
set of handwritten digit images belonging to ten different classes (the digits 0 to 9). NORB contains
stereo-pair images of 3D toy objects taken under different lighting conditions and viewpoints. There
are five classes of objects in this set (human, car, plane, truck and animal). We use MNIST mainly
as a sanity check, and most of our results are for the much more difficult NORB dataset.

Evaluation method: Since computing the exact partition function of an RBM is intractable, it is
not possible to directly evaluate the quality of our mixture model’s fit to the data, e.g., by computing

4

Truc
pratique

If the number of possible states of z is small enough, then it is practical to compute the quantity
F (v, zk = 1) for every k by brute-force. So we can compute

P (zk = 1|v) =
exp(−F (v, zk = 1))

∑

l exp(−F (v, zl = 1))
. (11)

Equation 11 defines the responsibility of the kth component RBM for the data vector v.

Contrastive divergence learning: Below is a summary of the steps in the CD learning for the
implicit mixture model.

1. For a training vector v+, pick a component RBM by sampling the responsibilities
P (zk = 1|v+). Let l be the index of the selected RBM.

2. Sample h+ ∼ Pl(h|v+).

3. Compute the outer productD+
l = v+hT

+.

4. Sample v− ∼ Pl(v|h+).

5. Pick a component RBM by sampling the responsibilities P (zk = 1|v−). Let m be the
index of the selected RBM.

6. Sample h− ∼ Pm(h|v−).

7. Compute the outer productD−
m = v−hT

−.

Repeating the above steps for a mini-batch of Nb training cases results in two sets of outer products
for each component k in the mixture model: S+

k = {D+
k1, ...,D

+
kM} and S−

k {D−
k1, ...,D

−
kL}. Then

the approximate likelihood gradient (averaged over the mini-batch) for the kth component RBM is

1

Nb

∂L

∂W I
k

≈
1

Nb





M
∑

i=1

D+
ki −

L
∑

j=1

D−
kj



 . (12)

Note that to compute the outer products D+ and D− for a given training vector, the component
RBMs are selected through two separate stochastic picks. Therefore the sets S+

k and S−
k need not

be of the same size because the choice of the mixture component can be different for v+ and v−.

Scaling free energies with a temperature parameter: In practice, the above learning algorithm
causes all the training cases to be captured by a single component RBM, and the other components to
be left unused. This is because free energy is an unnormalized quantity that can have very different
numerical scales across the RBMs. One RBM may happen to produce much smaller free energies
than the rest because of random differences in the initial parameter values, and thus end up with
high responsibilities for most training cases. Even if all the component RBMs are initialized to the
exact same initial parameter values, the problem can still arise after a few noisy weight updates. The
solution is to use a temperature parameter T when computing the responsibilities:

P (zk = 1|v) =
exp(−F (v, zk = 1)/T)

∑

l exp(−F (v, zl = 1)/T)
. (13)

By choosing a large enough T , we can make sure that random scale differences in the free energies
do not lead to the above collapse problem. One possibility is to start with a large T and then gradually
anneal it as learning progresses. In our experiments we found that using a constant T works just as
well as annealing, so we keep it fixed.

4 Results

We apply the implicit mixture of RBMs to two datasets, MNIST [1] and NORB [7]. MNIST is a
set of handwritten digit images belonging to ten different classes (the digits 0 to 9). NORB contains
stereo-pair images of 3D toy objects taken under different lighting conditions and viewpoints. There
are five classes of objects in this set (human, car, plane, truck and animal). We use MNIST mainly
as a sanity check, and most of our results are for the much more difficult NORB dataset.

Evaluation method: Since computing the exact partition function of an RBM is intractable, it is
not possible to directly evaluate the quality of our mixture model’s fit to the data, e.g., by computing

4

stats. négative
pour la RBMme

stats. positives
pour la RBMle

Implicit Mixtures of
Restricted Boltzmann Machines

(Nair and Hinton, NIPS 2009)

Résultats: apprentissage non-supervisé

Figure 2: Features of the mixture model with five component RBMs trained on all ten classes of
MNIST images.

the log probability of a test set under the model. Recently it was shown that Annealed Importance
Sampling can be used to tractably approximate the partition function of an RBM [11]. While this
is an attractive option to consider in future work, for this paper we use the computationally cheaper
approach of evaluating the model by using it in a classification task. Classification accuracy is then
used as an indirect quantitative measure of how good the model is.

A reasonable evaluation criterion for a mixture modelling algorithm is that it should be able to find
clusters that are mostly ‘pure’ with respect to class labels. That is, the set of data vectors that a
particular mixture component has high responsibilities for should have the same class label. So it
should be possible to accurately predict the class label of a given data vector from the responsibilities
of the different mixture components for that vector. Once a mixture model is fully trained, we
evaluate it by training a classifier that takes as input the responsibilities of the mixture components
for a data vector and predicts its class label. The goodness of the mixture model is measured by the
test set prediction accuracy of this classifier.

4.1 Results for MNIST

Before attempting to learn a good mixture model of the whole MNIST dataset, we tried two simpler
modeling tasks. First, we fitted an implicit mixture of two RBM’s with 100 hidden units each to
an unlabelled dataset consisting of 4,000 twos and 4,000 threes. As we hoped, almost all of the
two’s were modelled by one RBM and almost all of the threes by the other. On 2042 held-out
test cases, there were only 24 errors when an image was assigned the label of the most probable
RBM. This compares very favorably with logistic regression which needs 8000 labels in addition
to the images and gives 36 errors on the test set even when using a penalty on the squared weights
whose magnitude is set using a validation set. Logistic regression also gives a good indication of the
performance that could be expected from fitting a mixture of two Gaussians with a shared covariance
matrix, because logistic regression is equivalent to fitting such a mixture discriminatively.

We then tried fitting an implicit mixture model with only five component RBMs, each with 25 hidden
units, to the entire training set. We purposely make the model very small so that it is possible to
visually inspect the features and the responsibilities of the component RBMs and understand what
each component is modelling. This is meant to qualitatively confirm that the algorithm can learn a
sensible clustering of the MNIST data. (Of course, the model will have poor classification accuracy
as there are more classes than clusters, so it will merge multiple classes into a single cluster.) The
features of the component RBMs are shown in figure 2 (top row). The plots in the bottom row show
the fraction of training images for each of the ten classes that are hard-assigned to each component.
The learning algorithm has produced a sensible mixture model in that visually similar digit classes
are combined under the same mixture component. For example, ones and eights require many
similar features, so they are captured with a single RBM (leftmost in fig. 2). Similarly, images of
fours, sevens, and nines are all visually similar, and they are modelled together by one RBM (middle
of fig. 2).

5

3D Object Recognition with
Deep Belief Nets

(Nair and Hinton, NIPS 2009)

• Application à la reconnaissance d’objets 3D

Binary
data

Gaussian visible units
(raw pixel data)

i

j

Pre-processing
transformation

Wij

Hidden units

Wjmk

1-of-K
activation m

k

Figure 3: Implicit mixture model used for MNORB.

binary vectors. Its parameters are not modified further when training the mixture model. Figure 3
shows the components of the complete model.

A difficulty with training the implicit mixture model (or any other mixture model) on NORB is
that the ‘natural’ clusters in the dataset correspond to the six lighting conditions instead of the five
object classes. The objects themselves are small (in terms of area) relative to the background, while
lighting affects the entire image. Any clustering signal provided by the object classes will be weak
compared to the effect of large lighting changes. So we simplify the dataset slightly by normalizing
the lighting variations across images. Each image is multiplied by a scalar such that all images
have the same average pixel value. This significantly reduces the interference of the lighting on
the mixture learning4. Finally, to speed up experiments, we subsample the images from 96 × 96 to
32 × 32 and use only one image of the stereo pair. We refer to this dataset as ‘Modified NORB’
or ‘MNORB’. It contains 24,300 training images and an equal number of test images. From the
training set, 4,300 are set aside as a validation set for early stopping.

We use 2000 binary hidden units for the preprocessing RBM, so the input dimensionality of the
implicit mixture model is 2000. We have tried many different settings for the number of mixture
components and the hidden layer size of the components. The best classification results are given
by 100 components, each with 500 hidden units. This model has about 100 · 500 · 2000 = 108

parameters, and takes about 10 days to train on an Intel Xeon 3Ghz processor.

Table 2 shows the test set error rates for a logistic regression classifier trained on various input
representations. Mixture of Factor Analyzers (MFA) [3] is similar to the implicit mixture of RBMs
in that it also learns a clustering while simultaneously learning a latent representation per cluster
component. But it is a directed model based on linear-Gaussian representations, and it can be learned
tractably by maximizing likelihood with EM. We train MFA on the raw pixel data of MNORB. The
MFA model that gives the best classification accuracy (shown in table 2) has 100 component Factor
Analyzers with 100 factors each. (Note that simply making the number of learnable parameters
equal is not enough to match the capacities of the different models because RBMs use binary latent
representations, while FAs use continuous representations. So we cannot strictly control for capacity
when comparing these models.)

A mixture of multivariate Bernoulli distributions (see e.g. section 9.3.3 of [2]) is similar to an
implicit mixture model whose component RBMs have no hidden units and only visible biases as
trainable parameters. The differences are that a Bernoulli mixture is a directed model, it has explic-
itly parameterized mixing proportions, and maximum likelihood learning with EM is tractable. We
train this model with 100 components on the activation probabilities of the preprocessing RBM’s
hidden units. The classification error rate for this model is shown in table 2.

4The normalization does not completely remove lighting information from the data. A logistic regression
classifier can still predict the lighting label with 18% test set error when trained and tested on normalized
images, compared to 8% error for unnormalized images.

7

Étiquette
(label) de
l’entrée

3D Object Recognition with
Deep Belief Nets

(Nair and Hinton, NIPS 2009)

Résultats: classification (NORB)

6.1 Deep vs. Shallow Models Trained with CD

We consider here DBNs with one greedily pre-trained layer and a top-level model that
contains the greedily pretrained features as its “visible” layer. The corresponding shallow
version trains the top-level model directly on the pixels (using Gaussian visible units), with
no pre-trained layers in between. Using CD as the learning algorithm (for both greedy pre-
training and at the top-level) with the two types of top-level models gives us four possibilities
to compare. The test error rates for these four models(see table 1) show that one greedily
pre-trained layer reduces the error substantially, even without any subsequent fine-tuning
of the pre-trained layer.

Model RBM with Third-order
label unit RBM

Shallow 22.8% 20.8%
Deep 11.9% 7.6%

Table 1: NORB test set error rates for deep and shallow models trained using CD with two
types of top-level models.

The third-order RBM outperforms the standard RBM top-level model when they both have
the same number of hidden units, but a better comparison might be to match the number
of parameters by increasing the hidden layer size of the standard RBM model by five times
(i.e. 20000 hidden units). We have tried training such an RBM, but the error rate is worse
than the RBM with 4000 hidden units.

6.2 Hybrid vs. CD Learning for the Top-level Model

We now compare the two alternatives for training the top-level model of a DBN. There are
four possible combinations of top-level models and learning algorithms, and table 2 lists
their error rates. All these DBNs share the same greedily pre-trained first layer – only the
top-level model differs among them.

Learning RBM with Third-order
algorithm label unit RBM

CD 11.9% 7.6%
Hybrid 10.4% 6.5%

Table 2: NORB test set error rates for top-level models trained using CD and the hybrid
learning algorithms.

The lower error rates of hybrid learning are partly due to its ability to avoid the poor mixing
of the label variable when CD is used to learn the joint density P (v, l) and partly due to its
greater emphasis on discrimination (but with strong regularization provided by also learning
P (v|l)).

6.3 Semi-supervised vs. Supervised Learning

In this final part, we create additional images from the original NORB training set by
applying global translations of 2, 4, and 6 pixels in eight directions (two horizontal, two
vertical and four diagonal directions) to the original stereo-pair images2. These “jittered”
images are treated as extra unlabeled training cases that are combined with the original
labeled cases to form a much larger training set. Note that we could have assigned the
jittered images the same class label as their source images. By treating them as unlabeled,
the goal is to test whether improving the unsupervised, generative part of the learning alone
can improve discriminative performance.

There are two ways to use unlabeled data:

1. Use it for greedy pre-training of the lower layers only, and then train the top-level
model as before, with only labeled data and the hybrid algorithm.

2The same translation is applied to both images in the stereo-pair.

7

6.1 Deep vs. Shallow Models Trained with CD

We consider here DBNs with one greedily pre-trained layer and a top-level model that
contains the greedily pretrained features as its “visible” layer. The corresponding shallow
version trains the top-level model directly on the pixels (using Gaussian visible units), with
no pre-trained layers in between. Using CD as the learning algorithm (for both greedy pre-
training and at the top-level) with the two types of top-level models gives us four possibilities
to compare. The test error rates for these four models(see table 1) show that one greedily
pre-trained layer reduces the error substantially, even without any subsequent fine-tuning
of the pre-trained layer.

Model RBM with Third-order
label unit RBM

Shallow 22.8% 20.8%
Deep 11.9% 7.6%

Table 1: NORB test set error rates for deep and shallow models trained using CD with two
types of top-level models.

The third-order RBM outperforms the standard RBM top-level model when they both have
the same number of hidden units, but a better comparison might be to match the number
of parameters by increasing the hidden layer size of the standard RBM model by five times
(i.e. 20000 hidden units). We have tried training such an RBM, but the error rate is worse
than the RBM with 4000 hidden units.

6.2 Hybrid vs. CD Learning for the Top-level Model

We now compare the two alternatives for training the top-level model of a DBN. There are
four possible combinations of top-level models and learning algorithms, and table 2 lists
their error rates. All these DBNs share the same greedily pre-trained first layer – only the
top-level model differs among them.

Learning RBM with Third-order
algorithm label unit RBM

CD 11.9% 7.6%
Hybrid 10.4% 6.5%

Table 2: NORB test set error rates for top-level models trained using CD and the hybrid
learning algorithms.

The lower error rates of hybrid learning are partly due to its ability to avoid the poor mixing
of the label variable when CD is used to learn the joint density P (v, l) and partly due to its
greater emphasis on discrimination (but with strong regularization provided by also learning
P (v|l)).

6.3 Semi-supervised vs. Supervised Learning

In this final part, we create additional images from the original NORB training set by
applying global translations of 2, 4, and 6 pixels in eight directions (two horizontal, two
vertical and four diagonal directions) to the original stereo-pair images2. These “jittered”
images are treated as extra unlabeled training cases that are combined with the original
labeled cases to form a much larger training set. Note that we could have assigned the
jittered images the same class label as their source images. By treating them as unlabeled,
the goal is to test whether improving the unsupervised, generative part of the learning alone
can improve discriminative performance.

There are two ways to use unlabeled data:

1. Use it for greedy pre-training of the lower layers only, and then train the top-level
model as before, with only labeled data and the hybrid algorithm.

2The same translation is applied to both images in the stereo-pair.

7

1 couche cachée
2 couches cachées

utilise comme
critère pour la couche du haut

log p(v|l) + λ log p(l|v)

3D Object Recognition with
Deep Belief Nets

(Nair and Hinton, NIPS 2009)

Résultats: classification (NORB)
2. Use it for learning the top-level model as well, now with the semi-supervised variant

of the hybrid algorithm at the top-level.

Table 3 lists the results for both options.

Top-level model Unlabeled Unlabeled
(hyrbid learning jitter for jitter at the Error

only) pre-training top-level?
lower layer?

RBM with No No 10.4%
label unit Yes No 9.0%

Third-order No No 6.5%
model Yes No 5.3%

Yes Yes 5.2%

Table 3: NORB test set error rates for DBNs trained with and without unlabeled data, and
using the hybrid learning algorithm at the top-level.

The key conclusion from table 3 is that simply using more unlabeled training data in the
unsupervised, greedy pre-training phase alone can significantly improve the classification
accuracy of the DBN. It allows a third-order top-level model to reduce its error from 6.5%
to 5.3%, which beats the current best published result for normalized-uniform NORB without
using any extra labeled data. Using more unlabeled data also at the top level further improves
accuracy, but only slightly, to 5.2%.

Now consider a discriminative model at the top, representing the distribution P (l|v). Unlike
in the generative case, the exact gradient of the log-likelihood is tractable to compute.
Table 4 shows the results of some discriminative models. These models use the same greedily
pre-trained lower layer, learned with unlabeled jitter. They differ in how the top-level
parameters are initialized, and whether they use the jittered images as extra labeled cases
for learning P (l|v).

Initialization Use jittered
of top-level images as Error
parameters labeled?

Random No 13.4%
Random Yes 7.1%

Model with
5.2% error Yes 5.0%

from table 3

Table 4: NORB test set error rates for dis-
criminative third-order models at the top
level.

We compare training the discriminative top-
level model “from scratch” (random initializa-
tion) versus initializing its parameters to those
of a generative model learned by the hybrid al-
gorithm. We also compare the effect of using the
jittered images as extra labeled cases. As men-
tioned before, it is possible to assign the jittered
images the same labels as the original NORB
images they are generated from, which expands
the labeled training set by 25 times. The bot-
tom two rows of table 4 compare a discriminative
third-order model initialized with and without
pre-training. Pre-trained initialization (5.0%)

significantly improves accuracy over random initialization (7.1%). But note that discrimina-
tive training only makes a small additional improvement (5.2% to 5.0%) over the accuracy
of the pre-trained model itself.

7 Conclusions

Our results make a strong case for the use of generative modeling in object recognition.
The main two points are: 1) Unsupervised, greedy, generative learning can extract an
image representation that supports more accurate object recognition than the raw pixel
representation. 2) Including P (v|l) in the objective function for training the top-level model
results in better classification accuracy than using P (l|v) alone. In future work we plan to
factorize the third-order Boltzmann machine as described in [18] so that some of the top-level
features can be shared across classes.

8

3D Object Recognition with
Deep Belief Nets

(Nair and Hinton, NIPS 2009)

Résultats: classification (NORB)

2. Use it for learning the top-level model as well, now with the semi-supervised variant
of the hybrid algorithm at the top-level.

Table 3 lists the results for both options.

Top-level model Unlabeled Unlabeled
(hyrbid learning jitter for jitter at the Error

only) pre-training top-level?
lower layer?

RBM with No No 10.4%
label unit Yes No 9.0%

Third-order No No 6.5%
model Yes No 5.3%

Yes Yes 5.2%

Table 3: NORB test set error rates for DBNs trained with and without unlabeled data, and
using the hybrid learning algorithm at the top-level.

The key conclusion from table 3 is that simply using more unlabeled training data in the
unsupervised, greedy pre-training phase alone can significantly improve the classification
accuracy of the DBN. It allows a third-order top-level model to reduce its error from 6.5%
to 5.3%, which beats the current best published result for normalized-uniform NORB without
using any extra labeled data. Using more unlabeled data also at the top level further improves
accuracy, but only slightly, to 5.2%.

Now consider a discriminative model at the top, representing the distribution P (l|v). Unlike
in the generative case, the exact gradient of the log-likelihood is tractable to compute.
Table 4 shows the results of some discriminative models. These models use the same greedily
pre-trained lower layer, learned with unlabeled jitter. They differ in how the top-level
parameters are initialized, and whether they use the jittered images as extra labeled cases
for learning P (l|v).

Initialization Use jittered
of top-level images as Error
parameters labeled?

Random No 13.4%
Random Yes 7.1%

Model with
5.2% error Yes 5.0%

from table 3

Table 4: NORB test set error rates for dis-
criminative third-order models at the top
level.

We compare training the discriminative top-
level model “from scratch” (random initializa-
tion) versus initializing its parameters to those
of a generative model learned by the hybrid al-
gorithm. We also compare the effect of using the
jittered images as extra labeled cases. As men-
tioned before, it is possible to assign the jittered
images the same labels as the original NORB
images they are generated from, which expands
the labeled training set by 25 times. The bot-
tom two rows of table 4 compare a discriminative
third-order model initialized with and without
pre-training. Pre-trained initialization (5.0%)

significantly improves accuracy over random initialization (7.1%). But note that discrimina-
tive training only makes a small additional improvement (5.2% to 5.0%) over the accuracy
of the pre-trained model itself.

7 Conclusions

Our results make a strong case for the use of generative modeling in object recognition.
The main two points are: 1) Unsupervised, greedy, generative learning can extract an
image representation that supports more accurate object recognition than the raw pixel
representation. 2) Including P (v|l) in the objective function for training the top-level model
results in better classification accuracy than using P (l|v) alone. In future work we plan to
factorize the third-order Boltzmann machine as described in [18] so that some of the top-level
features can be shared across classes.

8

raffinement de la
deuxième couche

Réseau convolution: 6.0%

Sparse deep belief net model
for visual area V2

(Lee, Ekanadham and Ng, NIPS 2009)

• “Sparsité” et la connexion avec la neuroscience

• Comment obtenir de tels filtres!

Figure 3: 400 first layer bases learned from the van Hateren natural image dataset, using our algorithm.

Figure 4: Visualization of 200 second layer bases (model V2 receptive fields), learned from natural images.
Each small group of 3-5 (arranged in a row) images shows one model V2 unit; the leftmost patch in the group
is a visualization of the model V2 basis, and is obtained by taking a weighted linear combination of the first
layer “V1” bases to which it is connected. The next few patches in the group show the first layer bases that
have the strongest weight connection to the model V2 basis.

with results obtained by applying different algorithms to learn sparse representations of this data
set (e.g., [2, 5]).

4.2 Learning from natural images
We also applied the algorithm to a training set a set of 14-by-14 natural image patches, taken from
a dataset compiled by van Hateren.5 We learned a sparse RBM model with 196 visible units and
400 hidden units. The learned bases are shown in Figure 3; they are oriented, gabor-like bases and
resemble the receptive fields of V1 simple cells.6

4.3 Learning a two-layer model of natural images using sparse RBMs
We further learned a two-layer network by stacking one sparse RBM on top of another (see Sec-
tion 3.2 for details.)7 After learning, the second layer weights were quite sparse—most of the
weights were very small, and only a few were either highly positive or highly negative. Positive

5The images were obtained from http://hlab.phys.rug.nl/imlib/index.html. We used
100,000 14-by-14 image patches randomly sampled from an ensemble of 2000 images; each subset of 200
patches was used as a mini-batch.

6Most other authors’ experiments to date using regular (non-sparse) RBMs, when trained on such data,
seem to have learned relatively diffuse, unlocalized bases (ones that do not represent oriented edge filters).
While sensitive to the parameter settings and requiring a long training time, we found that it is possible in
some cases to get a regular RBM to learn oriented edge filter bases as well. But in our experiments, even in
these cases we found that repeating this process to build a two layer deep belief net (see Section 4.3) did not
encode a significant number of corners/angles, unlike one trained using the sparse RBM; therefore, it showed
significantly worse match to the Ito & Komatsu statistics. For example, the fraction of model V2 neurons that
respond strongly to a pair of edges near right angles (formally, have peak angle in the range 60-120 degrees)
was 2% for the regular RBM, whereas it was 17% for the sparse RBM (and Ito & Komatsu reported 22%). See
Section 5.1 for more details.

7For the results reported in this paper, we trained the second layer sparse RBM with real-valued visible
units; however, the results were very similar when we trained the second layer sparse RBM with binary-valued
visible units (except that the second layer weights became less sparse).

5

Sparse deep belief net model
for visual area V2

(Lee, Ekanadham and Ng, NIPS 2009)

• Réponse: avec de la “sparsité”

Here, N (·) is the gaussian density, and logistic(·) is the logistic function.
For training the parameters of the model, the objective is to maximize the log-likelihood of the data.
We also want hidden unit activations to be sparse; thus, we add a regularization term that penalizes
a deviation of the expected activation of the hidden units from a (low) fixed level p.2 Thus, given a
training set {v(1), . . . ,v(m)} comprising m examples, we pose the following optimization problem:

minimize{wij ,ci,bj} −
∑m

l=1 log
∑

h P (v(l),h(l)) + λ
∑n

j=1 | p −
1
m

∑m
l=1 E[h(l)

j |v(l)] |2, (4)

where E[·] is the conditional expectation given the data, λ is a regularization constant, and p is
a constant controlling the sparseness of the hidden units hj . Thus, our objective is the sum of a
log-likelihood term and a regularization term. In principle, we can apply gradient descent to this
problem; however, computing the gradient of the log-likelihood term is expensive. Fortunately, the
contrastive divergence learning algorithm gives an efficient approximation to the gradient of the log-
likelihood [25]. Building upon this, on each iteration we can apply the contrastive divergence update
rule, followed by one step of gradient descent using the gradient of the regularization term.3 The
details of our procedure are summarized in Algorithm 1.
Algorithm 1 Sparse RBM learning algorithm

1. Update the parameters using contrastive divergence learning rule. More specifically,
wij := wij + α(〈vihj〉data − 〈vihj〉recon)

ci := ci + α(〈vi〉data − 〈vi〉recon)
bj := bj + α(〈hj〉data − 〈hj〉recon),

where α is a learning rate, and 〈·〉recon is an expectation over the reconstruction data, estimated
using one iteration of Gibbs sampling (as in Equations 2,3).
2. Update the parameters using the gradient of the regularization term.
3. Repeat Steps 1 and 2 until convergence.

3.2 Learning deep networks using sparse RBM
Once a layer of the network is trained, the parameters wij , bj , ci’s are frozen and the hidden unit
values given the data are inferred. These inferred values serve as the “data” used to train the next
higher layer in the network. Hinton et al. [1] showed that by repeatedly applying such a procedure,
one can learn a multilayered deep belief network. In some cases, this iterative “greedy” algorithm
can further be shown to be optimizing a variational bound on the data likelihood, if each layer has
at least as many units as the layer below (although in practice this is not necessary to arrive at a
desirable solution; see [1] for a detailed discussion). In our experiments using natural images, we
learn a network with two hidden layers, with each layer learned using the sparse RBM algorithm
described in Section 3.1.

4 Visualization
4.1 Learning “strokes” from handwritten digits

Figure 2: Bases learned from MNIST data

We applied the sparse RBM algorithm to the MNIST
handwritten digit dataset.4 We learned a sparse RBM
with 69 visible units and 200 hidden units. The learned
bases are shown in Figure 2. (Each basis corresponds to
one column of the weight matrix W left-multiplied by
the unwhitening matrix.) Many bases found by the al-
gorithm roughly represent different “strokes” of which
handwritten digits are comprised. This is consistent

2Less formally, this regularization ensures that the “firing rate” of the model neurons (corresponding to the
latent random variables hj) are kept at a certain (fairly low) level, so that the activations of the model neurons
are sparse. Similar intuition was also used in other models (e.g., see Olshausen and Field [10]).

3To increase computational efficiency, we made one additional change. Note that the regularization term is
defined using a sum over the entire training set; if we use stochastic gradient descent or mini-batches (small
subsets of the training data) to estimate this term, it results in biased estimates of the gradient. To ameliorate
this, we used mini-batches, but in the gradient step that tries to minimize the regularization term, we update
only the bias terms bj’s (which directly control the degree to which the hidden units are activated, and thus their
sparsity), instead of updating all the parameters bj and wij’s.

4Downloaded from http://yann.lecun.com/exdb/mnist/. Each pixel was normalized to the
unit interval, and we used PCA whitening to reduce the dimension to 69 principal components for computational
efficiency. (Similar results were obtained without whitening.)

4

(

Here, N (·) is the gaussian density, and logistic(·) is the logistic function.
For training the parameters of the model, the objective is to maximize the log-likelihood of the data.
We also want hidden unit activations to be sparse; thus, we add a regularization term that penalizes
a deviation of the expected activation of the hidden units from a (low) fixed level p.2 Thus, given a
training set {v(1), . . . ,v(m)} comprising m examples, we pose the following optimization problem:

minimize{wij ,ci,bj} −
∑m

l=1 log
∑

h P (v(l),h(l)) + λ
∑n

j=1 | p −
1
m

∑m
l=1 E[h(l)

j |v(l)] |2, (4)

where E[·] is the conditional expectation given the data, λ is a regularization constant, and p is
a constant controlling the sparseness of the hidden units hj . Thus, our objective is the sum of a
log-likelihood term and a regularization term. In principle, we can apply gradient descent to this
problem; however, computing the gradient of the log-likelihood term is expensive. Fortunately, the
contrastive divergence learning algorithm gives an efficient approximation to the gradient of the log-
likelihood [25]. Building upon this, on each iteration we can apply the contrastive divergence update
rule, followed by one step of gradient descent using the gradient of the regularization term.3 The
details of our procedure are summarized in Algorithm 1.
Algorithm 1 Sparse RBM learning algorithm

1. Update the parameters using contrastive divergence learning rule. More specifically,
wij := wij + α(〈vihj〉data − 〈vihj〉recon)

ci := ci + α(〈vi〉data − 〈vi〉recon)
bj := bj + α(〈hj〉data − 〈hj〉recon),

where α is a learning rate, and 〈·〉recon is an expectation over the reconstruction data, estimated
using one iteration of Gibbs sampling (as in Equations 2,3).
2. Update the parameters using the gradient of the regularization term.
3. Repeat Steps 1 and 2 until convergence.

3.2 Learning deep networks using sparse RBM
Once a layer of the network is trained, the parameters wij , bj , ci’s are frozen and the hidden unit
values given the data are inferred. These inferred values serve as the “data” used to train the next
higher layer in the network. Hinton et al. [1] showed that by repeatedly applying such a procedure,
one can learn a multilayered deep belief network. In some cases, this iterative “greedy” algorithm
can further be shown to be optimizing a variational bound on the data likelihood, if each layer has
at least as many units as the layer below (although in practice this is not necessary to arrive at a
desirable solution; see [1] for a detailed discussion). In our experiments using natural images, we
learn a network with two hidden layers, with each layer learned using the sparse RBM algorithm
described in Section 3.1.

4 Visualization
4.1 Learning “strokes” from handwritten digits

Figure 2: Bases learned from MNIST data

We applied the sparse RBM algorithm to the MNIST
handwritten digit dataset.4 We learned a sparse RBM
with 69 visible units and 200 hidden units. The learned
bases are shown in Figure 2. (Each basis corresponds to
one column of the weight matrix W left-multiplied by
the unwhitening matrix.) Many bases found by the al-
gorithm roughly represent different “strokes” of which
handwritten digits are comprised. This is consistent

2Less formally, this regularization ensures that the “firing rate” of the model neurons (corresponding to the
latent random variables hj) are kept at a certain (fairly low) level, so that the activations of the model neurons
are sparse. Similar intuition was also used in other models (e.g., see Olshausen and Field [10]).

3To increase computational efficiency, we made one additional change. Note that the regularization term is
defined using a sum over the entire training set; if we use stochastic gradient descent or mini-batches (small
subsets of the training data) to estimate this term, it results in biased estimates of the gradient. To ameliorate
this, we used mini-batches, but in the gradient step that tries to minimize the regularization term, we update
only the bias terms bj’s (which directly control the degree to which the hidden units are activated, and thus their
sparsity), instead of updating all the parameters bj and wij’s.

4Downloaded from http://yann.lecun.com/exdb/mnist/. Each pixel was normalized to the
unit interval, and we used PCA whitening to reduce the dimension to 69 principal components for computational
efficiency. (Similar results were obtained without whitening.)

4

Here, N (·) is the gaussian density, and logistic(·) is the logistic function.
For training the parameters of the model, the objective is to maximize the log-likelihood of the data.
We also want hidden unit activations to be sparse; thus, we add a regularization term that penalizes
a deviation of the expected activation of the hidden units from a (low) fixed level p.2 Thus, given a
training set {v(1), . . . ,v(m)} comprising m examples, we pose the following optimization problem:

minimize{wij ,ci,bj} −
∑m

l=1 log
∑

h P (v(l),h(l)) + λ
∑n

j=1 | p −
1
m

∑m
l=1 E[h(l)

j |v(l)] |2, (4)

where E[·] is the conditional expectation given the data, λ is a regularization constant, and p is
a constant controlling the sparseness of the hidden units hj . Thus, our objective is the sum of a
log-likelihood term and a regularization term. In principle, we can apply gradient descent to this
problem; however, computing the gradient of the log-likelihood term is expensive. Fortunately, the
contrastive divergence learning algorithm gives an efficient approximation to the gradient of the log-
likelihood [25]. Building upon this, on each iteration we can apply the contrastive divergence update
rule, followed by one step of gradient descent using the gradient of the regularization term.3 The
details of our procedure are summarized in Algorithm 1.
Algorithm 1 Sparse RBM learning algorithm

1. Update the parameters using contrastive divergence learning rule. More specifically,
wij := wij + α(〈vihj〉data − 〈vihj〉recon)

ci := ci + α(〈vi〉data − 〈vi〉recon)
bj := bj + α(〈hj〉data − 〈hj〉recon),

where α is a learning rate, and 〈·〉recon is an expectation over the reconstruction data, estimated
using one iteration of Gibbs sampling (as in Equations 2,3).
2. Update the parameters using the gradient of the regularization term.
3. Repeat Steps 1 and 2 until convergence.

3.2 Learning deep networks using sparse RBM
Once a layer of the network is trained, the parameters wij , bj , ci’s are frozen and the hidden unit
values given the data are inferred. These inferred values serve as the “data” used to train the next
higher layer in the network. Hinton et al. [1] showed that by repeatedly applying such a procedure,
one can learn a multilayered deep belief network. In some cases, this iterative “greedy” algorithm
can further be shown to be optimizing a variational bound on the data likelihood, if each layer has
at least as many units as the layer below (although in practice this is not necessary to arrive at a
desirable solution; see [1] for a detailed discussion). In our experiments using natural images, we
learn a network with two hidden layers, with each layer learned using the sparse RBM algorithm
described in Section 3.1.

4 Visualization
4.1 Learning “strokes” from handwritten digits

Figure 2: Bases learned from MNIST data

We applied the sparse RBM algorithm to the MNIST
handwritten digit dataset.4 We learned a sparse RBM
with 69 visible units and 200 hidden units. The learned
bases are shown in Figure 2. (Each basis corresponds to
one column of the weight matrix W left-multiplied by
the unwhitening matrix.) Many bases found by the al-
gorithm roughly represent different “strokes” of which
handwritten digits are comprised. This is consistent

2Less formally, this regularization ensures that the “firing rate” of the model neurons (corresponding to the
latent random variables hj) are kept at a certain (fairly low) level, so that the activations of the model neurons
are sparse. Similar intuition was also used in other models (e.g., see Olshausen and Field [10]).

3To increase computational efficiency, we made one additional change. Note that the regularization term is
defined using a sum over the entire training set; if we use stochastic gradient descent or mini-batches (small
subsets of the training data) to estimate this term, it results in biased estimates of the gradient. To ameliorate
this, we used mini-batches, but in the gradient step that tries to minimize the regularization term, we update
only the bias terms bj’s (which directly control the degree to which the hidden units are activated, and thus their
sparsity), instead of updating all the parameters bj and wij’s.

4Downloaded from http://yann.lecun.com/exdb/mnist/. Each pixel was normalized to the
unit interval, and we used PCA whitening to reduce the dimension to 69 principal components for computational
efficiency. (Similar results were obtained without whitening.)

4

(

Here, N (·) is the gaussian density, and logistic(·) is the logistic function.
For training the parameters of the model, the objective is to maximize the log-likelihood of the data.
We also want hidden unit activations to be sparse; thus, we add a regularization term that penalizes
a deviation of the expected activation of the hidden units from a (low) fixed level p.2 Thus, given a
training set {v(1), . . . ,v(m)} comprising m examples, we pose the following optimization problem:

minimize{wij ,ci,bj} −
∑m

l=1 log
∑

h P (v(l),h(l)) + λ
∑n

j=1 | p −
1
m

∑m
l=1 E[h(l)

j |v(l)] |2, (4)

where E[·] is the conditional expectation given the data, λ is a regularization constant, and p is
a constant controlling the sparseness of the hidden units hj . Thus, our objective is the sum of a
log-likelihood term and a regularization term. In principle, we can apply gradient descent to this
problem; however, computing the gradient of the log-likelihood term is expensive. Fortunately, the
contrastive divergence learning algorithm gives an efficient approximation to the gradient of the log-
likelihood [25]. Building upon this, on each iteration we can apply the contrastive divergence update
rule, followed by one step of gradient descent using the gradient of the regularization term.3 The
details of our procedure are summarized in Algorithm 1.
Algorithm 1 Sparse RBM learning algorithm

1. Update the parameters using contrastive divergence learning rule. More specifically,
wij := wij + α(〈vihj〉data − 〈vihj〉recon)

ci := ci + α(〈vi〉data − 〈vi〉recon)
bj := bj + α(〈hj〉data − 〈hj〉recon),

where α is a learning rate, and 〈·〉recon is an expectation over the reconstruction data, estimated
using one iteration of Gibbs sampling (as in Equations 2,3).
2. Update the parameters using the gradient of the regularization term.
3. Repeat Steps 1 and 2 until convergence.

3.2 Learning deep networks using sparse RBM
Once a layer of the network is trained, the parameters wij , bj , ci’s are frozen and the hidden unit
values given the data are inferred. These inferred values serve as the “data” used to train the next
higher layer in the network. Hinton et al. [1] showed that by repeatedly applying such a procedure,
one can learn a multilayered deep belief network. In some cases, this iterative “greedy” algorithm
can further be shown to be optimizing a variational bound on the data likelihood, if each layer has
at least as many units as the layer below (although in practice this is not necessary to arrive at a
desirable solution; see [1] for a detailed discussion). In our experiments using natural images, we
learn a network with two hidden layers, with each layer learned using the sparse RBM algorithm
described in Section 3.1.

4 Visualization
4.1 Learning “strokes” from handwritten digits

Figure 2: Bases learned from MNIST data

We applied the sparse RBM algorithm to the MNIST
handwritten digit dataset.4 We learned a sparse RBM
with 69 visible units and 200 hidden units. The learned
bases are shown in Figure 2. (Each basis corresponds to
one column of the weight matrix W left-multiplied by
the unwhitening matrix.) Many bases found by the al-
gorithm roughly represent different “strokes” of which
handwritten digits are comprised. This is consistent

2Less formally, this regularization ensures that the “firing rate” of the model neurons (corresponding to the
latent random variables hj) are kept at a certain (fairly low) level, so that the activations of the model neurons
are sparse. Similar intuition was also used in other models (e.g., see Olshausen and Field [10]).

3To increase computational efficiency, we made one additional change. Note that the regularization term is
defined using a sum over the entire training set; if we use stochastic gradient descent or mini-batches (small
subsets of the training data) to estimate this term, it results in biased estimates of the gradient. To ameliorate
this, we used mini-batches, but in the gradient step that tries to minimize the regularization term, we update
only the bias terms bj’s (which directly control the degree to which the hidden units are activated, and thus their
sparsity), instead of updating all the parameters bj and wij’s.

4Downloaded from http://yann.lecun.com/exdb/mnist/. Each pixel was normalized to the
unit interval, and we used PCA whitening to reduce the dimension to 69 principal components for computational
efficiency. (Similar results were obtained without whitening.)

4

Sparse deep belief net model
for visual area V2

(Lee, Ekanadham and Ng, NIPS 2009)

Résultats: filtres (images naturelles)

Figure 3: 400 first layer bases learned from the van Hateren natural image dataset, using our algorithm.

Figure 4: Visualization of 200 second layer bases (model V2 receptive fields), learned from natural images.
Each small group of 3-5 (arranged in a row) images shows one model V2 unit; the leftmost patch in the group
is a visualization of the model V2 basis, and is obtained by taking a weighted linear combination of the first
layer “V1” bases to which it is connected. The next few patches in the group show the first layer bases that
have the strongest weight connection to the model V2 basis.

with results obtained by applying different algorithms to learn sparse representations of this data
set (e.g., [2, 5]).

4.2 Learning from natural images
We also applied the algorithm to a training set a set of 14-by-14 natural image patches, taken from
a dataset compiled by van Hateren.5 We learned a sparse RBM model with 196 visible units and
400 hidden units. The learned bases are shown in Figure 3; they are oriented, gabor-like bases and
resemble the receptive fields of V1 simple cells.6

4.3 Learning a two-layer model of natural images using sparse RBMs
We further learned a two-layer network by stacking one sparse RBM on top of another (see Sec-
tion 3.2 for details.)7 After learning, the second layer weights were quite sparse—most of the
weights were very small, and only a few were either highly positive or highly negative. Positive

5The images were obtained from http://hlab.phys.rug.nl/imlib/index.html. We used
100,000 14-by-14 image patches randomly sampled from an ensemble of 2000 images; each subset of 200
patches was used as a mini-batch.

6Most other authors’ experiments to date using regular (non-sparse) RBMs, when trained on such data,
seem to have learned relatively diffuse, unlocalized bases (ones that do not represent oriented edge filters).
While sensitive to the parameter settings and requiring a long training time, we found that it is possible in
some cases to get a regular RBM to learn oriented edge filter bases as well. But in our experiments, even in
these cases we found that repeating this process to build a two layer deep belief net (see Section 4.3) did not
encode a significant number of corners/angles, unlike one trained using the sparse RBM; therefore, it showed
significantly worse match to the Ito & Komatsu statistics. For example, the fraction of model V2 neurons that
respond strongly to a pair of edges near right angles (formally, have peak angle in the range 60-120 degrees)
was 2% for the regular RBM, whereas it was 17% for the sparse RBM (and Ito & Komatsu reported 22%). See
Section 5.1 for more details.

7For the results reported in this paper, we trained the second layer sparse RBM with real-valued visible
units; however, the results were very similar when we trained the second layer sparse RBM with binary-valued
visible units (except that the second layer weights became less sparse).

5

15 45 75 105 135 165
0

0.1

0.2

0.3

0.4

0.5

peak angles

sparse DBN

Ito & Komatsu

1 2 3 4 5 6 7 8 9 1011
0

0.05

0.1

0.15

0.2

primary line axis

sparse DBN

Ito & Komatsu

1 2 3 4 5 6 7 8 9 1011
0

0.1

0.2

0.3

0.4

0.5

secondary line axis

sparse DBN

Ito & Komatsu

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4

0.6

0.8

angle width axis

sparse DBN

Ito & Komatsu

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4

0.6

0.8

1

angle orientation axis

sparse DBN

Ito & Komatsu

Figure 6: Images show distributions over stimulus response statistics (averaged over 10 trials) from our algo-
rithm (blue) and in data taken from [7] (green). The five figures show respectively (i) the distribution over peak
angle response (ranging from 0 to 180 degrees; each bin represents a range of 30 degrees), (ii) distribution over
tolerance to primary line component (Figure 1C, in dominant vertical or horizontal direction), (iii) distribution
over tolerance to secondary line component (Figure 1C, in non-dominant direction), (iv) tolerance to angle
width (Figure 1D), (v) tolerance to angle orientation (Figure 1E). See Figure 1 caption, and [7], for details.

Figure 7: Visualization of a number of model V2 neurons that maximally respond to various complex stimuli.
Each row of seven images represents one V2 basis. In each row, the leftmost image shows a linear combination
of the top three weighted V1 components that comprise the V2 basis; the next three images show the top three
optimal stiimuli; and the last three images show the top three weighted V1 bases. The V2 bases shown in the
figures maximally respond to acute angles (left), obtuse angles (middle), and tri-stars and junctions (right).

5.2 Complex shaped model V2 neurons
Our second experiment represents a comparison to a subset of the results described in Hegde and van
Essen [23]. We generated a stimulus set comprising some [23]’s complex shaped stimuli: angles,
single bars, tri-stars (three line segments that meet at a point), and arcs/circles, and measured the
response of the second layer of our sparse RBM model to these stimuli.11 We observe that many V2
bases are activated mainly by one of these different stimulus classes. For example, some model V2
neurons activate maximally to single bars; some maximally activate to (acute or obtuse) angles; and
others to tri-stars (see Figure 7). Further, the number of V2 bases that are maximally activated by
acute angles is significantly larger than the number of obtuse angles, and the number of V2 bases
that respond maximally to the tri-stars was much smaller than both preceding cases. This is also
consistent with the results described in [23].
6 Conclusions
We presented a sparse variant of the deep belief network model. When trained on natural images,
this model learns local, oriented, edge filters in the first layer. More interestingly, the second layer
captures a variety of both colinear (“contour”) features as well as corners and junctions, that in a
quantitative comparison to measurements of V2 taken by Ito & Komatsu, appeared to give responses
that were similar along several dimensions. This by no means indicates that the cortex is a sparse
RBM, but perhaps is more suggestive of contours, corners and junctions being fundamental to the
statistics of natural images.12 Nonetheless, we believe that these results also suggest that sparse

11All the stimuli were 14-by-14 pixel image patches. We applied the protocol described in Section 5.1 to the
stimulus data, to compute the model V1 and V2 responses.

12In preliminary experiments, we also found that when these ideas are applied to self-taught learning [26] (in
which one may use unlabeled data to identify features that are then useful for some supervised learning task),
using a two-layer sparse RBM usually results in significantly better features for object recognition than using
only a one-layer network.

7

Première couche (V1)

Deuxième couche (V2)

Sparse deep belief net model
for visual area V2

(Lee, Ekanadham and Ng, NIPS 2009)

Résultats: filtres (MNIST)

Here, N (·) is the gaussian density, and logistic(·) is the logistic function.
For training the parameters of the model, the objective is to maximize the log-likelihood of the data.
We also want hidden unit activations to be sparse; thus, we add a regularization term that penalizes
a deviation of the expected activation of the hidden units from a (low) fixed level p.2 Thus, given a
training set {v(1), . . . ,v(m)} comprising m examples, we pose the following optimization problem:

minimize{wij ,ci,bj} −
∑m

l=1 log
∑

h P (v(l),h(l)) + λ
∑n

j=1 | p −
1
m

∑m
l=1 E[h(l)

j |v(l)] |2, (4)

where E[·] is the conditional expectation given the data, λ is a regularization constant, and p is
a constant controlling the sparseness of the hidden units hj . Thus, our objective is the sum of a
log-likelihood term and a regularization term. In principle, we can apply gradient descent to this
problem; however, computing the gradient of the log-likelihood term is expensive. Fortunately, the
contrastive divergence learning algorithm gives an efficient approximation to the gradient of the log-
likelihood [25]. Building upon this, on each iteration we can apply the contrastive divergence update
rule, followed by one step of gradient descent using the gradient of the regularization term.3 The
details of our procedure are summarized in Algorithm 1.
Algorithm 1 Sparse RBM learning algorithm

1. Update the parameters using contrastive divergence learning rule. More specifically,
wij := wij + α(〈vihj〉data − 〈vihj〉recon)

ci := ci + α(〈vi〉data − 〈vi〉recon)
bj := bj + α(〈hj〉data − 〈hj〉recon),

where α is a learning rate, and 〈·〉recon is an expectation over the reconstruction data, estimated
using one iteration of Gibbs sampling (as in Equations 2,3).
2. Update the parameters using the gradient of the regularization term.
3. Repeat Steps 1 and 2 until convergence.

3.2 Learning deep networks using sparse RBM
Once a layer of the network is trained, the parameters wij , bj , ci’s are frozen and the hidden unit
values given the data are inferred. These inferred values serve as the “data” used to train the next
higher layer in the network. Hinton et al. [1] showed that by repeatedly applying such a procedure,
one can learn a multilayered deep belief network. In some cases, this iterative “greedy” algorithm
can further be shown to be optimizing a variational bound on the data likelihood, if each layer has
at least as many units as the layer below (although in practice this is not necessary to arrive at a
desirable solution; see [1] for a detailed discussion). In our experiments using natural images, we
learn a network with two hidden layers, with each layer learned using the sparse RBM algorithm
described in Section 3.1.

4 Visualization
4.1 Learning “strokes” from handwritten digits

Figure 2: Bases learned from MNIST data

We applied the sparse RBM algorithm to the MNIST
handwritten digit dataset.4 We learned a sparse RBM
with 69 visible units and 200 hidden units. The learned
bases are shown in Figure 2. (Each basis corresponds to
one column of the weight matrix W left-multiplied by
the unwhitening matrix.) Many bases found by the al-
gorithm roughly represent different “strokes” of which
handwritten digits are comprised. This is consistent

2Less formally, this regularization ensures that the “firing rate” of the model neurons (corresponding to the
latent random variables hj) are kept at a certain (fairly low) level, so that the activations of the model neurons
are sparse. Similar intuition was also used in other models (e.g., see Olshausen and Field [10]).

3To increase computational efficiency, we made one additional change. Note that the regularization term is
defined using a sum over the entire training set; if we use stochastic gradient descent or mini-batches (small
subsets of the training data) to estimate this term, it results in biased estimates of the gradient. To ameliorate
this, we used mini-batches, but in the gradient step that tries to minimize the regularization term, we update
only the bias terms bj’s (which directly control the degree to which the hidden units are activated, and thus their
sparsity), instead of updating all the parameters bj and wij’s.

4Downloaded from http://yann.lecun.com/exdb/mnist/. Each pixel was normalized to the
unit interval, and we used PCA whitening to reduce the dimension to 69 principal components for computational
efficiency. (Similar results were obtained without whitening.)

4

Avec sparsité

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Display of the input weights of a random subset of the hidden units, learned by an RBM

when trained on samples from the MNIST data set. The activation of units of the first

hidden layer is obtained by a dot product of such a weight “image” with the input image.

In these images, a black pixel corresponds to a weight smaller than −3 and a white pixel
to a weight larger than 3, with the different shades of gray corresponding to different

weight values uniformly between −3 and 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: Input weights of a random subset of the hidden units, learned by an autoassociator when

trained on samples from the MNIST data set. The display setting is the same as for

Figure 6.

16

Sans sparsité

Réseaux à convolution

Rappel (en images)

promising architectures and parameter ranges within the model
family. Our approach to this search was divided into four phases
(see Figure 3): Candidate Model Generation, Unsupervised
Learning, Screening, and Validation/Analysis of high-performing
models.

Phase 1: candidate model generation. Candidate model
parameter sets were randomly sampled with a uniform distribution
from the full space of possible models in the family considered here
(see Figure 2 and Figure S2 for a schematic diagram of the models,
and Supplemental Materials for an exhaustive description of
model parameters and value ranges that were explored;
Supplemental Text S1).

Phase 2: unsupervised learning. All models were subjected
to a period of unsupervised learning, during which filter kernels
were adapted to spatiotemporal statistics of a stream of input
images. Since the family of models considered here includes features
designed to take advantage of the temporal statistics of natural
inputs (see Supplementary Methods), models were learned using
video data. In the current version of our family of models, learning
influenced the form of the linear kernels of units at each layer of the
hierarchy, but did not influence any other parameters of the model.
We used three video sets for unsupervised learning: ‘‘Cars and

Planes’’, ‘‘Boats’’, and ‘‘Law and Order’’. The ‘‘Law and Order’’
video set consisted of clips from the television program of the same

name (Copyright NBC Universal), taken from DVDs, with clips
selected to avoid the inclusion of text subtitles. These clips
included a variety of objects moving through the frame, including
characters’ bodies and faces.
The ‘‘Cars and Planes’’ and ‘‘Boats’’ video sets consisted of 3D

ray-traced cars, planes and boats undergoing 6-degree-of-freedom
view transformations (roughly speaking, ‘‘tumbling’’ through
space). These same 3D models were also used in a previous study
[11]. Video clips were generated where an object would appear for
approximately 300 frames, performing a random walk in position
(3 degrees of freedom) and rotation (3 degrees of freedom) for a
total of 15,000 frames. Examples are shown in Figures 4A and 4B.

Figure 2. A schematic diagram of the system architecture of
the family of models considered. The system consists of three
feedforward filtering layers, with the filters in each layer being applied
across the previous layer. Red colored labels indicate a selection of
configurable parameters (only a subset of parameters are shown).
doi:10.1371/journal.pcbi.1000579.g002

Figure 3. Experimental flow. The experiments described here
consist of five phases. (A) First, a large collection of model instantiations
are generated with randomly selected parameter values. (B) Each of
these models then undergoes an unsupervised learning period, during
which its filter kernels are adapted to spatio-temporal statistics of the
video inputs, using a learning algorithm that is influenced by the
particular parameter instantiation of that model. After the Unsupervised
Learning Phase is complete, filter kernels are fixed, and (C) each model is
subjected to a screening object recognition test, where labeled images
are represented using each model instantiation, and these re-
represented images are used to train an SVM to perform a simple
two-class discrimination task. Performance of each candidate model is
assessed using a standard cross-validation procedure. (D) From all of
the model instantiations, the best are selected for further analysis. (E)
Finally, these models are tested on other object recognition tasks.
doi:10.1371/journal.pcbi.1000579.g003

High-Throughput Search for Visual Representations

PLoS Computational Biology | www.ploscompbiol.org 4 November 2009 | Volume 5 | Issue 11 | e1000579

Rappel (en équations)

High-Throughput Search for Visual Representations 22

Supplemental Materials

S.1 Text S1: Search Space of Candidate Models

Candidate models were composed of a hierarchy of three layers, with each layer including a cascade of
linear and nonlinear operations that produce successively elaborated nonlinear feature-map representa-
tions of the original image. A diagram detailing the flow of operations is shown in Figure S2, and, for
the purposes of notation, the cascade of operations is represented as follows:

Layer0 :

Input Grayscale−→ Normalize−→ N0

Layer1 :

N0 Filter−→ F1 Activate−→ A1 Pool−→ P1 Normalize−→ N1

and generally, for all ! ≥ 1:

Layer! :

N!−1 Filter−→ F! Activate−→ A! Pool−→ P! Normalize−→ N!

Details of these steps along with the range of parameter values included in the random search space
are described below. We varied 52 parameters (described below), with a total of 2.807930× 1025 possible
unique combinations of parameter values.

S.1.1 Input and Pre-processing

The input of the model was a 200× 200 pixel image. In the pre-processing stage, referred to as Layer0,
this input was converted to grayscale and locally normalized:

N0 = Normalize(Grayscale(Input)) (1)

where the Normalize operation is described in detail below. Because this normalization is the final
operation of each layer, in the following sections, we refer to N !−1 as the input of each Layer!>0 and N !

as the output.

S.1.2 Linear Filtering

Description: The input N !−1 of each subsequent layer (i.e. Layer!, ! ∈ {1, 2, 3}) was first linearly
filtered using a bank of k! filters to produce a stack of k! feature maps, denoted F !. In a biologically-
inspired context, this operation is analogous to the weighted integration of synaptic inputs [43,44], where
each filter in the filterbank represents a different cell.

Definitions: The filtering operation for Layer! is denoted:

F! = Filter(N!−1,Φ!) (2)

and produces a stack, F !, of k! feature maps, with each map, F !
i , given by:

F !
i = N !−1 ⊗ Φ!

i ∀i ∈ {1, 2, . . . , k!} (3)

High-Throughput Search for Visual Representations 22

Supplemental Materials

S.1 Text S1: Search Space of Candidate Models

Candidate models were composed of a hierarchy of three layers, with each layer including a cascade of
linear and nonlinear operations that produce successively elaborated nonlinear feature-map representa-
tions of the original image. A diagram detailing the flow of operations is shown in Figure S2, and, for
the purposes of notation, the cascade of operations is represented as follows:

Layer0 :

Input Grayscale−→ Normalize−→ N0

Layer1 :

N0 Filter−→ F1 Activate−→ A1 Pool−→ P1 Normalize−→ N1

and generally, for all ! ≥ 1:

Layer! :

N!−1 Filter−→ F! Activate−→ A! Pool−→ P! Normalize−→ N!

Details of these steps along with the range of parameter values included in the random search space
are described below. We varied 52 parameters (described below), with a total of 2.807930× 1025 possible
unique combinations of parameter values.

S.1.1 Input and Pre-processing

The input of the model was a 200× 200 pixel image. In the pre-processing stage, referred to as Layer0,
this input was converted to grayscale and locally normalized:

N0 = Normalize(Grayscale(Input)) (1)

where the Normalize operation is described in detail below. Because this normalization is the final
operation of each layer, in the following sections, we refer to N !−1 as the input of each Layer!>0 and N !

as the output.

S.1.2 Linear Filtering

Description: The input N !−1 of each subsequent layer (i.e. Layer!, ! ∈ {1, 2, 3}) was first linearly
filtered using a bank of k! filters to produce a stack of k! feature maps, denoted F !. In a biologically-
inspired context, this operation is analogous to the weighted integration of synaptic inputs [43,44], where
each filter in the filterbank represents a different cell.

Definitions: The filtering operation for Layer! is denoted:

F! = Filter(N!−1,Φ!) (2)

and produces a stack, F !, of k! feature maps, with each map, F !
i , given by:

F !
i = N !−1 ⊗ Φ!

i ∀i ∈ {1, 2, . . . , k!} (3)

High-Throughput Search for Visual Representations 23

where ⊗ denotes a correlation of the output of the previous layer, N !−1 with the filter Φ!
i (e.g. sliding

along the first and second dimensions of N !−1). Because each successive layer after Layer0, is based on
a stack of feature maps, N !−1 is itself a stack of 2-dimensional feature maps. Thus the filters contained
within Φ! are, in turn, 3-dimensional, with the their third dimension matching the number of filters (and
therefore, the number of feature maps) from the previous layer (i.e. k!−1).

Parameters:

• The filter shapes fs
! × fs

! × fd
! were chosen randomly with fs

! ∈ {3, 5, 7, 9} and fd
! = k!−1.

• Depending on the layer ! considered, the number of filters k! was chosen randomly from the following
lists:

– In Layer1, k1 ∈ {16, 32, 64}
– In Layer2, k2 ∈ {16, 32, 64, 128}
– In Layer3, k3 ∈ {16, 32, 64, 128, 256}

All filters were initialized to random starting values, and their weights were then learned during the
Unsupervised Learning Phase (described below; an example of a set of learned filterbanks from one
model instance is shown in Figure S6).

S.1.3 Activation Function

Description: Filter outputs were subjected to threshold and saturation activation function, wherein
output values were clipped to be within a parametrically defined range. This operation is analogous to
the spontaneous activity thresholds and firing saturation levels observed in biological neurons [44].

Definitions: We define the activation function:

A! = Activate(F!) (4)

that clips the outputs of the filtering step, such that:

Activate(x) =






γmax
! if x > γmax

!

γmin
! if x < γmin

!

x otherwise
(5)

Where the two parameters γmin
! and γmax

! control the threshold and saturation, respectively. Note that
if both minimum and maximum threshold values are −∞ and +∞, the activation is linear (no output is
clipped).

Parameters:

• γmin
! was randomly chosen to be −∞ or 0

• γmax
! was randomly chosen to be 1 or +∞

S.1.4 Pooling

Description: The activations of each filter within some neighboring region were then pooled together
and the resulting outputs were spatially downsampled.

High-Throughput Search for Visual Representations 24

Definitions: We define the pooling function:

P! = Pool(A!) (6)

such that:

P!
i = Downsampleα(p!

√
(A!

i)p! ! 1a!×a!) (7)

Where ! is the 2-dimensional correlation function with 1a!×a! being an a!×a! matrix of ones (a! can be
seen as the size of the pooling “neighborhood”). The variable p! controls the exponents in the pooling
function.

Parameters:

• The stride parameter α was fixed to 2, resulting in a downsampling factor of 4.

• The size of the neighborhood a! was randomly chosen from {3, 5, 7, 9}.

• The exponent p! was randomly chosen from {1, 2, 10}.

Note that for p! = 1, this is equivalent to blurring with a a! × a! boxcar filter. When p! = 2 or p! = 10
the output is the Lp!

-norm 1.

S.1.5 Normalization

Description: As a final stage of processing within each layer, the output of the Pooling step were
normalized by the activity of their neighbors within some radius (across space and across feature maps).
Specifically, each response was divided by the magnitude of the vector of neighboring values if above a
given threshold. This operation draws biological inspiration from the competitive interactions observed
in natural neuronal systems (e.g. contrast gain control mechanisms in cortical area V1, and elsewhere
[45,44])

Definitions: We define the normalization function:

N! = Normalize(P!) (8)

such that:

N ! =

{
ρ! · C! if ρ! ·

∣∣∣∣C! ⊗ 1b!×b!×k!

∣∣∣∣
2

< τ !

C!

||C!⊗1b!×b!×k! ||2
otherwise (9)

with

C! = P ! − δ! · P ! ⊗ 1b!×b!×k!

b! · b! · k!
(10)

Where δ! ∈ {0, 1}, ⊗ is a 3-dimensional correlation over the “valid” domain (i.e. sliding over the first two
dimensions only), and 1b!×b!×k! is a b! × b! × k! array full of ones. b! can be seen as the normalization
“neighborhood” and δ! controls if this neighborhood is centered (i.e. subtracting the mean of the vector
of neighboring values) before divisive normalization. ρ! is a “magnitude gain” parameter and τ ! is a
threshold parameter below which no divisive normalization occurs.

1The L10-norm produces outputs similar to a max operation (i.e. softmax).

High-Throughput Search for Visual Representations 24

Definitions: We define the pooling function:

P! = Pool(A!) (6)

such that:

P!
i = Downsampleα(p!

√
(A!

i)p! ! 1a!×a!) (7)

Where ! is the 2-dimensional correlation function with 1a!×a! being an a!×a! matrix of ones (a! can be
seen as the size of the pooling “neighborhood”). The variable p! controls the exponents in the pooling
function.

Parameters:

• The stride parameter α was fixed to 2, resulting in a downsampling factor of 4.

• The size of the neighborhood a! was randomly chosen from {3, 5, 7, 9}.

• The exponent p! was randomly chosen from {1, 2, 10}.

Note that for p! = 1, this is equivalent to blurring with a a! × a! boxcar filter. When p! = 2 or p! = 10
the output is the Lp!

-norm 1.

S.1.5 Normalization

Description: As a final stage of processing within each layer, the output of the Pooling step were
normalized by the activity of their neighbors within some radius (across space and across feature maps).
Specifically, each response was divided by the magnitude of the vector of neighboring values if above a
given threshold. This operation draws biological inspiration from the competitive interactions observed
in natural neuronal systems (e.g. contrast gain control mechanisms in cortical area V1, and elsewhere
[45,44])

Definitions: We define the normalization function:

N! = Normalize(P!) (8)

such that:

N ! =

{
ρ! · C! if ρ! ·

∣∣∣∣C! ⊗ 1b!×b!×k!

∣∣∣∣
2

< τ !

C!

||C!⊗1b!×b!×k! ||2
otherwise (9)

with

C! = P ! − δ! · P ! ⊗ 1b!×b!×k!

b! · b! · k!
(10)

Where δ! ∈ {0, 1}, ⊗ is a 3-dimensional correlation over the “valid” domain (i.e. sliding over the first two
dimensions only), and 1b!×b!×k! is a b! × b! × k! array full of ones. b! can be seen as the normalization
“neighborhood” and δ! controls if this neighborhood is centered (i.e. subtracting the mean of the vector
of neighboring values) before divisive normalization. ρ! is a “magnitude gain” parameter and τ ! is a
threshold parameter below which no divisive normalization occurs.

1The L10-norm produces outputs similar to a max operation (i.e. softmax).

convolution (linéaire)

transformation non-linéaire
(tanh, abs, etc.)

“max pooling”, “average pooling”

“subtractive normalization”
“divisive normalization”

 Fast Inference in Sparse Coding Algorithms
with Applications to Object Recognition

(Kavukcuoglu, Ranzato and LeCun, techreport 2008)

1 INTRODUCTION 2

learning framework and in [2, 3] using unsupervised learning. In particular,
learning sparse representations can be advantageous since features are more
likely to be linearly separable in a high-dimensional space and they are more
robust to noise. Many sparse coding algorithms have been shown to learn good
local feature extractors for natural images [4, 5, 6, 7, 8]. However, application
of these methods to vision problems has been limited due to prohibitive cost of
calculating sparse representations for a given image [6].

In this work, we propose an algorithm named Predictive Sparse Decomposi-
tion (PSD) that can simultaneously learn an overcomplete linear basis set, and
produce a smooth and easy-to-compute approximator that predicts the optimal
sparse representation. Experiments demonstrate that the predictor is over 100
times faster than the fastest sparse optimization algorithm, and yet produces
features that yield better recognition accuracy on visual object recognition tasks
than the optimal representations produced through optimization.

1.1 Sparse Coding Algorithms

Finding a representation Z ∈ Rm for a given signal Y ∈ Rn by linear combina-
tion of an overcomplete set of basis vectors, columns of matrix B ∈ Rn×m with
m > n, has infinitely many solutions. In optimal sparse coding, the problem is
formulated as:

min ||Z||0 s.t. Y = BZ (1)

where the !0 “norm” is defined as the number of non-zero elements in a given
vector. Unfortunately, the solution to this problem requires a combinatorial
search, intractable in high-dimensional spaces. Matching Pursuit methods [9]
offer a greedy approximation to this problem. Another way to approximate
this problem is to make a convex relaxation by turning the !0 norm into an
!1 norm [10]. This problem, dubbed Basis Pursuit in the signal processing
community, has been shown to give the same solution to eq. (1), provided that
the solution is sparse enough [11]. Furthermore, the problem can be written as
an unconstrained optimization problem:

L(Y, Z; B) =
1

2
||Y − BZ||22 + λ||Z||1 (2)

This particular formulation, called Basis Pursuit Denoising, can be seen as min-
imizing an objective that penalizes the reconstruction error using a linear basis
set and the sparsity of the corresponding representation. Many recent works
have focused on efficiently solving the problem in eq. (2) [12, 5, 7, 13, 14, 6].
Yet, inference requires running some sort of iterative minimization algorithm
that is always computationally expensive.

Additionally, some algorithms are also able to learn the set of basis functions.
The learning procedure finds the B matrix that minimizes the same loss of
eq. (2). The columns of B are constrained to have unit norm in order to prevent
trivial solutions where the loss is minimized by scaling down the coefficients

2 THE ALGORITHM 3

while scaling up the bases. Learning proceeds by alternating the optimization
over Z to infer the representation for a given set of bases B, and the minimization
over B for the given set of optimal Z found at the previous step. Loosely
speaking, basis functions learned on natural images under sparsity constraints
are localized oriented edge detectors reminiscent of Gabor wavelets.

2 The Algorithm

In order to make inference efficient, we train a non-linear regressor that maps in-
put patches Y to sparse representations Z. We consider the following nonlinear
mapping:

F (Y ; G, W, D) = G tanh(WY + D) (3)

where W ∈ Rm×n is a filter matrix, D ∈ Rm is a vector of biases, tanh is
the hyperbolic tangent non-linearity, and G ∈ Rm×m is a diagonal matrix of
gain coefficients allowing the outputs of F to compensate for the scaling of the
input, given that the reconstruction performed by B uses bases with unit norm.
Let Pf collectively denote the parameters that are learned in this predictor,
Pf = {G, W, D}. The goal of the algorithm is to make the prediction of the
regressor, F (Y ; Pf) as close as possible to the optimal set of coefficients: Z∗ =
argminZ L(Y, Z; B) in eq. (2). This optimization can be carried out separately
after the problem in eq. (2) has been solved. However, training becomes much
faster by jointly optimizing the Pf and the set of bases B all together. This
is achieved by adding another term to the loss function in eq. (2), enforcing
the representation Z to be as close as possible to the feed-forward prediction
F (Y ; Pf):

L(Y, Z; B, Pf) = ‖Y − BZ‖2

2 + λ‖Z‖1 + α‖Z − F (Y ; Pf)‖2

2 (4)

Minimizing this loss with respect to Z produces a representation that simul-
taneously reconstructs the patch, is sparse, and is not too different from the
predicted representation. If multiple solutions to the original loss (without the
prediction term) exist, minimizing this compound loss will drive the system
towards producing basis functions and optimal representations that are easily
predictable. After training, the function F (Y ; Pf) will provide good and smooth
approximations to the optimal sparse representations. Note that, a linear map-
ping would not be able to produce sparse representations using an overcomplete
set because of the non-orthogonality of the filters, therefore a non-linear map-
ping is required.

2.1 Learning

The goal of learning is to find the optimal value of the basis functions B, as well
as the value of the parameters in the regressor Pf . Learning proceeds by an
on-line block coordinate gradient descent algorithm, alternating the following
two steps for each training sample Y :

2 THE ALGORITHM 3

while scaling up the bases. Learning proceeds by alternating the optimization
over Z to infer the representation for a given set of bases B, and the minimization
over B for the given set of optimal Z found at the previous step. Loosely
speaking, basis functions learned on natural images under sparsity constraints
are localized oriented edge detectors reminiscent of Gabor wavelets.

2 The Algorithm

In order to make inference efficient, we train a non-linear regressor that maps in-
put patches Y to sparse representations Z. We consider the following nonlinear
mapping:

F (Y ; G, W, D) = G tanh(WY + D) (3)

where W ∈ Rm×n is a filter matrix, D ∈ Rm is a vector of biases, tanh is
the hyperbolic tangent non-linearity, and G ∈ Rm×m is a diagonal matrix of
gain coefficients allowing the outputs of F to compensate for the scaling of the
input, given that the reconstruction performed by B uses bases with unit norm.
Let Pf collectively denote the parameters that are learned in this predictor,
Pf = {G, W, D}. The goal of the algorithm is to make the prediction of the
regressor, F (Y ; Pf) as close as possible to the optimal set of coefficients: Z∗ =
argminZ L(Y, Z; B) in eq. (2). This optimization can be carried out separately
after the problem in eq. (2) has been solved. However, training becomes much
faster by jointly optimizing the Pf and the set of bases B all together. This
is achieved by adding another term to the loss function in eq. (2), enforcing
the representation Z to be as close as possible to the feed-forward prediction
F (Y ; Pf):

L(Y, Z; B, Pf) = ‖Y − BZ‖2

2 + λ‖Z‖1 + α‖Z − F (Y ; Pf)‖2

2 (4)

Minimizing this loss with respect to Z produces a representation that simul-
taneously reconstructs the patch, is sparse, and is not too different from the
predicted representation. If multiple solutions to the original loss (without the
prediction term) exist, minimizing this compound loss will drive the system
towards producing basis functions and optimal representations that are easily
predictable. After training, the function F (Y ; Pf) will provide good and smooth
approximations to the optimal sparse representations. Note that, a linear map-
ping would not be able to produce sparse representations using an overcomplete
set because of the non-orthogonality of the filters, therefore a non-linear map-
ping is required.

2.1 Learning

The goal of learning is to find the optimal value of the basis functions B, as well
as the value of the parameters in the regressor Pf . Learning proceeds by an
on-line block coordinate gradient descent algorithm, alternating the following
two steps for each training sample Y :

Sparse Coding

Predictive Sparse Decomposition

encoder

 Fast Inference in Sparse Coding Algorithms
with Applications to Object Recognition

(Kavukcuoglu, Ranzato and LeCun, techreport 2008)

3 EXPERIMENTS 5

through B).
Approximate inference, on the other hand sets the representation to the
value produced by F (Y ; Pf) as given in eq. (3), involving only a forward prop-
agation through the regressor, i.e. a single matrix-vector multiplication.

3 Experiments

First, we demonstrate that the proposed algorithm (PSD) is able to produce
good features for recognition by comparing to other unsupervised feature extrac-
tion algorithms, Principal Components Analysis (PCA), Restricted Boltzman
Machine (RBM) [16], and Sparse Encoding Symmetric Machine (SESM) [15].
Then, we compare the recognition accuracy and inference time of PSD feed-
forward approximation to feature sign algorithm [7], on the Caltech 101 dataset [17].
Finally we investigate the stability of representations under naturally changing
inputs.

3.1 Comparison against PCA, RBM and SESM on the
MNIST

The MNIST dataset has a training set with 60,000 handwritten digits of size
28x28 pixels, and a test set with 10,000 digits. Each image is preprocessed
by normalizing the pixel values so that their standard deviation is equal to
1. In this experiment the sparse representation has 256 units. This internal
representation is used as a global feature vector and fed to a linear regularized
logistic regression classifier. Fig. 1 shows the comparison between PSD (using
feed-forward approximate codes) and, PCA, SESM [15], and RBM [18]. Even
though PSD provides the worst reconstruction error, it can achieve the
best recognition accuracy on the test set under different number of training
samples per class.

0 0.2 0.4 0.6 0.8
!10

0

10

20

30

40

50

RMSE

E
R

R
O

R
 R

A
T

E
 %

10 samples

0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

16

18

RMSE

E
R

R
O

R
 R

A
T

E
 %

100 samples

0 0.2 0.4 0.6 0.8
3

4

5

6

7

8

9

10

RMSE

E
R

R
O

R
 R

A
T

E
 %

1000 samples

 RAW: train

RAW: test

PCA: train

PCA: test

SESM: train

SESM: test

RBM: train

RBM: test

PSD train

PSD test

Figure 1: Classification error on MNIST as a function of reconstruction error
using raw pixel values and, PCA, RBM, SESM and PSD features. Left-to-Right
: 10-100-1000 samples per class are used for training a linear classifier on the
features. The unsupervised algorithms were trained on the first 20,000 training
samples of the MNIST dataset [19].

3 EXPERIMENTS 5

through B).
Approximate inference, on the other hand sets the representation to the
value produced by F (Y ; Pf) as given in eq. (3), involving only a forward prop-
agation through the regressor, i.e. a single matrix-vector multiplication.

3 Experiments

First, we demonstrate that the proposed algorithm (PSD) is able to produce
good features for recognition by comparing to other unsupervised feature extrac-
tion algorithms, Principal Components Analysis (PCA), Restricted Boltzman
Machine (RBM) [16], and Sparse Encoding Symmetric Machine (SESM) [15].
Then, we compare the recognition accuracy and inference time of PSD feed-
forward approximation to feature sign algorithm [7], on the Caltech 101 dataset [17].
Finally we investigate the stability of representations under naturally changing
inputs.

3.1 Comparison against PCA, RBM and SESM on the
MNIST

The MNIST dataset has a training set with 60,000 handwritten digits of size
28x28 pixels, and a test set with 10,000 digits. Each image is preprocessed
by normalizing the pixel values so that their standard deviation is equal to
1. In this experiment the sparse representation has 256 units. This internal
representation is used as a global feature vector and fed to a linear regularized
logistic regression classifier. Fig. 1 shows the comparison between PSD (using
feed-forward approximate codes) and, PCA, SESM [15], and RBM [18]. Even
though PSD provides the worst reconstruction error, it can achieve the
best recognition accuracy on the test set under different number of training
samples per class.

0 0.2 0.4 0.6 0.8
!10

0

10

20

30

40

50

RMSE

E
R

R
O

R
 R

A
T

E
 %

10 samples

0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

16

18

RMSE

E
R

R
O

R
 R

A
T

E
 %

100 samples

0 0.2 0.4 0.6 0.8
3

4

5

6

7

8

9

10

RMSE

E
R

R
O

R
 R

A
T

E
 %

1000 samples

 RAW: train

RAW: test

PCA: train

PCA: test

SESM: train

SESM: test

RBM: train

RBM: test

PSD train

PSD test

Figure 1: Classification error on MNIST as a function of reconstruction error
using raw pixel values and, PCA, RBM, SESM and PSD features. Left-to-Right
: 10-100-1000 samples per class are used for training a linear classifier on the
features. The unsupervised algorithms were trained on the first 20,000 training
samples of the MNIST dataset [19].

 Fast Inference in Sparse Coding Algorithms
with Applications to Object Recognition

(Kavukcuoglu, Ranzato and LeCun, techreport 2008)

3 EXPERIMENTS 7

Figure 2: a) 256 basis functions of size 12x12 learned by PSD, trained on the
Berkeley dataset. Each 12x12 block is a column of matrix B in eq. (4), i.e. a
basis function. b) Object recognition architecture: linear adaptive filter bank,
followed by abs rectification, average down-sampling and linear SVM classifier.

Figure 3: a) Speed up for inferring the sparse representation achieved by PSD
predictor over FS for a code with 64 units. The feed-forward extraction is
more than 100 times faster. b) Recognition accuracy versus measured sparsity
(average !1 norm of the representation) of PSD predictor compared to the to
the representation of FS algorithm. A difference within 1% is not statistically
significant. c) Recognition accuracy as a function of number of basis functions.

in the image (see fig. 2(b)). Using this system with 30 training images per class
we can achieve 53% accuracy on Caltech 101 dataset.

Since FS finds exact sparse codes, its representations are generally sparser
than those found by PSD predictor trained with the same value of sparsity
penalty λ. Hence, we compare the recognition accuracy against the measured
sparsity level of the representation as shown in fig. 3(b). PSD is not only able to
achieve better accuracy than exact sparse coding algorithms, but also, it does
it much more efficiently. Fig. 3(a) demonstrates that our feed-forward predictor
extracts features more than 100 times faster than feature sign. In fact, the
speed up is over 800 when the sparsity is set to the value that gives the highest
accuracy shown in fig. 3(b).

Finally, we observe that these sparse coding algorithms are somewhat inef-
ficient when applied convolutionally. Many feature detectors are the translated
versions of each other as shown in fig. 2(a). Hence, the resulting feature maps
are highly redundant. This might explain why the recognition accuracy tends
to saturate when the number of filters is increased as shown in fig. 3(c).

 Fast Inference in Sparse Coding Algorithms
with Applications to Object Recognition

(Kavukcuoglu, Ranzato and LeCun, techreport 2008)

3 EXPERIMENTS 7

Figure 2: a) 256 basis functions of size 12x12 learned by PSD, trained on the
Berkeley dataset. Each 12x12 block is a column of matrix B in eq. (4), i.e. a
basis function. b) Object recognition architecture: linear adaptive filter bank,
followed by abs rectification, average down-sampling and linear SVM classifier.

Figure 3: a) Speed up for inferring the sparse representation achieved by PSD
predictor over FS for a code with 64 units. The feed-forward extraction is
more than 100 times faster. b) Recognition accuracy versus measured sparsity
(average !1 norm of the representation) of PSD predictor compared to the to
the representation of FS algorithm. A difference within 1% is not statistically
significant. c) Recognition accuracy as a function of number of basis functions.

in the image (see fig. 2(b)). Using this system with 30 training images per class
we can achieve 53% accuracy on Caltech 101 dataset.

Since FS finds exact sparse codes, its representations are generally sparser
than those found by PSD predictor trained with the same value of sparsity
penalty λ. Hence, we compare the recognition accuracy against the measured
sparsity level of the representation as shown in fig. 3(b). PSD is not only able to
achieve better accuracy than exact sparse coding algorithms, but also, it does
it much more efficiently. Fig. 3(a) demonstrates that our feed-forward predictor
extracts features more than 100 times faster than feature sign. In fact, the
speed up is over 800 when the sparsity is set to the value that gives the highest
accuracy shown in fig. 3(b).

Finally, we observe that these sparse coding algorithms are somewhat inef-
ficient when applied convolutionally. Many feature detectors are the translated
versions of each other as shown in fig. 2(a). Hence, the resulting feature maps
are highly redundant. This might explain why the recognition accuracy tends
to saturate when the number of filters is increased as shown in fig. 3(c).

3 EXPERIMENTS 7

Figure 2: a) 256 basis functions of size 12x12 learned by PSD, trained on the
Berkeley dataset. Each 12x12 block is a column of matrix B in eq. (4), i.e. a
basis function. b) Object recognition architecture: linear adaptive filter bank,
followed by abs rectification, average down-sampling and linear SVM classifier.

Figure 3: a) Speed up for inferring the sparse representation achieved by PSD
predictor over FS for a code with 64 units. The feed-forward extraction is
more than 100 times faster. b) Recognition accuracy versus measured sparsity
(average !1 norm of the representation) of PSD predictor compared to the to
the representation of FS algorithm. A difference within 1% is not statistically
significant. c) Recognition accuracy as a function of number of basis functions.

in the image (see fig. 2(b)). Using this system with 30 training images per class
we can achieve 53% accuracy on Caltech 101 dataset.

Since FS finds exact sparse codes, its representations are generally sparser
than those found by PSD predictor trained with the same value of sparsity
penalty λ. Hence, we compare the recognition accuracy against the measured
sparsity level of the representation as shown in fig. 3(b). PSD is not only able to
achieve better accuracy than exact sparse coding algorithms, but also, it does
it much more efficiently. Fig. 3(a) demonstrates that our feed-forward predictor
extracts features more than 100 times faster than feature sign. In fact, the
speed up is over 800 when the sparsity is set to the value that gives the highest
accuracy shown in fig. 3(b).

Finally, we observe that these sparse coding algorithms are somewhat inef-
ficient when applied convolutionally. Many feature detectors are the translated
versions of each other as shown in fig. 2(a). Hence, the resulting feature maps
are highly redundant. This might explain why the recognition accuracy tends
to saturate when the number of filters is increased as shown in fig. 3(c).

3 EXPERIMENTS 7

Figure 2: a) 256 basis functions of size 12x12 learned by PSD, trained on the
Berkeley dataset. Each 12x12 block is a column of matrix B in eq. (4), i.e. a
basis function. b) Object recognition architecture: linear adaptive filter bank,
followed by abs rectification, average down-sampling and linear SVM classifier.

Figure 3: a) Speed up for inferring the sparse representation achieved by PSD
predictor over FS for a code with 64 units. The feed-forward extraction is
more than 100 times faster. b) Recognition accuracy versus measured sparsity
(average !1 norm of the representation) of PSD predictor compared to the to
the representation of FS algorithm. A difference within 1% is not statistically
significant. c) Recognition accuracy as a function of number of basis functions.

in the image (see fig. 2(b)). Using this system with 30 training images per class
we can achieve 53% accuracy on Caltech 101 dataset.

Since FS finds exact sparse codes, its representations are generally sparser
than those found by PSD predictor trained with the same value of sparsity
penalty λ. Hence, we compare the recognition accuracy against the measured
sparsity level of the representation as shown in fig. 3(b). PSD is not only able to
achieve better accuracy than exact sparse coding algorithms, but also, it does
it much more efficiently. Fig. 3(a) demonstrates that our feed-forward predictor
extracts features more than 100 times faster than feature sign. In fact, the
speed up is over 800 when the sparsity is set to the value that gives the highest
accuracy shown in fig. 3(b).

Finally, we observe that these sparse coding algorithms are somewhat inef-
ficient when applied convolutionally. Many feature detectors are the translated
versions of each other as shown in fig. 2(a). Hence, the resulting feature maps
are highly redundant. This might explain why the recognition accuracy tends
to saturate when the number of filters is increased as shown in fig. 3(c).

 What is the Best Multi-Stage Architecture
for Object Recognition?

(Jarrett, Kavukcuoglu, Ranzato and LeCun, ICCV 2009)

• Variations dans les détails de l’architecture

FCSG yj = gjtanh(
∑

i

kij ⊗ xi)

Rabs yijk = |xijk|

N

vijk = xijk −
∑

ipq

wpq · xi,j+p,k+q

yijk = vijk/max(c,σjk)

σjk = (
∑

ipq

wpq · v2
i,j+p,k+q)

1/2

PA

PM

yijk =
∑

ipq

wpq · xi,j+p,k+q

yijk = max
ipq

xi,j+p,k+q

ou

{

 What is the Best Multi-Stage Architecture
for Object Recognition?

(Jarrett, Kavukcuoglu, Ranzato and LeCun, ICCV 2009)

• Variations dans l’apprentissage

R

R+

U

U+

filtres aléatoires

filtres aléatoires, puis raffinement supervisé

filtres appris

filtres appris, puis raffinement supervisé

entraînement non-supervisé

 What is the Best Multi-Stage Architecture
for Object Recognition?

(Jarrett, Kavukcuoglu, Ranzato and LeCun, ICCV 2009)

Single Stage System: [64.F9×9

CSG
− R/N/P5×5] - log reg

Rabs − N − PA Rabs − PA N − PM N − PA PA

U+ 54.2% 50.0% 44.3% 18.5% 14.5%
R+ 54.8% 47.0% 38.0% 16.3% 14.3%
U 52.2% 43.3%(±1.6) 44.0% 17.2% 13.4%
R 53.3% 31.7% 32.1% 15.3% 12.1%(±2.2)
G 52.3%

Two Stage System: [64.F9×9

CSG
− R/N/P5×5] − [256.F9×9

CSG
− R/N/P4×4] - log reg

Rabs − N − PA Rabs − PA N − PM N − PA PA

U+U+ 65.5% 60.5% 61.0% 34.0% 32.0%
R+R+ 64.7% 59.5% 60.0% 31.0% 29.7%
UU 63.7% 46.7% 56.0% 23.1% 9.1%
RR 62.9% 33.7%(±1.5) 37.6%(±1.9) 19.6% 8.8%
GT 55.8%

Single Stage: [64.F9×9

CSG
− Rabs/N/P5×5

A
] - PMK-SVM

U 64.0%

Two Stages: [64.F9×9

CSG
− Rabs/N/P5×5

A
] − [256.F9×9

CSG
− Rabs/N] - PMK-SVM

UU 52.8%

Table 1. Average recognition rates on Caltech-101 with 30 training samples per class. Each row contains results for one of the training
protocols, and each column for one type of architecture. All columns use an FCSG as the first module, followed by the modules shown in

the column label. The error bars for all experiments are within 1%, except where noted.

All results are recognition rates averaged over classes,
after training with 30 samples per class, and averaged over
5 drawings of the training set. To adjust hyperparameters,
a validation set of 5 samples per class was taken out of the
training sets. The hyper-parameters were selected to maxi-
mize the performance on the validation set. Then, the sys-
tem was trained over the entire training set. The final error
value is computed as the average error over categories to
account for differences in the number of instances per cat-
egory (as is standard protocol for Caltech-101). The back-
ground category was also included.

Using a Single Stage of Feature Extraction: The first
stage is composed of an FCSG layer with 64 filters of size
9 × 9 (64F 9×9

CSG), followed by an abs rectification (Rabs), a
local contrast normalization layer (N) and an average pool-
ing layer with 10×10 boxcar filter and 5×5 down-sampling
(P 5×5

A). The output of the first stage is a set of 64 features
maps of size 26 × 26. This output is then fed to a multi-
nomial logistic regression classifier that produces a 102-
dimensional output vector representing a posterior distribu-
tion over class labels. Lazebnik’s PMK-SVM classifier [13]
was also tested.

Using Two Stages of Feature Extraction: In two-stage
systems, the second-stage feature extractor is fed with the
output of the first stage. The first layer of the second stage
is an FCSG module with 256 output features maps, each of
which combines a random subset of 16 feature maps from
the previous stage using 9×9 kernels. Hence the total num-
ber of convolution kernels is 256 × 16 = 4096. The aver-
age pooling module uses a 6 × 6 boxcar filter with a 4 × 4
down-sampling step. This produces an output feature map

of size 256×4×4, which is then fed to a multinomial logis-
tic regression classifier. The PMK-SVM classifier was also
tested.

Table 1 summarizes the results for the experiments.
1. The most astonishing result is that systems with random
filters and no filter learning whatsoever achieve decent per-
formance (53.3% for R and 62.9% for RR), as long as they
include absolute value rectification and contrast normaliza-
tion (Rabs − N − PA).
2. Comparing experiments from rows R vs R+, RR vs
R+R+, U vs U+ and UU vs U+U+, we see that supervised
fine tuning consistently improves the performance, particu-
larly with weak non-linearities: 62.9% to 64.7% for RR,
63.7% to 65.5% for UU using Rabs − N − PA and 35.1%
to 59.5% for RR using Rabs − PA.
3. It appears clear that two-stage systems (UU , U+U+,
RR, R+R+) are systematically and significantly better than
their single-stage counterparts (U , U+, R, R+). For in-
stance, 54.2% obtained by U+ compared to 65.5% obtained
by U+U+ using Rabs −N −PA. However, when using PA

architecture, adding second stage without supervised refine-
ment does not seem to help. This may be due to cancellation
effects of the PA layer when rectification is not present.
4. It seems that unsupervised training (U , UU , U+, U+U+)
does not seem to significantly improve the performance
(comparing with (R, RR, R+, R+R+) if both rectification
and normalization are used (62.9% for RR versus 63.7%
for UU). When contrast normalization is removed, the per-
formance gap becomes significant (35.1% for RR versus
47.8% for UU). If no supervised refinement is performed, it
looks as if appropriate architectural components are a good

 What is the Best Multi-Stage Architecture
for Object Recognition?

(Jarrett, Kavukcuoglu, Ranzato and LeCun, ICCV 2009)

substitute for unsupervised training.
5. It is clear that abs rectification is a crucial component for
achieving good performance, as shown with the U+U+ pro-
tocol by comparing columns N − PA (31.0%), Rabs − PA

(60.0%), and Rabs − N − PA (65.5%). However, using
max pooling seems to alleviate the need for abs rectifica-
tion, confirming the hypothesis that average pooling with-
out rectification falls victim to cancellation effects between
neighboring filter outputs. This is an extremely important
fact for users of convolutional networks, in which rectifica-
tion has not been traditionally used.
6. A single-stage system with PMK-SVM reaches the same
performance as a two-stage system with logistic regression
(around 65%) as shown in the last two rows of Table 1. It
looks as if the pyramid match kernel is able to play the same
role as a second stage of feature extraction. Perhaps it is be-
cause PMK first performs a K-means based vector quantiza-
tion, which can be seen as an extreme form of sparse coding,
followed by local histogramming, which is a form of spa-
tial pooling. Hence, the PM kernel is conceptually similar
to a second stage based on sparse coding and pooling as re-
cently pointed out in [30]. Furthermore, these numbers are
similar to the performance of the original PMK-SVM sys-
tem which used dense SIFT features (64.6%) [13]. Again,
this is hardly surprising as the SIFT module is conceptually
very similar to our feature extraction stage. When using
features extracted using UU architecture, the performance
of PMK-SVM classifier drops significantly. This behaviour
might be caused by the very small spatial density (18× 18)
of features at second layer.
7. The last row of single stage system represents FCSG ker-
nels that are initialized with Gabor functions (G). The last
row of two stage system represents first layer gabor func-
tions, followed by a second layer where kernels are initial-
ized with templates from first layer outputs (GT) as in the
HMAX model [28, 22]. Suprisingly, the performance is
considerably worse than with random filters.

4.1. NORB Dataset
Caltech-101 is very peculiar in that many objects have

distinctive textures and few pose variations. More impor-
tantly, the particularly small size of the training set favors
methods that minimize the role learning and maximize the
role of clever engineering. A diametrically opposed object
dataset is NORB [15]. The “Small NORB” dataset has 5 ob-
ject categories (humans, airplanes, cars, trucks, animals) 5

Figure 2. Several examples from NORB dataset

20 50 100 200 500 1000 2000 4860
4

6
7
8
9

10

15

20

25

30
35
40

50

number of training samples per class

e
rr

o
r

ra
te

F
CSG

 − P
A
 (R+ R+)

F
CSG

 − R
abs

 − N − P
A
 (R+ R+)

F
CSG

 − R
abs

 − N − P
A
 (RR)

Figure 3. Test Error rate vs. number of training samples per class

on NORB Dataset. Although pure random features perform sur-
prisingly good when training data is very scarce, for large number

of training data learning improves the performance significantly.
Absolute value rectification (Rabs) and local normalization (N) is
shown to improve the performance in all cases.

object instances for training, and 5 different object instances
for test. Each object instance has 972 samples (18 azimuths,
9 elevations, and 6 illuminations), for a total of 24300 train-
ing samples and 24300 test samples (4860 per class). Each
image is 96 × 96 pixels, grayscale. Experiments were con-
ducted to elucidate the importance of the non-linearity, and
the performance of random filter systems when many la-
beled samples are available.

Only the RR and R+R+ protocols were used with 8 fea-
ture maps with 5 × 5 filters at the first stage, 4 × 4 average
pooling followed by 24 feature maps with 6×6 filters, each
of which combines input from 4 randomly picked stage-1
feature maps, followed by 3 × 3 average pooling. The last
stage is a 5-way multinomial logistic regressor.

Several systems with various non-linearities were trained
on subsets of the training set with 20, 50, 100, 200, 500,
1000, 2000, and 4860 training samples per class. The re-
sults are shown in figure 3 in log-log scale. The green curve
(bottom) uses abs and normalization, while the blue curve
(middle) uses neither. Both are trained in purely supervised
mode from random initial conditions (R+R+). It appears
that the use of abs and normalization makes a big difference
when labeled samples are scarce, but the difference dimin-
ishes as the number of training samples increases. Training
seems to compensate for architectural simplicity, or con-
versely architectural sophistication seems to compensate for
lack of training. Still the error rate when trained on the full
training set is 5.6% with abs and normalization, but 6.9%
with neither ([15] reported 6.6%).

More interesting is the behavior of the system with ran-
dom filters: While its error rate is comparable to that of the
network trained in supervised mode for small training sets
(in the “Caltech-101 regime”), the error rate remains high
as samples are added. Hence, while random filters perform
well on Caltech-101, they would most likely not perform as
well as learned filters on tasks with more labeled samples.

 What is the Best Multi-Stage Architecture
for Object Recognition?

(Jarrett, Kavukcuoglu, Ranzato and LeCun, ICCV 2009)

Figure 4. Left: random stage-1 filters, and corresponding optimal inputs that maximize the response of each corresponding complex cell in
a FCSG−Rabs−N −PA architecture. The small asymmetry in the random filters is sufficient to make them orientation selective. Middle:

same for PSD filters. The optimal input patterns contain several periods since they maximize the output of a complete stage that contains
rectification, local normalization, and average pooling with down-sampling. Shifted versions of each pattern yield similar activations.

Right panel: subset of stage-2 filters obtained after PSD and supervised refinement on Caltech-101. Some structure is apparent.

4.2. Random Filter Performance
Perhaps the most astonishing result is the surprisingly

good performance obtained with random filters with few la-
beled samples. The NORB experiments show that random
filters yield sub-par performance when labeled samples are
abundant. But the experiments also show that random filters
seem to require the presence of abs and normalization. To
explore why random filters work at all, we used gradient de-
scent to find the optimal input patterns that maximize each
complex cell (after pooling) in a FCSG − Rabs − N − PA

stage. The surprising finding is that the optimal stimuli for
random filters are oriented gratings (albeit a noisy and faint
ones), similar to the optimal stimuli for trained filters. As
shown in fig 4, it appears that random weights, combined
with the abs/norm/pooling creates a spontaneous orienta-
tion selectivity.

4.3. Handwritten Digits Recognition
As a sanity check for the overall training procedures and

architectures, experiments were run on the MNIST dataset,
which contains 60,000 gray-scale 28x28 pixel digit images
for training and 10,000 images for testing. An architec-
ture with two stages of feature extraction was used: the first
stage produces 32 feature maps using 5× 5 filters, followed
by 2x2 average pooling and down-sampling. The second
stage produces 64 feature maps, each of which combines
16 feature maps from stage 1 with 5 × 5 filters (1024 filters
total), followed by 2× 2 pooling/down-sampling. The clas-
sifier is a 2-layer fully-connected neural network with 200
hidden units, and 10 outputs. The loss function is equiva-
lent to that of a 10-way multinomial logistic regression (also
known as cross-entropy loss). The two feature stages use
abs rectification and normalization.

The parameters for the two feature extraction stages are
first trained with PSD as explained in Section 3.1. The
classifier is initialized randomly. The whole system is fine-
tuned in supervised mode (the protocol could be described
as (U+U+R+R+). A validation set of size 10,000 was set
apart from the training set to tune the only hyper-parameter:
the sparsity constant λ. Nine different values were tested
between 0.1 and 1.6 and the best value was found to be 0.2.
The system was trained with a form of stochastic gradient

descent on the 50,000 non-validation training samples un-
til the best error rate on the validation set was reached (this
took 30 epochs). It was then tuned for another 3 epochs on
the whole training set. A test error rate of 0.53% was ob-
tained. To our knowledge, this is the best error rate ever
reported on the original MNIST dataset, without distortions
or preprocessing. The best previously reported error rate
was 0.60% [26].

5. Conclusions

This paper addressed the following three questions:

1. how do the non-linearities that follow the filter banks in-
fluence the recognition accuracy. The surprising answer is
that using a rectifying non-linearity is the single most im-
portant factor in improving the performance of a recogni-
tion system. This might be due to several reasons: a) the
polarity of features is often irrelevant to recognize objects,
b) the rectification eliminates cancellations between neigh-
boring filter outputs when combined with average pooling.
Without a rectification what is propagated by the average
down-sampling is just the noise in the input. Also introduc-
ing a local normalization layer improves the performance.
It appears to make supervised learning considerably faster,
perhaps because all variables have similar variances (akin
to the advantages introduced by whitening and other decor-
relation methods)

2. does learning the filter banks in an unsupervised or
supervised manner improve the performance over hard-
wired filters or even random filters: the most surprising re-
sult is that random filters used in a two-stage system with
the proper non-linearities yield 62.9% recognition rate on
Caltech-101. Experiments on NORB show that this sur-
prising performance is only seen in the limit of very small
training set sizes. We have also shown that the optimal in-
put patterns for a randomly initialized stage are very simi-
lar to the optimal inputs for a stage that use learned filters.
The second important result is that global supervised learn-
ing of the filters yields good recognition rate if the proper
non-linearities are used. It was thought that the dismal per-
formance of supervised convolutional networks on Caltech-
101 was due to overparameterization, but it seems to be due

Filtres aléatoires

 What is the Best Multi-Stage Architecture
for Object Recognition?

(Jarrett, Kavukcuoglu, Ranzato and LeCun, ICCV 2009)

Filtres appris

Figure 4. Left: random stage-1 filters, and corresponding optimal inputs that maximize the response of each corresponding complex cell in
a FCSG−Rabs−N −PA architecture. The small asymmetry in the random filters is sufficient to make them orientation selective. Middle:

same for PSD filters. The optimal input patterns contain several periods since they maximize the output of a complete stage that contains
rectification, local normalization, and average pooling with down-sampling. Shifted versions of each pattern yield similar activations.

Right panel: subset of stage-2 filters obtained after PSD and supervised refinement on Caltech-101. Some structure is apparent.

4.2. Random Filter Performance
Perhaps the most astonishing result is the surprisingly

good performance obtained with random filters with few la-
beled samples. The NORB experiments show that random
filters yield sub-par performance when labeled samples are
abundant. But the experiments also show that random filters
seem to require the presence of abs and normalization. To
explore why random filters work at all, we used gradient de-
scent to find the optimal input patterns that maximize each
complex cell (after pooling) in a FCSG − Rabs − N − PA

stage. The surprising finding is that the optimal stimuli for
random filters are oriented gratings (albeit a noisy and faint
ones), similar to the optimal stimuli for trained filters. As
shown in fig 4, it appears that random weights, combined
with the abs/norm/pooling creates a spontaneous orienta-
tion selectivity.

4.3. Handwritten Digits Recognition
As a sanity check for the overall training procedures and

architectures, experiments were run on the MNIST dataset,
which contains 60,000 gray-scale 28x28 pixel digit images
for training and 10,000 images for testing. An architec-
ture with two stages of feature extraction was used: the first
stage produces 32 feature maps using 5× 5 filters, followed
by 2x2 average pooling and down-sampling. The second
stage produces 64 feature maps, each of which combines
16 feature maps from stage 1 with 5 × 5 filters (1024 filters
total), followed by 2× 2 pooling/down-sampling. The clas-
sifier is a 2-layer fully-connected neural network with 200
hidden units, and 10 outputs. The loss function is equiva-
lent to that of a 10-way multinomial logistic regression (also
known as cross-entropy loss). The two feature stages use
abs rectification and normalization.

The parameters for the two feature extraction stages are
first trained with PSD as explained in Section 3.1. The
classifier is initialized randomly. The whole system is fine-
tuned in supervised mode (the protocol could be described
as (U+U+R+R+). A validation set of size 10,000 was set
apart from the training set to tune the only hyper-parameter:
the sparsity constant λ. Nine different values were tested
between 0.1 and 1.6 and the best value was found to be 0.2.
The system was trained with a form of stochastic gradient

descent on the 50,000 non-validation training samples un-
til the best error rate on the validation set was reached (this
took 30 epochs). It was then tuned for another 3 epochs on
the whole training set. A test error rate of 0.53% was ob-
tained. To our knowledge, this is the best error rate ever
reported on the original MNIST dataset, without distortions
or preprocessing. The best previously reported error rate
was 0.60% [26].

5. Conclusions

This paper addressed the following three questions:

1. how do the non-linearities that follow the filter banks in-
fluence the recognition accuracy. The surprising answer is
that using a rectifying non-linearity is the single most im-
portant factor in improving the performance of a recogni-
tion system. This might be due to several reasons: a) the
polarity of features is often irrelevant to recognize objects,
b) the rectification eliminates cancellations between neigh-
boring filter outputs when combined with average pooling.
Without a rectification what is propagated by the average
down-sampling is just the noise in the input. Also introduc-
ing a local normalization layer improves the performance.
It appears to make supervised learning considerably faster,
perhaps because all variables have similar variances (akin
to the advantages introduced by whitening and other decor-
relation methods)

2. does learning the filter banks in an unsupervised or
supervised manner improve the performance over hard-
wired filters or even random filters: the most surprising re-
sult is that random filters used in a two-stage system with
the proper non-linearities yield 62.9% recognition rate on
Caltech-101. Experiments on NORB show that this sur-
prising performance is only seen in the limit of very small
training set sizes. We have also shown that the optimal in-
put patterns for a randomly initialized stage are very simi-
lar to the optimal inputs for a stage that use learned filters.
The second important result is that global supervised learn-
ing of the filters yields good recognition rate if the proper
non-linearities are used. It was thought that the dismal per-
formance of supervised convolutional networks on Caltech-
101 was due to overparameterization, but it seems to be due

A High-Throughput Screening Approach to Discovering
Good Forms of Biologically-Inspired Visual Representation

(Pinto, Doukhan, DiCarlo and Cox, PLoS 2009)

• Une autre approche non-convolutionnelle
d’apprendre les filtres

• Une sorte de “Online K-means”

High-Throughput Search for Visual Representations 25

Parameters:

• The size b! of the neighborhood region was randomly chosen from {3, 5, 7, 9}.

• The δ! parameter was chosen from {0, 1}.

• The vector of neighboring values could also be stretched by gain values ρ! ∈ {10−1, 100, 101}. Note
that when ρ! = 100 = 1, no gain is applied.

• The threshold value τ ! was randomly chosen from {10−1, 100, 101}.

S.1.6 Final model output dimensionality

The output dimensionality of each candidate model was determined by the number of filters in the final
layer, and the x-y “footprint” of the layer (which, in turn, depends on the subsampling at each previous
layer). In the model space explored here, the possible output dimensionalities ranged from 256 to 73,984.

S.1.7 Unsupervised Learning

Description: During the Unsupervised Learning Phase, filter weights are learned from input video
sequences. This procedure bears similarity to nonparametric density estimation, e.g. online K-means
clustering. The algorithm for this phase additionally contains simple mechanisms for taking advantage of
temporal information in a video sequence, and thus Unsupervised Learning was conducted on sequences
of video frames. In this work, 15,000 video frames were used.

Definitions: For each incoming video frame, an output for each filter at each location was computed,
and a “winning” filter Φ!

winner was selected:

winner = arg max
i

(F !
i) (11)

This winning filter was adapted to the input, by adding the corresponding input patch, times a fixed
learning rate λ, to the filter weights:

Φ!
winner

′
= (1− λ!) · Φ!

winner + λ! · patch (12)

The resulting updated filter was then re-normalized to zero-mean and unit-length:

Φ!
winner

′′
=

Φ!
winner

′ − 〈Φ!
winner

′〉∣∣∣
∣∣∣Φ!

winner
′ − 〈Φ!

winner
′〉

∣∣∣
∣∣∣
2

(13)

Where 〈Φ!
winner

′〉 represents the mean of the winner’s weights and Φ!
winner

′′ is the filter carried forward
into the next learning iteration.

The incoming patch could be normalized (i.e. ||patch||2 = 1), or not, under parametric control, and
multiple patches could enter into one “round” of competition at the same time (e.g. filter stack outputs
corresponding to multiple patches could be evaluated, and the largest output across all patches could
decide the winner). The selection of the number of patches simultaneously competing was governed by
the Competition Neighborhood Size and Competition Neighborhood Stride parameters, which served tile
a set of competing filter stacks across the input.

High-Throughput Search for Visual Representations 25

Parameters:

• The size b! of the neighborhood region was randomly chosen from {3, 5, 7, 9}.

• The δ! parameter was chosen from {0, 1}.

• The vector of neighboring values could also be stretched by gain values ρ! ∈ {10−1, 100, 101}. Note
that when ρ! = 100 = 1, no gain is applied.

• The threshold value τ ! was randomly chosen from {10−1, 100, 101}.

S.1.6 Final model output dimensionality

The output dimensionality of each candidate model was determined by the number of filters in the final
layer, and the x-y “footprint” of the layer (which, in turn, depends on the subsampling at each previous
layer). In the model space explored here, the possible output dimensionalities ranged from 256 to 73,984.

S.1.7 Unsupervised Learning

Description: During the Unsupervised Learning Phase, filter weights are learned from input video
sequences. This procedure bears similarity to nonparametric density estimation, e.g. online K-means
clustering. The algorithm for this phase additionally contains simple mechanisms for taking advantage of
temporal information in a video sequence, and thus Unsupervised Learning was conducted on sequences
of video frames. In this work, 15,000 video frames were used.

Definitions: For each incoming video frame, an output for each filter at each location was computed,
and a “winning” filter Φ!

winner was selected:

winner = arg max
i

(F !
i) (11)

This winning filter was adapted to the input, by adding the corresponding input patch, times a fixed
learning rate λ, to the filter weights:

Φ!
winner

′
= (1− λ!) · Φ!

winner + λ! · patch (12)

The resulting updated filter was then re-normalized to zero-mean and unit-length:

Φ!
winner

′′
=

Φ!
winner

′ − 〈Φ!
winner

′〉∣∣∣
∣∣∣Φ!

winner
′ − 〈Φ!

winner
′〉

∣∣∣
∣∣∣
2

(13)

Where 〈Φ!
winner

′〉 represents the mean of the winner’s weights and Φ!
winner

′′ is the filter carried forward
into the next learning iteration.

The incoming patch could be normalized (i.e. ||patch||2 = 1), or not, under parametric control, and
multiple patches could enter into one “round” of competition at the same time (e.g. filter stack outputs
corresponding to multiple patches could be evaluated, and the largest output across all patches could
decide the winner). The selection of the number of patches simultaneously competing was governed by
the Competition Neighborhood Size and Competition Neighborhood Stride parameters, which served tile
a set of competing filter stacks across the input.

High-Throughput Search for Visual Representations 25

Parameters:

• The size b! of the neighborhood region was randomly chosen from {3, 5, 7, 9}.

• The δ! parameter was chosen from {0, 1}.

• The vector of neighboring values could also be stretched by gain values ρ! ∈ {10−1, 100, 101}. Note
that when ρ! = 100 = 1, no gain is applied.

• The threshold value τ ! was randomly chosen from {10−1, 100, 101}.

S.1.6 Final model output dimensionality

The output dimensionality of each candidate model was determined by the number of filters in the final
layer, and the x-y “footprint” of the layer (which, in turn, depends on the subsampling at each previous
layer). In the model space explored here, the possible output dimensionalities ranged from 256 to 73,984.

S.1.7 Unsupervised Learning

Description: During the Unsupervised Learning Phase, filter weights are learned from input video
sequences. This procedure bears similarity to nonparametric density estimation, e.g. online K-means
clustering. The algorithm for this phase additionally contains simple mechanisms for taking advantage of
temporal information in a video sequence, and thus Unsupervised Learning was conducted on sequences
of video frames. In this work, 15,000 video frames were used.

Definitions: For each incoming video frame, an output for each filter at each location was computed,
and a “winning” filter Φ!

winner was selected:

winner = arg max
i

(F !
i) (11)

This winning filter was adapted to the input, by adding the corresponding input patch, times a fixed
learning rate λ, to the filter weights:

Φ!
winner

′
= (1− λ!) · Φ!

winner + λ! · patch (12)

The resulting updated filter was then re-normalized to zero-mean and unit-length:

Φ!
winner

′′
=

Φ!
winner

′ − 〈Φ!
winner

′〉∣∣∣
∣∣∣Φ!

winner
′ − 〈Φ!

winner
′〉

∣∣∣
∣∣∣
2

(13)

Where 〈Φ!
winner

′〉 represents the mean of the winner’s weights and Φ!
winner

′′ is the filter carried forward
into the next learning iteration.

The incoming patch could be normalized (i.e. ||patch||2 = 1), or not, under parametric control, and
multiple patches could enter into one “round” of competition at the same time (e.g. filter stack outputs
corresponding to multiple patches could be evaluated, and the largest output across all patches could
decide the winner). The selection of the number of patches simultaneously competing was governed by
the Competition Neighborhood Size and Competition Neighborhood Stride parameters, which served tile
a set of competing filter stacks across the input.

maximisation
sur un voisinage

A High-Throughput Screening Approach to Discovering
Good Forms of Biologically-Inspired Visual Representation

(Pinto, Doukhan, DiCarlo and Cox, PLoS 2009)

• Plusieurs options:
High-Throughput Search for Visual Representations 26

Parameters:

• Learning rate parameter λ! ∈ {10−4, 10−3, 10−2}

• Patch Normalization: normalize patch to unit-length, or do not normalize (2 choices)

• Competition Neighborhood Size ∈ {1, 3, 5, 7, 9}

• Competition Neighborhood Stride ∈ {1, 3, 5, 7, 9}

• “Rebalancing”: if the relative winning ratio 2 of a given filter Φ!
i is less than {1%, 10% or 50%} (3

choices), its weights are reinitialized to the values of the most-winning filter plus a random jitter.
This prevents filters from never winning.

• “Temporal Advantage” (or “trace”, see also [18,4,19,20] for variants): the output score of the last-
winning filter is multiplied by {1, 2 or 4} (3 choices) prior to determining which filter “wins.” A
value of 1 is the equivalent of no advantage; a value of 2 doubles the effective output of the filter
for the purposes of competition, biasing it to win again.

S.1.8 Classification during Screening and Validation Phases

During the Screening and Validation Phases, the representations generated during the Unsupervised
Learning Phase were evaluated in a variety of object recognition tasks (see main text). This Classification
Phase consisted of the following steps, with fixed parameters across all model instantiations:

• A random sampling of up to 5,000 outputs from the full representation were taken (to accelerate
processing).

• Dimensionality was further reduced by PCA (using training data only, keeping the full eigensubspace
projection, i.e. as many dimensions as training examples).

• A linear SVM (using the libsvm [46] solver, with regularization parameter C = 10) was used with
a 10-trial random subsampling cross-validation scheme (150 training and 150 testing examples).

S.1.9 Random Exploration

Note that the parameters and parameter ranges described here are clearly not the most comprehensive
search space; rather they represent a starting point intended to demonstrate the utility of the overarching
approach. While a brute force search procedure was used here, other more elaborate optimization schemes
(e.g. evolutionary algorithms [40]) could also be used.

S.2 Text S2: Technical Details of the Computational Framework

The high-throughput search described in this paper takes advantage of multiple levels of parallelism,
from coarse to fine-grained. Roughly speaking, fine-grained parallelism is exploited by allocating one
core (of which modern graphics hardware have many; and their number is exponentially growing over
the years) to one or more virtual neurons, while coarse-scale parallelism is achieved by allocating one
model instantiation to each of many multi-core pools (i.e. CPUs, Cell Processors, GPUs). Because we
evaluated thousands of model instantiations, it was straightforward to spread these evaluations across a
cluster of GPU-enabled nodes, with the throughput of each node maximized by taking full advantage of
fine-grained parallelism.

2the number of times Φ!
i won multiplied by the number of filters, divided by the running count of completed updates

A High-Throughput Screening Approach to Discovering
Good Forms of Biologically-Inspired Visual Representation

(Pinto, Doukhan, DiCarlo and Cox, PLoS 2009)

• Jeux de données (entraînement)High-Throughput Search for Visual Representations 17

(a)

(b)

(c)

Figure 3. Example video frames used as input during the Unsupervised Learning Phase.
(a) Short video clips taken from the television series “Law and Order”. (b) Sequences of a rendered car
undergoing a random walk through the possible range of rigid body movements. (c) A similar random
walk with a rendered boat.

A High-Throughput Screening Approach to Discovering
Good Forms of Biologically-Inspired Visual Representation

(Pinto, Doukhan, DiCarlo and Cox, PLoS 2009)

• Jeux de données (validation et test)
High-Throughput Search for Visual Representations 18

Cars vs. Planes (validation)

Boats vs. Animals

Synthetic Faces

MultiPIE Hybrid

a.

c.

b.

d.

Figure 4. Examples of images from the validation test sets. (a) A new set of rendered cars and
planes composited onto random natural backgrounds. (b) Rendered boats and animals. (c) Rendered
female and male faces. (d) A subset of the MultiPIE face test set [25] with the faces manually removed
from the background, and composited onto random image backgrounds, with additional variation in
position, scale, and planar rotation added.

High-Throughput Search for Visual Representations 18

Cars vs. Planes (validation)

Boats vs. Animals

Synthetic Faces

MultiPIE Hybrid

a.

c.

b.

d.

Figure 4. Examples of images from the validation test sets. (a) A new set of rendered cars and
planes composited onto random natural backgrounds. (b) Rendered boats and animals. (c) Rendered
female and male faces. (d) A subset of the MultiPIE face test set [25] with the faces manually removed
from the background, and composited onto random image backgrounds, with additional variation in
position, scale, and planar rotation added.

A High-Throughput Screening Approach to Discovering
Good Forms of Biologically-Inspired Visual Representation

(Pinto, Doukhan, DiCarlo and Cox, PLoS 2009)

High-Throughput Search for Visual Representations 15

Figures

L1

L2

L3

input

Read-out

kernel
size

kernel
size

Learning

kernel
size

normalization
neighborhood

normalization
neighborhood

normalization
neighborhood

norm strengththresh/sat

norm strengththresh/sat

norm strengththresh/sat

Rate
Trace
“Temp. Adv.”
“Rebalancing”

...

Learning

Rate
Trace
“Temp. Adv.”
“Rebalancing”

...

Learning

Rate
Trace
“Temp. Adv.”
“Rebalancing”

...

Figure 1. A schematic diagram of the system architecture of the family of models
considered. The system consists of three feedforward filtering layers, with the filters in each layer
being applied across the previous layer. Red colored labels indicate a selection of configurable
parameters (only a subset of parameters are shown).

PCA + SVM

A High-Throughput Screening Approach to Discovering
Good Forms of Biologically-Inspired Visual Representation

(Pinto, Doukhan, DiCarlo and Cox, PLoS 2009)

• Résultats

High-Throughput Search for Visual Representations 20

50

60

70

80

90

100

Pe
rc

en
t C

or
re

ct
Pe

rc
en

t C
or

re
ct

50

60

70

80

90

100

50

60

70

80

90

100

Cars vs. Planes (validation)

Synthetic Faces MultiPIE Hybrid

v1-like
(control)

state-of-the-art
(from literature)

top 5 models
(high-throughput search)

5SIFTregular + GB PHOG PHOW SLF 4 3 2 1 blend

a.

c. d.

50

60

70

80

90

100

Boats vs. Animals

v1-like
(control)

state-of-the-art
(from literature)

top 5 models
(high-throughput search)

regular + blend

b.

SIFT GB PHOG PHOW SLF

v1-like
(control)

state-of-the-art
(from literature)

top 5 models
(high-throughput search)

SIFTregular + GB PHOG PHOW SLF blend

v1-like
(control)

state-of-the-art
(from literature)

top 5 models
(high-throughput search)

regular + blendSIFT GB PHOG PHOW SLF

5 4 3 2 1

5 4 3 2 15 4 3 2 1

Figure 6. Validation. Performance of the top five models from the Screening Phase on a variety of
other object recognition challenges. Example images from each object recognition test are shown in
Figure 4. For each validation set, the performance (averaged over 10 random splits; error bars represent
standard error of the mean) is first plotted for V1-like and V1-like+ baseline models (see [9, 8, 10] for a
detailed description of these two variants) (gray bars), and for five state-of-the-art vision systems (green
bars): Scale Invariant Feature Transform (SIFT, [38]), Geometric Blur Descriptor (GB, [37]), Pyramidal
Histogram of Gradients (PHOG, [35]), Pyramidal Histogram of Words (PHOW, [36]), and a
biologically-inspired hierarchical model (“Sparse Localized Features” SLF, [6]). Finally, performance of
the five best models derived from the high-throughput screening approach presented in this paper (black
bars), and the performance achieved by averaging the five SVM kernels (red bar labelled “blend”). In
general, high-throughput-derived models outperformed the V1-like baseline models, and tended to
outperform a variety of state-of-the-art systems from the literature. Model instantiation 3281 and the
blend of all five top models uniformly produced the best results across all test sets considered here.

A High-Throughput Screening Approach to Discovering
Good Forms of Biologically-Inspired Visual Representation

(Pinto, Doukhan, DiCarlo and Cox, PLoS 2009)

Filtres appris

High-Throughput Search for Visual Representations 33

10
00

Layer 1

4
3

2
5

1

5
Be

st
 M

od
el

s
15

 R
an

do
m

 M
od

el
s

15
76

67
9

23
43

12
38

76
2

17
26

17
51

15
4

20
77

19
63

22
84

88
6

22
22

94
5

a)

b)

Supplemental Figure S3. Examples of Layer 1 filters taken from different models. A
random assortment of linear filter kernels taken from the first layers of the top five (a) and fifteen
randomly chosen other model instantiations (b) taken from the “Law and Order” petri dish. Each
square represents a single two-dimensional filter kernel, with the values of each filter element
represented in gray scale (the gray-scale is assigned on a per-filter basis, such that black is the smallest
value found in the kernel, and white is the largest). For purposes of comparison, a fixed number of
filters were taken from each model’s Layer 1, even though different models have differing number of
filters in each layer. Filter kernels are initialized with random values and learn their structure during
the Unsupervised Learning Phase of model generation. Interestingly, oriented structures are common in
filter from both the top five models and from non-top-five models.

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

• Approche d’apprentissage non-supervisé
convolutionnel

• Entraînement de plusieurs couchent à l’aide
de la procédure de préentraînement

Input images
(stereo 512x384)

Normalization
Pre-processing

Short-range labels

Feature extraction Training data
(in ring buffer)

Training and
ClassificationX !G "X #

X !Y $Y %&1,5 '

Dtrain()G "X #
i , Y i

*

i(1. . n
G "X # YImage!)Xi

*

Add to histograms
in HPolar Map

Fig. 2. Diagram of the Long-Range Vision Process. The input to the system is a pair of stereo-aligned images. The images are normalized
and features and labels are extracted, then the classifier is trained and immediately used to classify the entire image. The classifier outputs
are accumulated in histograms in a hyperbolic polar map according to their (x, y) position.

horizon position in the pyramid by explicitly estimating the
location of the horizon. First we estimate the groundplane
p = {p0, p1, p2, p3} using a Hough transform on the stereo
point cloud, then refine that estimate using a PCA robust refit.
Once p is known, the horizon can be leveled: left-y-offset =
(p1∗.5w)+p2+p3

−p0
− (.5w ∗ sinα), where w is the width of the

input image and α is the angle of the skewed horizon.
The input is also converted from RGB to YUV, and the Y

(luminance) channel is contrast normalized to alleviate the
effects of hard shadow and glare. The contrast normalization
performs a smooth neighborhood normalization on each y
in Y by normalizing by the linear sum of a smooth 16x16
kernel and a 16x16 neighborhood of Y (centered on y).

V. FEATURE LEARNING: DEEP BELIEF NETWORK

Normalized overlapping windows (3@25x12 pixels) from
the pyramid rows provide a basis for strong near-to-far
learning, but the curse of dimensionality makes it impossible
to directly train a classifier on the YUV windows. Feature
extraction lowers the dimensionality while increasing the
generalization potential of the classifier. There are many
ways that feature extraction may be done, from hand-tuned
feature lists, to quantizations of the input, to learned features.
We prefer to use learned features, because they can capture
patterns in the data that are easily missed by a human.

We have experimented in the past with extracting features
with radial basis functions and with supervised trained con-
volutional networks [5], but had only moderate success: the
radial basis functions, trained using k-means unsupervised
clustering, produced stable feature vectors that were not
discriminative enough and lead to weak online learning,
and the supervised convolutional network learned filters that
were noisy and unclear, which caused unpredictable online
learning.

The current approach uses the principles of deep belief
network training [7], [13]. The basic idea behind deep belief
net training is to pre-train each layer independently and
sequentially in unsupervised mode using a reconstruction
criterion to drive the training. The deep belief net trained for
the long-range vision system consists of 3 stacked modules.
The first and third modules are convolutional layers, and the
second layer is a max-pooling unit. Each convolutional layer
can be understood as an encoder Fenc(X) that creates a

set of features from the given input by applying a sequence
of convolutional filters. A decoder Fdec(Y) tries to recreate
the input from the feature vector output. The encoder and
decoder are trained simultaneously by minimizing the recon-
struction error, i.e., minimizing the mean square loss between
the input and the encoded and decoded reconstruction:

L(S) =
1
P

P∑

i=1

||Xi − Fdec(Fenc(Xi))||2

where S is a dataset with P training samples.

A. Deep Belief Net Architecture and Training
As stated, the network trained for feature extraction in

the long-range classifier consists of 3 stacked modules. The
first and third are convolutional layers, composed of a set
of convolutional filters and a point-wise non-linearity. The
function computed for an input layer x and filter f and output
feature map z is

zj = tanh(cj(
∑

i

xi ∗ fij) + bj)

where ∗ denotes the convolution operator, i indexes the input
layer, j indexes the output feature map, and cj and bj are
multiplicative and additive constants. The max-pooling layer
is used to reduce computational complexity and to pool
features, creating translation invariance. The max-pooling
operation, for input layer x and output map z, is

zi = maxi∈Ni(x)

where Ni is the spatial neighborhood for max-pooling.
The first convolutional layer of the feature extractor has

20 7x6 filters, and 20 feature maps are output from the layer.
After max-pooling with a kernel size of 1x4, the pooled
feature maps are input to the second convolutional layer,
which has 300 6x5 filters and produces 100 feature maps.
Each overlapping window in the input has thus been reduced
to a 100x1x1 feature vector. The feature maps for a sample
input (a row in the normalized pyramid) are shown in Fig. 4.

The feature extractor was trained until convergence using
the deep belief net training protocol described above. The
training set was composed of images from 150 diverse
outdoor settings, comprising 10,000 images in total, with
each image further scaled to different resolutions. The con-
volutional filters are shown in Fig. 5.

Input images
(stereo 512x384)

Normalization
Pre-processing

Short-range labels

Feature extraction Training data
(in ring buffer)

Training and
ClassificationX !G "X #

X !Y $Y %&1,5 '

Dtrain()G "X #
i , Y i

*

i(1. . n
G "X # YImage!)Xi

*

Add to histograms
in HPolar Map

Fig. 2. Diagram of the Long-Range Vision Process. The input to the system is a pair of stereo-aligned images. The images are normalized
and features and labels are extracted, then the classifier is trained and immediately used to classify the entire image. The classifier outputs
are accumulated in histograms in a hyperbolic polar map according to their (x, y) position.

horizon position in the pyramid by explicitly estimating the
location of the horizon. First we estimate the groundplane
p = {p0, p1, p2, p3} using a Hough transform on the stereo
point cloud, then refine that estimate using a PCA robust refit.
Once p is known, the horizon can be leveled: left-y-offset =
(p1∗.5w)+p2+p3

−p0
− (.5w ∗ sinα), where w is the width of the

input image and α is the angle of the skewed horizon.
The input is also converted from RGB to YUV, and the Y

(luminance) channel is contrast normalized to alleviate the
effects of hard shadow and glare. The contrast normalization
performs a smooth neighborhood normalization on each y
in Y by normalizing by the linear sum of a smooth 16x16
kernel and a 16x16 neighborhood of Y (centered on y).

V. FEATURE LEARNING: DEEP BELIEF NETWORK

Normalized overlapping windows (3@25x12 pixels) from
the pyramid rows provide a basis for strong near-to-far
learning, but the curse of dimensionality makes it impossible
to directly train a classifier on the YUV windows. Feature
extraction lowers the dimensionality while increasing the
generalization potential of the classifier. There are many
ways that feature extraction may be done, from hand-tuned
feature lists, to quantizations of the input, to learned features.
We prefer to use learned features, because they can capture
patterns in the data that are easily missed by a human.

We have experimented in the past with extracting features
with radial basis functions and with supervised trained con-
volutional networks [5], but had only moderate success: the
radial basis functions, trained using k-means unsupervised
clustering, produced stable feature vectors that were not
discriminative enough and lead to weak online learning,
and the supervised convolutional network learned filters that
were noisy and unclear, which caused unpredictable online
learning.

The current approach uses the principles of deep belief
network training [7], [13]. The basic idea behind deep belief
net training is to pre-train each layer independently and
sequentially in unsupervised mode using a reconstruction
criterion to drive the training. The deep belief net trained for
the long-range vision system consists of 3 stacked modules.
The first and third modules are convolutional layers, and the
second layer is a max-pooling unit. Each convolutional layer
can be understood as an encoder Fenc(X) that creates a

set of features from the given input by applying a sequence
of convolutional filters. A decoder Fdec(Y) tries to recreate
the input from the feature vector output. The encoder and
decoder are trained simultaneously by minimizing the recon-
struction error, i.e., minimizing the mean square loss between
the input and the encoded and decoded reconstruction:

L(S) =
1
P

P∑

i=1

||Xi − Fdec(Fenc(Xi))||2

where S is a dataset with P training samples.

A. Deep Belief Net Architecture and Training
As stated, the network trained for feature extraction in

the long-range classifier consists of 3 stacked modules. The
first and third are convolutional layers, composed of a set
of convolutional filters and a point-wise non-linearity. The
function computed for an input layer x and filter f and output
feature map z is

zj = tanh(cj(
∑

i

xi ∗ fij) + bj)

where ∗ denotes the convolution operator, i indexes the input
layer, j indexes the output feature map, and cj and bj are
multiplicative and additive constants. The max-pooling layer
is used to reduce computational complexity and to pool
features, creating translation invariance. The max-pooling
operation, for input layer x and output map z, is

zi = maxi∈Ni(x)

where Ni is the spatial neighborhood for max-pooling.
The first convolutional layer of the feature extractor has

20 7x6 filters, and 20 feature maps are output from the layer.
After max-pooling with a kernel size of 1x4, the pooled
feature maps are input to the second convolutional layer,
which has 300 6x5 filters and produces 100 feature maps.
Each overlapping window in the input has thus been reduced
to a 100x1x1 feature vector. The feature maps for a sample
input (a row in the normalized pyramid) are shown in Fig. 4.

The feature extractor was trained until convergence using
the deep belief net training protocol described above. The
training set was composed of images from 150 diverse
outdoor settings, comprising 10,000 images in total, with
each image further scaled to different resolutions. The con-
volutional filters are shown in Fig. 5.

Input images
(stereo 512x384)

Normalization
Pre-processing

Short-range labels

Feature extraction Training data
(in ring buffer)

Training and
ClassificationX !G "X #

X !Y $Y %&1,5 '

Dtrain()G "X #
i , Y i

*

i(1. . n
G "X # YImage!)Xi

*

Add to histograms
in HPolar Map

Fig. 2. Diagram of the Long-Range Vision Process. The input to the system is a pair of stereo-aligned images. The images are normalized
and features and labels are extracted, then the classifier is trained and immediately used to classify the entire image. The classifier outputs
are accumulated in histograms in a hyperbolic polar map according to their (x, y) position.

horizon position in the pyramid by explicitly estimating the
location of the horizon. First we estimate the groundplane
p = {p0, p1, p2, p3} using a Hough transform on the stereo
point cloud, then refine that estimate using a PCA robust refit.
Once p is known, the horizon can be leveled: left-y-offset =
(p1∗.5w)+p2+p3

−p0
− (.5w ∗ sinα), where w is the width of the

input image and α is the angle of the skewed horizon.
The input is also converted from RGB to YUV, and the Y

(luminance) channel is contrast normalized to alleviate the
effects of hard shadow and glare. The contrast normalization
performs a smooth neighborhood normalization on each y
in Y by normalizing by the linear sum of a smooth 16x16
kernel and a 16x16 neighborhood of Y (centered on y).

V. FEATURE LEARNING: DEEP BELIEF NETWORK

Normalized overlapping windows (3@25x12 pixels) from
the pyramid rows provide a basis for strong near-to-far
learning, but the curse of dimensionality makes it impossible
to directly train a classifier on the YUV windows. Feature
extraction lowers the dimensionality while increasing the
generalization potential of the classifier. There are many
ways that feature extraction may be done, from hand-tuned
feature lists, to quantizations of the input, to learned features.
We prefer to use learned features, because they can capture
patterns in the data that are easily missed by a human.

We have experimented in the past with extracting features
with radial basis functions and with supervised trained con-
volutional networks [5], but had only moderate success: the
radial basis functions, trained using k-means unsupervised
clustering, produced stable feature vectors that were not
discriminative enough and lead to weak online learning,
and the supervised convolutional network learned filters that
were noisy and unclear, which caused unpredictable online
learning.

The current approach uses the principles of deep belief
network training [7], [13]. The basic idea behind deep belief
net training is to pre-train each layer independently and
sequentially in unsupervised mode using a reconstruction
criterion to drive the training. The deep belief net trained for
the long-range vision system consists of 3 stacked modules.
The first and third modules are convolutional layers, and the
second layer is a max-pooling unit. Each convolutional layer
can be understood as an encoder Fenc(X) that creates a

set of features from the given input by applying a sequence
of convolutional filters. A decoder Fdec(Y) tries to recreate
the input from the feature vector output. The encoder and
decoder are trained simultaneously by minimizing the recon-
struction error, i.e., minimizing the mean square loss between
the input and the encoded and decoded reconstruction:

L(S) =
1
P

P∑

i=1

||Xi − Fdec(Fenc(Xi))||2

where S is a dataset with P training samples.

A. Deep Belief Net Architecture and Training
As stated, the network trained for feature extraction in

the long-range classifier consists of 3 stacked modules. The
first and third are convolutional layers, composed of a set
of convolutional filters and a point-wise non-linearity. The
function computed for an input layer x and filter f and output
feature map z is

zj = tanh(cj(
∑

i

xi ∗ fij) + bj)

where ∗ denotes the convolution operator, i indexes the input
layer, j indexes the output feature map, and cj and bj are
multiplicative and additive constants. The max-pooling layer
is used to reduce computational complexity and to pool
features, creating translation invariance. The max-pooling
operation, for input layer x and output map z, is

zi = maxi∈Ni(x)

where Ni is the spatial neighborhood for max-pooling.
The first convolutional layer of the feature extractor has

20 7x6 filters, and 20 feature maps are output from the layer.
After max-pooling with a kernel size of 1x4, the pooled
feature maps are input to the second convolutional layer,
which has 300 6x5 filters and produces 100 feature maps.
Each overlapping window in the input has thus been reduced
to a 100x1x1 feature vector. The feature maps for a sample
input (a row in the normalized pyramid) are shown in Fig. 4.

The feature extractor was trained until convergence using
the deep belief net training protocol described above. The
training set was composed of images from 150 diverse
outdoor settings, comprising 10,000 images in total, with
each image further scaled to different resolutions. The con-
volutional filters are shown in Fig. 5.

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

Input images
(stereo 512x384)

Normalization
Pre-processing

Short-range labels

Feature extraction Training data
(in ring buffer)

Training and
ClassificationX !G "X #

X !Y $Y %&1,5 '

Dtrain()G "X #
i , Y i

*

i(1. . n
G "X # YImage!)Xi

*

Add to histograms
in HPolar Map

Fig. 2. Diagram of the Long-Range Vision Process. The input to the system is a pair of stereo-aligned images. The images are normalized
and features and labels are extracted, then the classifier is trained and immediately used to classify the entire image. The classifier outputs
are accumulated in histograms in a hyperbolic polar map according to their (x, y) position.

horizon position in the pyramid by explicitly estimating the
location of the horizon. First we estimate the groundplane
p = {p0, p1, p2, p3} using a Hough transform on the stereo
point cloud, then refine that estimate using a PCA robust refit.
Once p is known, the horizon can be leveled: left-y-offset =
(p1∗.5w)+p2+p3

−p0
− (.5w ∗ sinα), where w is the width of the

input image and α is the angle of the skewed horizon.
The input is also converted from RGB to YUV, and the Y

(luminance) channel is contrast normalized to alleviate the
effects of hard shadow and glare. The contrast normalization
performs a smooth neighborhood normalization on each y
in Y by normalizing by the linear sum of a smooth 16x16
kernel and a 16x16 neighborhood of Y (centered on y).

V. FEATURE LEARNING: DEEP BELIEF NETWORK

Normalized overlapping windows (3@25x12 pixels) from
the pyramid rows provide a basis for strong near-to-far
learning, but the curse of dimensionality makes it impossible
to directly train a classifier on the YUV windows. Feature
extraction lowers the dimensionality while increasing the
generalization potential of the classifier. There are many
ways that feature extraction may be done, from hand-tuned
feature lists, to quantizations of the input, to learned features.
We prefer to use learned features, because they can capture
patterns in the data that are easily missed by a human.

We have experimented in the past with extracting features
with radial basis functions and with supervised trained con-
volutional networks [5], but had only moderate success: the
radial basis functions, trained using k-means unsupervised
clustering, produced stable feature vectors that were not
discriminative enough and lead to weak online learning,
and the supervised convolutional network learned filters that
were noisy and unclear, which caused unpredictable online
learning.

The current approach uses the principles of deep belief
network training [7], [13]. The basic idea behind deep belief
net training is to pre-train each layer independently and
sequentially in unsupervised mode using a reconstruction
criterion to drive the training. The deep belief net trained for
the long-range vision system consists of 3 stacked modules.
The first and third modules are convolutional layers, and the
second layer is a max-pooling unit. Each convolutional layer
can be understood as an encoder Fenc(X) that creates a

set of features from the given input by applying a sequence
of convolutional filters. A decoder Fdec(Y) tries to recreate
the input from the feature vector output. The encoder and
decoder are trained simultaneously by minimizing the recon-
struction error, i.e., minimizing the mean square loss between
the input and the encoded and decoded reconstruction:

L(S) =
1
P

P∑

i=1

||Xi − Fdec(Fenc(Xi))||2

where S is a dataset with P training samples.

A. Deep Belief Net Architecture and Training
As stated, the network trained for feature extraction in

the long-range classifier consists of 3 stacked modules. The
first and third are convolutional layers, composed of a set
of convolutional filters and a point-wise non-linearity. The
function computed for an input layer x and filter f and output
feature map z is

zj = tanh(cj(
∑

i

xi ∗ fij) + bj)

where ∗ denotes the convolution operator, i indexes the input
layer, j indexes the output feature map, and cj and bj are
multiplicative and additive constants. The max-pooling layer
is used to reduce computational complexity and to pool
features, creating translation invariance. The max-pooling
operation, for input layer x and output map z, is

zi = maxi∈Ni(x)

where Ni is the spatial neighborhood for max-pooling.
The first convolutional layer of the feature extractor has

20 7x6 filters, and 20 feature maps are output from the layer.
After max-pooling with a kernel size of 1x4, the pooled
feature maps are input to the second convolutional layer,
which has 300 6x5 filters and produces 100 feature maps.
Each overlapping window in the input has thus been reduced
to a 100x1x1 feature vector. The feature maps for a sample
input (a row in the normalized pyramid) are shown in Fig. 4.

The feature extractor was trained until convergence using
the deep belief net training protocol described above. The
training set was composed of images from 150 diverse
outdoor settings, comprising 10,000 images in total, with
each image further scaled to different resolutions. The con-
volutional filters are shown in Fig. 5.

Input images
(stereo 512x384)

Normalization
Pre-processing

Short-range labels

Feature extraction Training data
(in ring buffer)

Training and
ClassificationX !G "X #

X !Y $Y %&1,5 '

Dtrain()G "X #
i , Y i

*

i(1. . n
G "X # YImage!)Xi

*

Add to histograms
in HPolar Map

Fig. 2. Diagram of the Long-Range Vision Process. The input to the system is a pair of stereo-aligned images. The images are normalized
and features and labels are extracted, then the classifier is trained and immediately used to classify the entire image. The classifier outputs
are accumulated in histograms in a hyperbolic polar map according to their (x, y) position.

horizon position in the pyramid by explicitly estimating the
location of the horizon. First we estimate the groundplane
p = {p0, p1, p2, p3} using a Hough transform on the stereo
point cloud, then refine that estimate using a PCA robust refit.
Once p is known, the horizon can be leveled: left-y-offset =
(p1∗.5w)+p2+p3

−p0
− (.5w ∗ sinα), where w is the width of the

input image and α is the angle of the skewed horizon.
The input is also converted from RGB to YUV, and the Y

(luminance) channel is contrast normalized to alleviate the
effects of hard shadow and glare. The contrast normalization
performs a smooth neighborhood normalization on each y
in Y by normalizing by the linear sum of a smooth 16x16
kernel and a 16x16 neighborhood of Y (centered on y).

V. FEATURE LEARNING: DEEP BELIEF NETWORK

Normalized overlapping windows (3@25x12 pixels) from
the pyramid rows provide a basis for strong near-to-far
learning, but the curse of dimensionality makes it impossible
to directly train a classifier on the YUV windows. Feature
extraction lowers the dimensionality while increasing the
generalization potential of the classifier. There are many
ways that feature extraction may be done, from hand-tuned
feature lists, to quantizations of the input, to learned features.
We prefer to use learned features, because they can capture
patterns in the data that are easily missed by a human.

We have experimented in the past with extracting features
with radial basis functions and with supervised trained con-
volutional networks [5], but had only moderate success: the
radial basis functions, trained using k-means unsupervised
clustering, produced stable feature vectors that were not
discriminative enough and lead to weak online learning,
and the supervised convolutional network learned filters that
were noisy and unclear, which caused unpredictable online
learning.

The current approach uses the principles of deep belief
network training [7], [13]. The basic idea behind deep belief
net training is to pre-train each layer independently and
sequentially in unsupervised mode using a reconstruction
criterion to drive the training. The deep belief net trained for
the long-range vision system consists of 3 stacked modules.
The first and third modules are convolutional layers, and the
second layer is a max-pooling unit. Each convolutional layer
can be understood as an encoder Fenc(X) that creates a

set of features from the given input by applying a sequence
of convolutional filters. A decoder Fdec(Y) tries to recreate
the input from the feature vector output. The encoder and
decoder are trained simultaneously by minimizing the recon-
struction error, i.e., minimizing the mean square loss between
the input and the encoded and decoded reconstruction:

L(S) =
1
P

P∑

i=1

||Xi − Fdec(Fenc(Xi))||2

where S is a dataset with P training samples.

A. Deep Belief Net Architecture and Training
As stated, the network trained for feature extraction in

the long-range classifier consists of 3 stacked modules. The
first and third are convolutional layers, composed of a set
of convolutional filters and a point-wise non-linearity. The
function computed for an input layer x and filter f and output
feature map z is

zj = tanh(cj(
∑

i

xi ∗ fij) + bj)

where ∗ denotes the convolution operator, i indexes the input
layer, j indexes the output feature map, and cj and bj are
multiplicative and additive constants. The max-pooling layer
is used to reduce computational complexity and to pool
features, creating translation invariance. The max-pooling
operation, for input layer x and output map z, is

zi = maxi∈Ni(x)

where Ni is the spatial neighborhood for max-pooling.
The first convolutional layer of the feature extractor has

20 7x6 filters, and 20 feature maps are output from the layer.
After max-pooling with a kernel size of 1x4, the pooled
feature maps are input to the second convolutional layer,
which has 300 6x5 filters and produces 100 feature maps.
Each overlapping window in the input has thus been reduced
to a 100x1x1 feature vector. The feature maps for a sample
input (a row in the normalized pyramid) are shown in Fig. 4.

The feature extractor was trained until convergence using
the deep belief net training protocol described above. The
training set was composed of images from 150 diverse
outdoor settings, comprising 10,000 images in total, with
each image further scaled to different resolutions. The con-
volutional filters are shown in Fig. 5.

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

Fig. 1. The LAGR mobile robotic vehicle, developed by Carnegie
Mellon University’s National Robotics Engineering Center. Its
sensors consist of 2 stereo camera pairs, a GPS receiver, and a
front bumper.

However, the resulting costmaps are often sparse and short-
range.

Recent approaches to vision-based navigation use learn-
ing algorithms to map traversability information to color
histograms or geometric (point cloud) data. This is espe-
cially useful for road-following vehicles [2], [12], [8]; the
ground immediately in front of the vehicle is assumed to be
traversable, and the rest of the image is then filtered to find
similarly colored or textured pixels. Although this approach
helped to win the 2005 DARPA Grand Challenge, its utility
is limited by the inherent fragility of color-based methods.

Other, non-vision-based systems have used the near-to-far
learning paradigm to classify distant sensor data based on
self-supervision from a reliable, close-range sensor. Stavens
and Thrun used self-supervision to train a classifier to
predict surface roughness [15]. A self-supervised classifier
was trained on satellite imagery and ladar sensor data for
the Spinner vehicle’s navigation system [14]. An online self-
supervised classifier for a ladar-based navigation system was
trained to predict load-bearing surfaces in the presence of
vegetation [16].

Predictably, the greatest similarity to our proposed method
can be found in the research of other LAGR participants.
Since the LAGR program specifically focused on learning
and vision algorithms that could be applied in new, never-
seen terrain, using near-to-far self-supervised learning was a
natural choice [4], [6], [10].

Our approach differs from the aforementioned research
because it uses a deep belief network to extract features
from large image patches, then trains a classifier to learn to
discriminate these feature vectors into 5 classes. We build a
distance-normalized, horizon-leveled image pyramid to deal
with the limitations of generalization from near to far field.

III. OVERVIEW OF LONG RANGE VISION

The long-range vision system is a self-supervised, realtime
learning process (see Fig. 2). The only input is a pair of
stereo-aligned images, and the output is a set set of points in
vehicle-relative coordinates, each one labeled with a vector
of 5 energies, corresponding to 5 possible categories. The
points and their energy vectors are used to populate a large

Fig. 3. The input image at top has been methodically cropped
and leveled and subsampled to yield each pyramid row seen at the
bottom. The bounding boxes demonstrate the effectiveness of the
normalization: trees that are different scales in the input image are
similarly scaled in the pyramid.

polar coordinate map. Path planning algorithms are run on
the polar map, which in turn produce driving commands.
The primary components of the learning process are briefly
listed.
Pre-processing and Normalization. Pre-processing is done
to level the horizon and to normalize the height of objects
independently of distance.
Stereo Supervisor Module. The stereo supervisor assigns
class labels to close-range input windows.
Feature extraction. Features are extracted from input win-
dows using stacked layers of convolutional features. This
deep belief network is trained offline.
Training and Classification. The classifier is trained on
every frame for fast adaptability.

IV. HORIZON-LEVELING AND NORMALIZATION

We are strongly motivated to use large image patches
(large enough to fully capture a natural element such as a
tree or path) because larger context and greater information
yields better learning and recognition. However, the problem
of generalizing from nearby objects or groundtypes to far
objects is daunting, since apparent size scales inversely with
distance: Angular size ∝ 1

Distance . Our solution is to create
a normalized pyramid of 7 sub-images which are extracted
at geometrically progressing distances from the camera.
Each sub-image is subsampled according to that estimated
distance, yielding a set of images in which similar objects
have a similar pixel height, regardless of their distance from
the vehicle (see Fig. 3). The closest pyramid row has a target
range from 4 to 11 meters away and is subsampled with a
scaling factor of 6.7. The furthest pyramid row has a range
from 112 meters to∞ (beyond the horizon) and has a scaling
ratio of 1 (no subsampling).

A bias in the roll of the cameras, plus the natural
bumps and grading in the terrain, means that the horizon
is generally skewed in the input image. We normalize the

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

`̀

YUV input

3@36x484

CONVOLUTIONS (7x6)

20@30x484

...

MAX SUBSAMPLING (1x4)

CONVOLUTIONS (6x5)

20@30x125

...
...

100@25x121

Fig. 4. The feature maps are shown for a sample input. The input
to the network is a variable width, variable height layer from the
normalized pyramid. The output from the first convolutional layer
is a set of 20 feature maps, the output from the max-pooling layer
is a set of 20 feature maps with width scaled by a factor of 4
through pooling, the output from the second convolutional layer is
a set of 100 feature maps. A single 3x12x25 window in the input
corresponds to a single 100x1x1 feature vector.

Fig. 5. Trained filters from both layers of the trained feature
extractor. Top: the first convolutional layer has 20 7x6 filters.
Bottom: the second convolutional layer has 300 6x5 filters.

VI. STEREO SUPERVISION

The supervision that the long-range classifier receives
from the stereo module is critically important. The realtime
training can be dramatically altered if the data and labels
are changed in small ways, or if the labeling becomes noisy.
Therefore, the goal of the supervisor module is to provide
data samples and labels that are visually consistent, error-
free, and well-distributed. The basic approach begins with a
disparity point cloud generated by a stereo algorithm. In the
first step, the ground plane is located within the point cloud
and the points are separated with a threshold into ground
and obstacle point clouds. Second, the obstacle points are
projected onto the ground plane to locate the feet of the
obstacles. Third, overlapping regions of points are considered
and heuristics are used to assign each region to one of five
categories. The results from this basic method have several
sources of error, however. Since off-road terrain is rarely

perfectly flat, areas of traversable ground can stick up above
the ground plane and be mis-classified as obstacle. Also, tufts
of grass or leaves can look like obstacles when a simple
plane distance threshold is used to detect obstacles. These
sorts of error are potentially disastrous to the classifier, so
two strategies, multi-groundplane estimation and moments
filtering, are employed to avoid them.

Multi-Groundplane Estimation The assumption that
there is a single perfect ground plane is rarely correct in nat-
ural terrain. To relax this assumption, we find multiple planes
in each input image and use their combined information to
divide the points into ground and obstacle clouds. After the
first ground plane is fitted to the point cloud, all points
that are within a tight threshold of the plane are removed
and a new plane is fit to the remaining points. The process
continues until no good plane can be found or a maximum
of 4 planes have been fit to the data. The ground planes are
fitted by using a Hough transform to get an initial estimate of
the plane, then refining the estimate by locating the principle
eigenvectors of the points that are close to the initial plane.

Moments Filtering Even multiple ground planes cannot
remove all error from the stereo labeling process. Tufts of
grass or disparity mismatches (common with repeating tex-
tures such as tall grass, dry brush, or fences) can create false
obstacles that cause poor driving and training. Therefore, we
consider the first and second moments of the plane distances
of points and use the statistics to reject false obstacles. We
use the following heuristics: if the mean plane distance is
not too high (under .5 m) and the variance of the plane
distance is very low, then the region is traversable (probably a
traversable hillside). Conversely, if the mean plane distance
is very low but the variance is higher, then that region is
traversable (possibly tall grass). These heuristics are simple,
but they reduce errors in the training data effectively.

Visual Categories Most classifiers that attempt to learn
terrain traversability are binary; they only learn ground
vs. obstacle. However, our supervisor uses 5 categories:
super-ground, ground, footline, obstacle, and super-obstacle.
Super-ground and super-obstacle refer to input windows in
which only ground or obstacle are seen, and our confidence
is very high that these labels are correct. The ground and
obstacle categories are used when other sorts of terrain are
seen in the window, or when the confidence is lower that
the label is correct. Footline is the label for input windows
that have the foot of an obstacle centered in the window.
Obstacle feet are visually distinctive, and it is important to
put these samples in a distinct. category. Fig. 6 and Fig. 7
show examples of the 5 categories.

VII. REALTIME TERRAIN CLASSIFICATION

The long-range classifier trains on and classifies every
frame that it receives, so it must be relatively efficient.
A separate logistic regression is trained on each of the
5 categories, using a one-against-the-rest training strategy.
The loss function that is minimized for learning is the
Kullback-Liebler divergence or relative entropy. Loss =
DKL(P ||Q) =

∑K
i=1 pilogpi −

∑K
i=1 pilogqi, where pi is

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

ground

 footline

obstacle

super-ground

super-obstacle

Fig. 6. This shows the 5 labels applied to a full image.

Super
ground Ground Footline Obstacle Super

obstacle

Fig. 7. Examples of the 5 labels. Although the classes include
very diverse training examples, there is still benefit to using more
than 2 classes. Super-ground: only ground is seen in the window;
high confidence, ground: ground and obstacle may be seen in
window; lower confidence, footline: obstacle foot is centered in
window, obstacle: obstacle is seen but does not fill window;
lower confidence, and super-obstacle: obstacle fills window; high
confidence.

the probability that the sample belongs to class i calculated
from the stereo supervisor labels. qi is the classifier’s output
for the probability that the sample belongs to class i.

qi =
exp(wix)

∑K
k=1 exp(wkx)

where w are the parameters of the classifier, and x is the
sample’s feature vector. The weights of each regression are
updated using stochastic gradient descent, since gradient
descent provides strong regularization over successive frames
and training iterations. The gradient update is

∆wj = −η
∂Loss

∂wj
= −η

(
K∑

i=1

pi(δij − qi)

)
x

δij =
{

1 if i=j
0 otherwise

VIII. RESULTS

The long-range vision system has been used extensively
in the full navigation system built on the LAGR platform. It
runs at 1-2 Hz, which is too slow to maintain good close-
range obstacle avoidance, so the system architecture runs 2
processes simultaneously: a fast, low-resolution stereo-based
obstacle avoidance module and planner run at 8-10 Hz and
allow the robot to nimbly avoid obstacles within a 5 meter

radius. Another process runs the long-range vision and long-
range planner at 1-2 Hz, producing strategic navigation and
planning from 5 meters to the goal.

We present experimental results obtained by running the
robot on 2 courses with the long-range vision turned on
and turned off. With the long-range vision turned off, the
robot relies on its fast planning process and can only detect
obstacles within 5 meters. Course 1 (see Fig. 8 top and
Table 9) is a narrow wooded path that proved very difficult
for the robot with long-range vision off, since the dry scrub
bordering the path was difficult to see with stereo alone. The
robot had to be rescued repeatedly from entanglements off
the path. With long-range vision on, the robot saw the scrub
and path clearly and drove cleanly down the path to the goal.
Course 2 (see Fig. 8 bottom and Table 9) was a long wide
path with a clearing to the north that had no outlet - a large
natural cul-de-sac. Driving with long-range vision on, the
robot saw the long path and drove straight down it to the goal
without being tempted by the cul-de-sac. Driving without
long-range vision, the robot immediately turned into the cul-
de-sac and became stuck in scrub, needing to be manually
driven out of the cul-de-sac and restarted in order to reach
the goal.

Fig. 10 shows 5 examples of long-range vision in very
different terrain. The input image, the stereo labels, and the
classifier outputs are shown in each case.

IX. CONCLUSIONS

We have described, in detail, an self-supervised learning
approach to long-range vision in off-road terrain. The clas-
sifier is able to see smoothly and accurately to the horizon,
identifying trees, paths, man-made obstacles, and ground at
distances far beyond the 10 meters afforded by the stereo
supervisor. Complex scenes can be classified by our system,
well beyond the capabilities of a color-based approach. The
success of the classifier is due to the use of large context-
rich image windows as training data, and to the use of a deep
belief network for learned feature extraction.

Acknowledgments
The authors wish to thank Larry Jackel, Dan D. Lee, and Martial

Hébert for helpful discussions. This work was supported by DARPA
under the Learning Applied to Ground Robots program.

REFERENCES

[1] http://www.darpa.mil/ipto/Programs/lagr/vision.htm.
[2] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-

supervised monocular road detection in desert terrain. In Proc. of
Robotics: Science and Systems (RSS), June 2006.

[3] S. B. Goldberg, M. Maimone, and L. Matthies. Stereo vision and robot
navigation software for planetary exploration. In IEEE Aerospace
Conf., 2002.

[4] G. Grudic and J. Mulligan. Outdoor path labeling using polynomial
mahalanobis distance. In Proc. of Robotics: Science and Systems
(RSS), August 2006.

[5] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, J. Han, B. Flepp, U. Muller,
and Y. LeCun. Online learning for offroad robots: Using spatial label
propagation to learn long-range traversability. In rss, 2007.

[6] M. Happold, M. Ollis, and N. Johnson. Enhancing supervised terrain
classification with predictive unsupervised learning. In Proc. of
Robotics: Science and Systems (RSS), August 2006.

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

ground

 footline

obstacle

super-ground

super-obstacle

Fig. 6. This shows the 5 labels applied to a full image.

Super
ground Ground Footline Obstacle Super

obstacle

Fig. 7. Examples of the 5 labels. Although the classes include
very diverse training examples, there is still benefit to using more
than 2 classes. Super-ground: only ground is seen in the window;
high confidence, ground: ground and obstacle may be seen in
window; lower confidence, footline: obstacle foot is centered in
window, obstacle: obstacle is seen but does not fill window;
lower confidence, and super-obstacle: obstacle fills window; high
confidence.

the probability that the sample belongs to class i calculated
from the stereo supervisor labels. qi is the classifier’s output
for the probability that the sample belongs to class i.

qi =
exp(wix)

∑K
k=1 exp(wkx)

where w are the parameters of the classifier, and x is the
sample’s feature vector. The weights of each regression are
updated using stochastic gradient descent, since gradient
descent provides strong regularization over successive frames
and training iterations. The gradient update is

∆wj = −η
∂Loss

∂wj
= −η

(
K∑

i=1

pi(δij − qi)

)
x

δij =
{

1 if i=j
0 otherwise

VIII. RESULTS

The long-range vision system has been used extensively
in the full navigation system built on the LAGR platform. It
runs at 1-2 Hz, which is too slow to maintain good close-
range obstacle avoidance, so the system architecture runs 2
processes simultaneously: a fast, low-resolution stereo-based
obstacle avoidance module and planner run at 8-10 Hz and
allow the robot to nimbly avoid obstacles within a 5 meter

radius. Another process runs the long-range vision and long-
range planner at 1-2 Hz, producing strategic navigation and
planning from 5 meters to the goal.

We present experimental results obtained by running the
robot on 2 courses with the long-range vision turned on
and turned off. With the long-range vision turned off, the
robot relies on its fast planning process and can only detect
obstacles within 5 meters. Course 1 (see Fig. 8 top and
Table 9) is a narrow wooded path that proved very difficult
for the robot with long-range vision off, since the dry scrub
bordering the path was difficult to see with stereo alone. The
robot had to be rescued repeatedly from entanglements off
the path. With long-range vision on, the robot saw the scrub
and path clearly and drove cleanly down the path to the goal.
Course 2 (see Fig. 8 bottom and Table 9) was a long wide
path with a clearing to the north that had no outlet - a large
natural cul-de-sac. Driving with long-range vision on, the
robot saw the long path and drove straight down it to the goal
without being tempted by the cul-de-sac. Driving without
long-range vision, the robot immediately turned into the cul-
de-sac and became stuck in scrub, needing to be manually
driven out of the cul-de-sac and restarted in order to reach
the goal.

Fig. 10 shows 5 examples of long-range vision in very
different terrain. The input image, the stereo labels, and the
classifier outputs are shown in each case.

IX. CONCLUSIONS

We have described, in detail, an self-supervised learning
approach to long-range vision in off-road terrain. The clas-
sifier is able to see smoothly and accurately to the horizon,
identifying trees, paths, man-made obstacles, and ground at
distances far beyond the 10 meters afforded by the stereo
supervisor. Complex scenes can be classified by our system,
well beyond the capabilities of a color-based approach. The
success of the classifier is due to the use of large context-
rich image windows as training data, and to the use of a deep
belief network for learned feature extraction.

Acknowledgments
The authors wish to thank Larry Jackel, Dan D. Lee, and Martial

Hébert for helpful discussions. This work was supported by DARPA
under the Learning Applied to Ground Robots program.

REFERENCES

[1] http://www.darpa.mil/ipto/Programs/lagr/vision.htm.
[2] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-

supervised monocular road detection in desert terrain. In Proc. of
Robotics: Science and Systems (RSS), June 2006.

[3] S. B. Goldberg, M. Maimone, and L. Matthies. Stereo vision and robot
navigation software for planetary exploration. In IEEE Aerospace
Conf., 2002.

[4] G. Grudic and J. Mulligan. Outdoor path labeling using polynomial
mahalanobis distance. In Proc. of Robotics: Science and Systems
(RSS), August 2006.

[5] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, J. Han, B. Flepp, U. Muller,
and Y. LeCun. Online learning for offroad robots: Using spatial label
propagation to learn long-range traversability. In rss, 2007.

[6] M. Happold, M. Ollis, and N. Johnson. Enhancing supervised terrain
classification with predictive unsupervised learning. In Proc. of
Robotics: Science and Systems (RSS), August 2006.

with learning
no learning
intervention

start

goal

start

goal
with learning
no learning
intervention

Fig. 8.

[7] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527–1554, 2006.

[8] T. Hong, T. Chang, C. Rasmussen, and M. Shneier. Road detection and
tracking for autonomous mobile robots. In Proc. of SPIE Aeroscience
Conference, 2002.

[9] A. Kelly and A. Stentz. Stereo vision enhancements for low-cost out-
door autonomous vehicles. In Int’l Conf. on Robotics and Automation,
Workshop WS-7, Navigation of Outdoor Autonomous Vehicles, 1998.

[10] D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. F. Bobick. Traversibility
classification using unsupervised on-line visual learning for outdoor
robot navigation. In Proc. of Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 2006.

[11] D. J. Kriegman, E. Triendl, and T. O. Binford. Stereo vision and
navigation in buildings for mobile robots. Trans. Robotics and
Automation, 5(6):792–803, 1989.

[12] D. Leib, A. Lookingbill, and S. Thrun. Adaptive road following using
self-supervised learning and reverse optical flow. In Proc. of Robotics:
Science and Systems (RSS), June 2005.

[13] M. Ranzato, F. J. Huang, Y. Boreau, and Y. LeCun. Unsupervised
learning of invariant feature hierarchies with applications to object
recognition. In Proc. of Conf. on Computer Vision and Pattern
Recognition (CVPR), 2007.

[14] B. Sofman, E. Lin, J. Bagnell, N. Vandapel, and A. Stentz. Improving
robot navigation through self-supervised online learning. In Proc. of

Total Total Inter-
Course 1 Time Distance ventions

No Long-Range 321 sec 271.9 m 3
With Long-Range 155.5 sec 166.8 m 0

Course 2
No Long-Range 196.1 sec 207.5 m 1

With Long-Range 142.2 sec 165.1 m 0
Fig. 9.

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Fig. 10.

Robotics: Science and Systems (RSS), June 2006.
[15] D. Stavens and S. Thrun. A self-supervised terrain roughness estimator

for off-road autonomous driving. In Proc. of Conf. on Uncertainty in
AI (UAI), 2006.

[16] C. Wellington and A. Stentz. Online adaptive rough-terrain navigation
in vegetation. In Proc. of Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 2004.

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

ground

 footline

obstacle

super-ground

super-obstacle

Fig. 6. This shows the 5 labels applied to a full image.

Super
ground Ground Footline Obstacle Super

obstacle

Fig. 7. Examples of the 5 labels. Although the classes include
very diverse training examples, there is still benefit to using more
than 2 classes. Super-ground: only ground is seen in the window;
high confidence, ground: ground and obstacle may be seen in
window; lower confidence, footline: obstacle foot is centered in
window, obstacle: obstacle is seen but does not fill window;
lower confidence, and super-obstacle: obstacle fills window; high
confidence.

the probability that the sample belongs to class i calculated
from the stereo supervisor labels. qi is the classifier’s output
for the probability that the sample belongs to class i.

qi =
exp(wix)

∑K
k=1 exp(wkx)

where w are the parameters of the classifier, and x is the
sample’s feature vector. The weights of each regression are
updated using stochastic gradient descent, since gradient
descent provides strong regularization over successive frames
and training iterations. The gradient update is

∆wj = −η
∂Loss

∂wj
= −η

(
K∑

i=1

pi(δij − qi)

)
x

δij =
{

1 if i=j
0 otherwise

VIII. RESULTS

The long-range vision system has been used extensively
in the full navigation system built on the LAGR platform. It
runs at 1-2 Hz, which is too slow to maintain good close-
range obstacle avoidance, so the system architecture runs 2
processes simultaneously: a fast, low-resolution stereo-based
obstacle avoidance module and planner run at 8-10 Hz and
allow the robot to nimbly avoid obstacles within a 5 meter

radius. Another process runs the long-range vision and long-
range planner at 1-2 Hz, producing strategic navigation and
planning from 5 meters to the goal.

We present experimental results obtained by running the
robot on 2 courses with the long-range vision turned on
and turned off. With the long-range vision turned off, the
robot relies on its fast planning process and can only detect
obstacles within 5 meters. Course 1 (see Fig. 8 top and
Table 9) is a narrow wooded path that proved very difficult
for the robot with long-range vision off, since the dry scrub
bordering the path was difficult to see with stereo alone. The
robot had to be rescued repeatedly from entanglements off
the path. With long-range vision on, the robot saw the scrub
and path clearly and drove cleanly down the path to the goal.
Course 2 (see Fig. 8 bottom and Table 9) was a long wide
path with a clearing to the north that had no outlet - a large
natural cul-de-sac. Driving with long-range vision on, the
robot saw the long path and drove straight down it to the goal
without being tempted by the cul-de-sac. Driving without
long-range vision, the robot immediately turned into the cul-
de-sac and became stuck in scrub, needing to be manually
driven out of the cul-de-sac and restarted in order to reach
the goal.

Fig. 10 shows 5 examples of long-range vision in very
different terrain. The input image, the stereo labels, and the
classifier outputs are shown in each case.

IX. CONCLUSIONS

We have described, in detail, an self-supervised learning
approach to long-range vision in off-road terrain. The clas-
sifier is able to see smoothly and accurately to the horizon,
identifying trees, paths, man-made obstacles, and ground at
distances far beyond the 10 meters afforded by the stereo
supervisor. Complex scenes can be classified by our system,
well beyond the capabilities of a color-based approach. The
success of the classifier is due to the use of large context-
rich image windows as training data, and to the use of a deep
belief network for learned feature extraction.

Acknowledgments
The authors wish to thank Larry Jackel, Dan D. Lee, and Martial

Hébert for helpful discussions. This work was supported by DARPA
under the Learning Applied to Ground Robots program.

REFERENCES

[1] http://www.darpa.mil/ipto/Programs/lagr/vision.htm.
[2] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-

supervised monocular road detection in desert terrain. In Proc. of
Robotics: Science and Systems (RSS), June 2006.

[3] S. B. Goldberg, M. Maimone, and L. Matthies. Stereo vision and robot
navigation software for planetary exploration. In IEEE Aerospace
Conf., 2002.

[4] G. Grudic and J. Mulligan. Outdoor path labeling using polynomial
mahalanobis distance. In Proc. of Robotics: Science and Systems
(RSS), August 2006.

[5] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, J. Han, B. Flepp, U. Muller,
and Y. LeCun. Online learning for offroad robots: Using spatial label
propagation to learn long-range traversability. In rss, 2007.

[6] M. Happold, M. Ollis, and N. Johnson. Enhancing supervised terrain
classification with predictive unsupervised learning. In Proc. of
Robotics: Science and Systems (RSS), August 2006.

with learning
no learning
intervention

start

goal

start

goal
with learning
no learning
intervention

Fig. 8.

[7] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527–1554, 2006.

[8] T. Hong, T. Chang, C. Rasmussen, and M. Shneier. Road detection and
tracking for autonomous mobile robots. In Proc. of SPIE Aeroscience
Conference, 2002.

[9] A. Kelly and A. Stentz. Stereo vision enhancements for low-cost out-
door autonomous vehicles. In Int’l Conf. on Robotics and Automation,
Workshop WS-7, Navigation of Outdoor Autonomous Vehicles, 1998.

[10] D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. F. Bobick. Traversibility
classification using unsupervised on-line visual learning for outdoor
robot navigation. In Proc. of Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 2006.

[11] D. J. Kriegman, E. Triendl, and T. O. Binford. Stereo vision and
navigation in buildings for mobile robots. Trans. Robotics and
Automation, 5(6):792–803, 1989.

[12] D. Leib, A. Lookingbill, and S. Thrun. Adaptive road following using
self-supervised learning and reverse optical flow. In Proc. of Robotics:
Science and Systems (RSS), June 2005.

[13] M. Ranzato, F. J. Huang, Y. Boreau, and Y. LeCun. Unsupervised
learning of invariant feature hierarchies with applications to object
recognition. In Proc. of Conf. on Computer Vision and Pattern
Recognition (CVPR), 2007.

[14] B. Sofman, E. Lin, J. Bagnell, N. Vandapel, and A. Stentz. Improving
robot navigation through self-supervised online learning. In Proc. of

Total Total Inter-
Course 1 Time Distance ventions

No Long-Range 321 sec 271.9 m 3
With Long-Range 155.5 sec 166.8 m 0

Course 2
No Long-Range 196.1 sec 207.5 m 1

With Long-Range 142.2 sec 165.1 m 0
Fig. 9.

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Fig. 10.

Robotics: Science and Systems (RSS), June 2006.
[15] D. Stavens and S. Thrun. A self-supervised terrain roughness estimator

for off-road autonomous driving. In Proc. of Conf. on Uncertainty in
AI (UAI), 2006.

[16] C. Wellington and A. Stentz. Online adaptive rough-terrain navigation
in vegetation. In Proc. of Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 2004.

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

ground

 footline

obstacle

super-ground

super-obstacle

Fig. 6. This shows the 5 labels applied to a full image.

Super
ground Ground Footline Obstacle Super

obstacle

Fig. 7. Examples of the 5 labels. Although the classes include
very diverse training examples, there is still benefit to using more
than 2 classes. Super-ground: only ground is seen in the window;
high confidence, ground: ground and obstacle may be seen in
window; lower confidence, footline: obstacle foot is centered in
window, obstacle: obstacle is seen but does not fill window;
lower confidence, and super-obstacle: obstacle fills window; high
confidence.

the probability that the sample belongs to class i calculated
from the stereo supervisor labels. qi is the classifier’s output
for the probability that the sample belongs to class i.

qi =
exp(wix)

∑K
k=1 exp(wkx)

where w are the parameters of the classifier, and x is the
sample’s feature vector. The weights of each regression are
updated using stochastic gradient descent, since gradient
descent provides strong regularization over successive frames
and training iterations. The gradient update is

∆wj = −η
∂Loss

∂wj
= −η

(
K∑

i=1

pi(δij − qi)

)
x

δij =
{

1 if i=j
0 otherwise

VIII. RESULTS

The long-range vision system has been used extensively
in the full navigation system built on the LAGR platform. It
runs at 1-2 Hz, which is too slow to maintain good close-
range obstacle avoidance, so the system architecture runs 2
processes simultaneously: a fast, low-resolution stereo-based
obstacle avoidance module and planner run at 8-10 Hz and
allow the robot to nimbly avoid obstacles within a 5 meter

radius. Another process runs the long-range vision and long-
range planner at 1-2 Hz, producing strategic navigation and
planning from 5 meters to the goal.

We present experimental results obtained by running the
robot on 2 courses with the long-range vision turned on
and turned off. With the long-range vision turned off, the
robot relies on its fast planning process and can only detect
obstacles within 5 meters. Course 1 (see Fig. 8 top and
Table 9) is a narrow wooded path that proved very difficult
for the robot with long-range vision off, since the dry scrub
bordering the path was difficult to see with stereo alone. The
robot had to be rescued repeatedly from entanglements off
the path. With long-range vision on, the robot saw the scrub
and path clearly and drove cleanly down the path to the goal.
Course 2 (see Fig. 8 bottom and Table 9) was a long wide
path with a clearing to the north that had no outlet - a large
natural cul-de-sac. Driving with long-range vision on, the
robot saw the long path and drove straight down it to the goal
without being tempted by the cul-de-sac. Driving without
long-range vision, the robot immediately turned into the cul-
de-sac and became stuck in scrub, needing to be manually
driven out of the cul-de-sac and restarted in order to reach
the goal.

Fig. 10 shows 5 examples of long-range vision in very
different terrain. The input image, the stereo labels, and the
classifier outputs are shown in each case.

IX. CONCLUSIONS

We have described, in detail, an self-supervised learning
approach to long-range vision in off-road terrain. The clas-
sifier is able to see smoothly and accurately to the horizon,
identifying trees, paths, man-made obstacles, and ground at
distances far beyond the 10 meters afforded by the stereo
supervisor. Complex scenes can be classified by our system,
well beyond the capabilities of a color-based approach. The
success of the classifier is due to the use of large context-
rich image windows as training data, and to the use of a deep
belief network for learned feature extraction.

Acknowledgments
The authors wish to thank Larry Jackel, Dan D. Lee, and Martial

Hébert for helpful discussions. This work was supported by DARPA
under the Learning Applied to Ground Robots program.

REFERENCES

[1] http://www.darpa.mil/ipto/Programs/lagr/vision.htm.
[2] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-

supervised monocular road detection in desert terrain. In Proc. of
Robotics: Science and Systems (RSS), June 2006.

[3] S. B. Goldberg, M. Maimone, and L. Matthies. Stereo vision and robot
navigation software for planetary exploration. In IEEE Aerospace
Conf., 2002.

[4] G. Grudic and J. Mulligan. Outdoor path labeling using polynomial
mahalanobis distance. In Proc. of Robotics: Science and Systems
(RSS), August 2006.

[5] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, J. Han, B. Flepp, U. Muller,
and Y. LeCun. Online learning for offroad robots: Using spatial label
propagation to learn long-range traversability. In rss, 2007.

[6] M. Happold, M. Ollis, and N. Johnson. Enhancing supervised terrain
classification with predictive unsupervised learning. In Proc. of
Robotics: Science and Systems (RSS), August 2006.

with learning
no learning
intervention

start

goal

start

goal
with learning
no learning
intervention

Fig. 8.

[7] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527–1554, 2006.

[8] T. Hong, T. Chang, C. Rasmussen, and M. Shneier. Road detection and
tracking for autonomous mobile robots. In Proc. of SPIE Aeroscience
Conference, 2002.

[9] A. Kelly and A. Stentz. Stereo vision enhancements for low-cost out-
door autonomous vehicles. In Int’l Conf. on Robotics and Automation,
Workshop WS-7, Navigation of Outdoor Autonomous Vehicles, 1998.

[10] D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. F. Bobick. Traversibility
classification using unsupervised on-line visual learning for outdoor
robot navigation. In Proc. of Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 2006.

[11] D. J. Kriegman, E. Triendl, and T. O. Binford. Stereo vision and
navigation in buildings for mobile robots. Trans. Robotics and
Automation, 5(6):792–803, 1989.

[12] D. Leib, A. Lookingbill, and S. Thrun. Adaptive road following using
self-supervised learning and reverse optical flow. In Proc. of Robotics:
Science and Systems (RSS), June 2005.

[13] M. Ranzato, F. J. Huang, Y. Boreau, and Y. LeCun. Unsupervised
learning of invariant feature hierarchies with applications to object
recognition. In Proc. of Conf. on Computer Vision and Pattern
Recognition (CVPR), 2007.

[14] B. Sofman, E. Lin, J. Bagnell, N. Vandapel, and A. Stentz. Improving
robot navigation through self-supervised online learning. In Proc. of

Total Total Inter-
Course 1 Time Distance ventions

No Long-Range 321 sec 271.9 m 3
With Long-Range 155.5 sec 166.8 m 0

Course 2
No Long-Range 196.1 sec 207.5 m 1

With Long-Range 142.2 sec 165.1 m 0
Fig. 9.

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Fig. 10.

Robotics: Science and Systems (RSS), June 2006.
[15] D. Stavens and S. Thrun. A self-supervised terrain roughness estimator

for off-road autonomous driving. In Proc. of Conf. on Uncertainty in
AI (UAI), 2006.

[16] C. Wellington and A. Stentz. Online adaptive rough-terrain navigation
in vegetation. In Proc. of Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 2004.

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

ground

 footline

obstacle

super-ground

super-obstacle

Fig. 6. This shows the 5 labels applied to a full image.

Super
ground Ground Footline Obstacle Super

obstacle

Fig. 7. Examples of the 5 labels. Although the classes include
very diverse training examples, there is still benefit to using more
than 2 classes. Super-ground: only ground is seen in the window;
high confidence, ground: ground and obstacle may be seen in
window; lower confidence, footline: obstacle foot is centered in
window, obstacle: obstacle is seen but does not fill window;
lower confidence, and super-obstacle: obstacle fills window; high
confidence.

the probability that the sample belongs to class i calculated
from the stereo supervisor labels. qi is the classifier’s output
for the probability that the sample belongs to class i.

qi =
exp(wix)

∑K
k=1 exp(wkx)

where w are the parameters of the classifier, and x is the
sample’s feature vector. The weights of each regression are
updated using stochastic gradient descent, since gradient
descent provides strong regularization over successive frames
and training iterations. The gradient update is

∆wj = −η
∂Loss

∂wj
= −η

(
K∑

i=1

pi(δij − qi)

)
x

δij =
{

1 if i=j
0 otherwise

VIII. RESULTS

The long-range vision system has been used extensively
in the full navigation system built on the LAGR platform. It
runs at 1-2 Hz, which is too slow to maintain good close-
range obstacle avoidance, so the system architecture runs 2
processes simultaneously: a fast, low-resolution stereo-based
obstacle avoidance module and planner run at 8-10 Hz and
allow the robot to nimbly avoid obstacles within a 5 meter

radius. Another process runs the long-range vision and long-
range planner at 1-2 Hz, producing strategic navigation and
planning from 5 meters to the goal.

We present experimental results obtained by running the
robot on 2 courses with the long-range vision turned on
and turned off. With the long-range vision turned off, the
robot relies on its fast planning process and can only detect
obstacles within 5 meters. Course 1 (see Fig. 8 top and
Table 9) is a narrow wooded path that proved very difficult
for the robot with long-range vision off, since the dry scrub
bordering the path was difficult to see with stereo alone. The
robot had to be rescued repeatedly from entanglements off
the path. With long-range vision on, the robot saw the scrub
and path clearly and drove cleanly down the path to the goal.
Course 2 (see Fig. 8 bottom and Table 9) was a long wide
path with a clearing to the north that had no outlet - a large
natural cul-de-sac. Driving with long-range vision on, the
robot saw the long path and drove straight down it to the goal
without being tempted by the cul-de-sac. Driving without
long-range vision, the robot immediately turned into the cul-
de-sac and became stuck in scrub, needing to be manually
driven out of the cul-de-sac and restarted in order to reach
the goal.

Fig. 10 shows 5 examples of long-range vision in very
different terrain. The input image, the stereo labels, and the
classifier outputs are shown in each case.

IX. CONCLUSIONS

We have described, in detail, an self-supervised learning
approach to long-range vision in off-road terrain. The clas-
sifier is able to see smoothly and accurately to the horizon,
identifying trees, paths, man-made obstacles, and ground at
distances far beyond the 10 meters afforded by the stereo
supervisor. Complex scenes can be classified by our system,
well beyond the capabilities of a color-based approach. The
success of the classifier is due to the use of large context-
rich image windows as training data, and to the use of a deep
belief network for learned feature extraction.

Acknowledgments
The authors wish to thank Larry Jackel, Dan D. Lee, and Martial

Hébert for helpful discussions. This work was supported by DARPA
under the Learning Applied to Ground Robots program.

REFERENCES

[1] http://www.darpa.mil/ipto/Programs/lagr/vision.htm.
[2] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-

supervised monocular road detection in desert terrain. In Proc. of
Robotics: Science and Systems (RSS), June 2006.

[3] S. B. Goldberg, M. Maimone, and L. Matthies. Stereo vision and robot
navigation software for planetary exploration. In IEEE Aerospace
Conf., 2002.

[4] G. Grudic and J. Mulligan. Outdoor path labeling using polynomial
mahalanobis distance. In Proc. of Robotics: Science and Systems
(RSS), August 2006.

[5] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, J. Han, B. Flepp, U. Muller,
and Y. LeCun. Online learning for offroad robots: Using spatial label
propagation to learn long-range traversability. In rss, 2007.

[6] M. Happold, M. Ollis, and N. Johnson. Enhancing supervised terrain
classification with predictive unsupervised learning. In Proc. of
Robotics: Science and Systems (RSS), August 2006.

with learning
no learning
intervention

start

goal

start

goal
with learning
no learning
intervention

Fig. 8.

[7] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527–1554, 2006.

[8] T. Hong, T. Chang, C. Rasmussen, and M. Shneier. Road detection and
tracking for autonomous mobile robots. In Proc. of SPIE Aeroscience
Conference, 2002.

[9] A. Kelly and A. Stentz. Stereo vision enhancements for low-cost out-
door autonomous vehicles. In Int’l Conf. on Robotics and Automation,
Workshop WS-7, Navigation of Outdoor Autonomous Vehicles, 1998.

[10] D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. F. Bobick. Traversibility
classification using unsupervised on-line visual learning for outdoor
robot navigation. In Proc. of Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 2006.

[11] D. J. Kriegman, E. Triendl, and T. O. Binford. Stereo vision and
navigation in buildings for mobile robots. Trans. Robotics and
Automation, 5(6):792–803, 1989.

[12] D. Leib, A. Lookingbill, and S. Thrun. Adaptive road following using
self-supervised learning and reverse optical flow. In Proc. of Robotics:
Science and Systems (RSS), June 2005.

[13] M. Ranzato, F. J. Huang, Y. Boreau, and Y. LeCun. Unsupervised
learning of invariant feature hierarchies with applications to object
recognition. In Proc. of Conf. on Computer Vision and Pattern
Recognition (CVPR), 2007.

[14] B. Sofman, E. Lin, J. Bagnell, N. Vandapel, and A. Stentz. Improving
robot navigation through self-supervised online learning. In Proc. of

Total Total Inter-
Course 1 Time Distance ventions

No Long-Range 321 sec 271.9 m 3
With Long-Range 155.5 sec 166.8 m 0

Course 2
No Long-Range 196.1 sec 207.5 m 1

With Long-Range 142.2 sec 165.1 m 0
Fig. 9.

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Fig. 10.

Robotics: Science and Systems (RSS), June 2006.
[15] D. Stavens and S. Thrun. A self-supervised terrain roughness estimator

for off-road autonomous driving. In Proc. of Conf. on Uncertainty in
AI (UAI), 2006.

[16] C. Wellington and A. Stentz. Online adaptive rough-terrain navigation
in vegetation. In Proc. of Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 2004.

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

`̀

YUV input

3@36x484

CONVOLUTIONS (7x6)

20@30x484

...

MAX SUBSAMPLING (1x4)

CONVOLUTIONS (6x5)

20@30x125

...
...

100@25x121

Fig. 4. The feature maps are shown for a sample input. The input
to the network is a variable width, variable height layer from the
normalized pyramid. The output from the first convolutional layer
is a set of 20 feature maps, the output from the max-pooling layer
is a set of 20 feature maps with width scaled by a factor of 4
through pooling, the output from the second convolutional layer is
a set of 100 feature maps. A single 3x12x25 window in the input
corresponds to a single 100x1x1 feature vector.

Fig. 5. Trained filters from both layers of the trained feature
extractor. Top: the first convolutional layer has 20 7x6 filters.
Bottom: the second convolutional layer has 300 6x5 filters.

VI. STEREO SUPERVISION

The supervision that the long-range classifier receives
from the stereo module is critically important. The realtime
training can be dramatically altered if the data and labels
are changed in small ways, or if the labeling becomes noisy.
Therefore, the goal of the supervisor module is to provide
data samples and labels that are visually consistent, error-
free, and well-distributed. The basic approach begins with a
disparity point cloud generated by a stereo algorithm. In the
first step, the ground plane is located within the point cloud
and the points are separated with a threshold into ground
and obstacle point clouds. Second, the obstacle points are
projected onto the ground plane to locate the feet of the
obstacles. Third, overlapping regions of points are considered
and heuristics are used to assign each region to one of five
categories. The results from this basic method have several
sources of error, however. Since off-road terrain is rarely

perfectly flat, areas of traversable ground can stick up above
the ground plane and be mis-classified as obstacle. Also, tufts
of grass or leaves can look like obstacles when a simple
plane distance threshold is used to detect obstacles. These
sorts of error are potentially disastrous to the classifier, so
two strategies, multi-groundplane estimation and moments
filtering, are employed to avoid them.

Multi-Groundplane Estimation The assumption that
there is a single perfect ground plane is rarely correct in nat-
ural terrain. To relax this assumption, we find multiple planes
in each input image and use their combined information to
divide the points into ground and obstacle clouds. After the
first ground plane is fitted to the point cloud, all points
that are within a tight threshold of the plane are removed
and a new plane is fit to the remaining points. The process
continues until no good plane can be found or a maximum
of 4 planes have been fit to the data. The ground planes are
fitted by using a Hough transform to get an initial estimate of
the plane, then refining the estimate by locating the principle
eigenvectors of the points that are close to the initial plane.

Moments Filtering Even multiple ground planes cannot
remove all error from the stereo labeling process. Tufts of
grass or disparity mismatches (common with repeating tex-
tures such as tall grass, dry brush, or fences) can create false
obstacles that cause poor driving and training. Therefore, we
consider the first and second moments of the plane distances
of points and use the statistics to reject false obstacles. We
use the following heuristics: if the mean plane distance is
not too high (under .5 m) and the variance of the plane
distance is very low, then the region is traversable (probably a
traversable hillside). Conversely, if the mean plane distance
is very low but the variance is higher, then that region is
traversable (possibly tall grass). These heuristics are simple,
but they reduce errors in the training data effectively.

Visual Categories Most classifiers that attempt to learn
terrain traversability are binary; they only learn ground
vs. obstacle. However, our supervisor uses 5 categories:
super-ground, ground, footline, obstacle, and super-obstacle.
Super-ground and super-obstacle refer to input windows in
which only ground or obstacle are seen, and our confidence
is very high that these labels are correct. The ground and
obstacle categories are used when other sorts of terrain are
seen in the window, or when the confidence is lower that
the label is correct. Footline is the label for input windows
that have the foot of an obstacle centered in the window.
Obstacle feet are visually distinctive, and it is important to
put these samples in a distinct. category. Fig. 6 and Fig. 7
show examples of the 5 categories.

VII. REALTIME TERRAIN CLASSIFICATION

The long-range classifier trains on and classifies every
frame that it receives, so it must be relatively efficient.
A separate logistic regression is trained on each of the
5 categories, using a one-against-the-rest training strategy.
The loss function that is minimized for learning is the
Kullback-Liebler divergence or relative entropy. Loss =
DKL(P ||Q) =

∑K
i=1 pilogpi −

∑K
i=1 pilogqi, where pi is

Filtres appris

Deep Belief Net Learning in a Long-Range Vision
System for Autonomous Off-Road Driving
(Hadsell, Erkan, Sermanet, Scoffier, Muller and LeCun, IROS 2008)

with learning
no learning
intervention

start

goal

start

goal
with learning
no learning
intervention

Fig. 8.

[7] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527–1554, 2006.

[8] T. Hong, T. Chang, C. Rasmussen, and M. Shneier. Road detection and
tracking for autonomous mobile robots. In Proc. of SPIE Aeroscience
Conference, 2002.

[9] A. Kelly and A. Stentz. Stereo vision enhancements for low-cost out-
door autonomous vehicles. In Int’l Conf. on Robotics and Automation,
Workshop WS-7, Navigation of Outdoor Autonomous Vehicles, 1998.

[10] D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. F. Bobick. Traversibility
classification using unsupervised on-line visual learning for outdoor
robot navigation. In Proc. of Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 2006.

[11] D. J. Kriegman, E. Triendl, and T. O. Binford. Stereo vision and
navigation in buildings for mobile robots. Trans. Robotics and
Automation, 5(6):792–803, 1989.

[12] D. Leib, A. Lookingbill, and S. Thrun. Adaptive road following using
self-supervised learning and reverse optical flow. In Proc. of Robotics:
Science and Systems (RSS), June 2005.

[13] M. Ranzato, F. J. Huang, Y. Boreau, and Y. LeCun. Unsupervised
learning of invariant feature hierarchies with applications to object
recognition. In Proc. of Conf. on Computer Vision and Pattern
Recognition (CVPR), 2007.

[14] B. Sofman, E. Lin, J. Bagnell, N. Vandapel, and A. Stentz. Improving
robot navigation through self-supervised online learning. In Proc. of

Total Total Inter-
Course 1 Time Distance ventions

No Long-Range 321 sec 271.9 m 3
With Long-Range 155.5 sec 166.8 m 0

Course 2
No Long-Range 196.1 sec 207.5 m 1

With Long-Range 142.2 sec 165.1 m 0
Fig. 9.

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Fig. 10.

Robotics: Science and Systems (RSS), June 2006.
[15] D. Stavens and S. Thrun. A self-supervised terrain roughness estimator

for off-road autonomous driving. In Proc. of Conf. on Uncertainty in
AI (UAI), 2006.

[16] C. Wellington and A. Stentz. Online adaptive rough-terrain navigation
in vegetation. In Proc. of Int’l Conf. on Robotics and Automation
(ICRA). IEEE, 2004.

Deep Learning from Temporal
Coherence in Video

(Mobahi, Collobert and Weston, ICML 2009)

• Application du critère “semi-supervised
embedding” à un réseau à convolution

Deep Learning from Temporal Coherence in Video

Input Image
72x72

3x3
Convolution

C1

70x70
2x2

Subsampling
S2

35x35
4x4

Convolution
C3

32x32
2x2

Subsampling
S4

16x16
5x5

Convolution
C5

12x12
2x2

Subsampling
S6

6x6
6x6

Convolution
C7

1x1

Full Connected
F8

one output per class

Figure 1. A Convolutional Neural Network (CNN) performs a series of convolutions and subsamplings given the raw input
image until it finally outputs a vector of predicted class labels.

parameters θ of the network:

L(θ) = −
N∑

n=1

log Pθ(yn|xn) = −
N∑

n=1

log P̃θ,yn(xn) (2)

We use stochastic gradient descent (Bottou, 1991) op-
timization for that purpose. Random examples (x, y)
are sampled from the training set. After computation
of the gradient ∂L(θ)/∂θ, a gradient descent update
is applied:

θ ←− θ − λ
∂L(θ, x, y)

∂θ
, (3)

where λ is a carefully chosen learning rate (e.g., choos-
ing the rate which optimizes the training error).

2.2. Leveraging Video Coherence

As highlighted in the introduction, video coherence en-
sures that consecutive images in a video are likely to
represent the same scene. It is also natural to enforce
the representation of input images in the deep layers
of the neural network to be similar if we know that the
same scene is represented in the input images.

We consider now two images x1 and x2, and their
corresponding generated representation zl

θ(x1) and
zl

θ(x2) in the lth layer. We exploit the video coher-
ence property by enforcing zl

θ(x1) and zl
θ(x2) to be

close (in the !L1 norm) if the two input images are con-
secutive video images. If the two input images are not
consecutive frames, then we push their representations
apart. This corresponds to minimizing the following
cost:

Lcoh(θ, x1,x2) = (4)





||zl
θ(x1)− zl

θ(x2)||1, if x1, x2 consecutive

max(0, δ − ||zl
θ(x1)− zl

θ(x2)||1), otherwise

where δ is the size of the margin, a hyperparameter
chosen in advance, e.g. δ = 1.

Algorithm 1 Stochastic Gradient with Video Coher-
ence.

Input: Labeled data (xn, yn), n = 1, ...N , unla-
beled video data xn, n = N + 1, ...N + U
repeat

Pick a random labeled example (xn, yn)
Make a gradient step to decrease L(θ, xn, yn)
Pick a random pair of consecutive images xm,xn

in the video
Make a gradient step to decrease Lcoh(θ, xm, xn)
Pick a random pair of images xm,xn in the video
Make a gradient step to decrease Lcoh(θ, xm, xn)

until Stopping criterion is met

In our experiments, we enforced video coherence as de-
scribed in (4) on the (M−1)th layer of our M -layer net-
work, i.e. on the representation yielded by the succes-
sive layers of the network just before the final softmax
layer (1). The reasoning behind this choice is that the
!L1 distance we use may not be appropriate for the log
probability representation in the last layer, although
in principle we could apply this coherence regulariza-
tion at any layer l. In practice, minimizing (4) for all
pairs of images is achieved by stochastic gradient de-
scent over a “siamese network” architecture (Bromley
et al., 1993): two networks sharing the same param-
eters θ compute the representation for two sampled
images x1 and x2 as shown in Figure 2. The gradient
of the cost (4) with respect to θ is then computed and
updated in the same way as in (3).

The optimization of the object recognition task (2) and
the video coherence (4) is done simultaneously. That
is, we minimize:

N∑

n=1

L(θ, xn, yn) + γ
∑

m,n

Lcoh(θ, xm, xn)

with respect to θ.

In order to limit the number of hyper-parameters, we

Deep Learning from Temporal Coherence in Video

Input Image
72x72

3x3
Convolution

C1

70x70
2x2

Subsampling
S2

35x35
4x4

Convolution
C3

32x32
2x2

Subsampling
S4

16x16
5x5

Convolution
C5

12x12
2x2

Subsampling
S6

6x6
6x6

Convolution
C7

1x1

Full Connected
F8

one output per class

Figure 1. A Convolutional Neural Network (CNN) performs a series of convolutions and subsamplings given the raw input
image until it finally outputs a vector of predicted class labels.

parameters θ of the network:

L(θ) = −
N∑

n=1

log Pθ(yn|xn) = −
N∑

n=1

log P̃θ,yn(xn) (2)

We use stochastic gradient descent (Bottou, 1991) op-
timization for that purpose. Random examples (x, y)
are sampled from the training set. After computation
of the gradient ∂L(θ)/∂θ, a gradient descent update
is applied:

θ ←− θ − λ
∂L(θ, x, y)

∂θ
, (3)

where λ is a carefully chosen learning rate (e.g., choos-
ing the rate which optimizes the training error).

2.2. Leveraging Video Coherence

As highlighted in the introduction, video coherence en-
sures that consecutive images in a video are likely to
represent the same scene. It is also natural to enforce
the representation of input images in the deep layers
of the neural network to be similar if we know that the
same scene is represented in the input images.

We consider now two images x1 and x2, and their
corresponding generated representation zl

θ(x1) and
zl

θ(x2) in the lth layer. We exploit the video coher-
ence property by enforcing zl

θ(x1) and zl
θ(x2) to be

close (in the !L1 norm) if the two input images are con-
secutive video images. If the two input images are not
consecutive frames, then we push their representations
apart. This corresponds to minimizing the following
cost:

Lcoh(θ, x1,x2) = (4)





||zl
θ(x1)− zl

θ(x2)||1, if x1, x2 consecutive

max(0, δ − ||zl
θ(x1)− zl

θ(x2)||1), otherwise

where δ is the size of the margin, a hyperparameter
chosen in advance, e.g. δ = 1.

Algorithm 1 Stochastic Gradient with Video Coher-
ence.

Input: Labeled data (xn, yn), n = 1, ...N , unla-
beled video data xn, n = N + 1, ...N + U
repeat

Pick a random labeled example (xn, yn)
Make a gradient step to decrease L(θ, xn, yn)
Pick a random pair of consecutive images xm,xn

in the video
Make a gradient step to decrease Lcoh(θ, xm, xn)
Pick a random pair of images xm,xn in the video
Make a gradient step to decrease Lcoh(θ, xm, xn)

until Stopping criterion is met

In our experiments, we enforced video coherence as de-
scribed in (4) on the (M−1)th layer of our M -layer net-
work, i.e. on the representation yielded by the succes-
sive layers of the network just before the final softmax
layer (1). The reasoning behind this choice is that the
!L1 distance we use may not be appropriate for the log
probability representation in the last layer, although
in principle we could apply this coherence regulariza-
tion at any layer l. In practice, minimizing (4) for all
pairs of images is achieved by stochastic gradient de-
scent over a “siamese network” architecture (Bromley
et al., 1993): two networks sharing the same param-
eters θ compute the representation for two sampled
images x1 and x2 as shown in Figure 2. The gradient
of the cost (4) with respect to θ is then computed and
updated in the same way as in (3).

The optimization of the object recognition task (2) and
the video coherence (4) is done simultaneously. That
is, we minimize:

N∑

n=1

L(θ, xn, yn) + γ
∑

m,n

Lcoh(θ, xm, xn)

with respect to θ.

In order to limit the number of hyper-parameters, we

Deep Learning from Temporal Coherence in Video

Input Image
72x72

3x3
Convolution

C1

70x70
2x2

Subsampling
S2

35x35
4x4

Convolution
C3

32x32
2x2

Subsampling
S4

16x16
5x5

Convolution
C5

12x12
2x2

Subsampling
S6

6x6
6x6

Convolution
C7

1x1

Full Connected
F8

one output per class

Figure 1. A Convolutional Neural Network (CNN) performs a series of convolutions and subsamplings given the raw input
image until it finally outputs a vector of predicted class labels.

parameters θ of the network:

L(θ) = −
N∑

n=1

log Pθ(yn|xn) = −
N∑

n=1

log P̃θ,yn(xn) (2)

We use stochastic gradient descent (Bottou, 1991) op-
timization for that purpose. Random examples (x, y)
are sampled from the training set. After computation
of the gradient ∂L(θ)/∂θ, a gradient descent update
is applied:

θ ←− θ − λ
∂L(θ, x, y)

∂θ
, (3)

where λ is a carefully chosen learning rate (e.g., choos-
ing the rate which optimizes the training error).

2.2. Leveraging Video Coherence

As highlighted in the introduction, video coherence en-
sures that consecutive images in a video are likely to
represent the same scene. It is also natural to enforce
the representation of input images in the deep layers
of the neural network to be similar if we know that the
same scene is represented in the input images.

We consider now two images x1 and x2, and their
corresponding generated representation zl

θ(x1) and
zl

θ(x2) in the lth layer. We exploit the video coher-
ence property by enforcing zl

θ(x1) and zl
θ(x2) to be

close (in the !L1 norm) if the two input images are con-
secutive video images. If the two input images are not
consecutive frames, then we push their representations
apart. This corresponds to minimizing the following
cost:

Lcoh(θ, x1,x2) = (4)





||zl
θ(x1)− zl

θ(x2)||1, if x1, x2 consecutive

max(0, δ − ||zl
θ(x1)− zl

θ(x2)||1), otherwise

where δ is the size of the margin, a hyperparameter
chosen in advance, e.g. δ = 1.

Algorithm 1 Stochastic Gradient with Video Coher-
ence.

Input: Labeled data (xn, yn), n = 1, ...N , unla-
beled video data xn, n = N + 1, ...N + U
repeat

Pick a random labeled example (xn, yn)
Make a gradient step to decrease L(θ, xn, yn)
Pick a random pair of consecutive images xm,xn

in the video
Make a gradient step to decrease Lcoh(θ, xm, xn)
Pick a random pair of images xm,xn in the video
Make a gradient step to decrease Lcoh(θ, xm, xn)

until Stopping criterion is met

In our experiments, we enforced video coherence as de-
scribed in (4) on the (M−1)th layer of our M -layer net-
work, i.e. on the representation yielded by the succes-
sive layers of the network just before the final softmax
layer (1). The reasoning behind this choice is that the
!L1 distance we use may not be appropriate for the log
probability representation in the last layer, although
in principle we could apply this coherence regulariza-
tion at any layer l. In practice, minimizing (4) for all
pairs of images is achieved by stochastic gradient de-
scent over a “siamese network” architecture (Bromley
et al., 1993): two networks sharing the same param-
eters θ compute the representation for two sampled
images x1 and x2 as shown in Figure 2. The gradient
of the cost (4) with respect to θ is then computed and
updated in the same way as in (3).

The optimization of the object recognition task (2) and
the video coherence (4) is done simultaneously. That
is, we minimize:

N∑

n=1

L(θ, xn, yn) + γ
∑

m,n

Lcoh(θ, xm, xn)

with respect to θ.

In order to limit the number of hyper-parameters, we

juste avant

la “so
ftmax”

Deep Learning from Temporal
Coherence in Video

(Mobahi, Collobert and Weston, ICML 2009)

• Les paires similaires sont extraites de
séquences

Deep Learning from Temporal Coherence in Video

Input Image
72x72

3x3
Convolution

C1

70x70
2x2

Subsampling
S2

35x35
4x4

Convolution
C3

32x32
2x2

Subsampling
S4

16x16
5x5

Convolution
C5

12x12
2x2

Subsampling
S6

6x6
6x6

Convolution
C7

1x1

Full Connected
F8

one output per class
Figure 1. A Convolutional Neural Network (CNN) performs a series of convolutions and subsamplings given the raw input
image until it finally outputs a vector of predicted class labels.

parameters θ of the network:

L(θ) = −
N∑

n=1

log Pθ(yn|xn) = −
N∑

n=1

log P̃θ,yn(xn) (2)

We use stochastic gradient descent (Bottou, 1991) op-
timization for that purpose. Random examples (x, y)
are sampled from the training set. After computation
of the gradient ∂L(θ)/∂θ, a gradient descent update
is applied:

θ ←− θ − λ
∂L(θ, x, y)

∂θ
, (3)

where λ is a carefully chosen learning rate (e.g., choos-
ing the rate which optimizes the training error).

2.2. Leveraging Video Coherence

As highlighted in the introduction, video coherence en-
sures that consecutive images in a video are likely to
represent the same scene. It is also natural to enforce
the representation of input images in the deep layers
of the neural network to be similar if we know that the
same scene is represented in the input images.

We consider now two images x1 and x2, and their
corresponding generated representation zl

θ(x1) and
zl

θ(x2) in the lth layer. We exploit the video coher-
ence property by enforcing zl

θ(x1) and zl
θ(x2) to be

close (in the !L1 norm) if the two input images are con-
secutive video images. If the two input images are not
consecutive frames, then we push their representations
apart. This corresponds to minimizing the following
cost:

Lcoh(θ, x1,x2) = (4)





||zl
θ(x1)− zl

θ(x2)||1, if x1, x2 consecutive

max(0, δ − ||zl
θ(x1)− zl

θ(x2)||1), otherwise

where δ is the size of the margin, a hyperparameter
chosen in advance, e.g. δ = 1.

Algorithm 1 Stochastic Gradient with Video Coher-
ence.

Input: Labeled data (xn, yn), n = 1, ...N , unla-
beled video data xn, n = N + 1, ...N + U
repeat

Pick a random labeled example (xn, yn)
Make a gradient step to decrease L(θ, xn, yn)
Pick a random pair of consecutive images xm,xn

in the video
Make a gradient step to decrease Lcoh(θ, xm, xn)
Pick a random pair of images xm,xn in the video
Make a gradient step to decrease Lcoh(θ, xm, xn)

until Stopping criterion is met

In our experiments, we enforced video coherence as de-
scribed in (4) on the (M−1)th layer of our M -layer net-
work, i.e. on the representation yielded by the succes-
sive layers of the network just before the final softmax
layer (1). The reasoning behind this choice is that the
!L1 distance we use may not be appropriate for the log
probability representation in the last layer, although
in principle we could apply this coherence regulariza-
tion at any layer l. In practice, minimizing (4) for all
pairs of images is achieved by stochastic gradient de-
scent over a “siamese network” architecture (Bromley
et al., 1993): two networks sharing the same param-
eters θ compute the representation for two sampled
images x1 and x2 as shown in Figure 2. The gradient
of the cost (4) with respect to θ is then computed and
updated in the same way as in (3).

The optimization of the object recognition task (2) and
the video coherence (4) is done simultaneously. That
is, we minimize:

N∑

n=1

L(θ, xn, yn) + γ
∑

m,n

Lcoh(θ, xm, xn)

with respect to θ.

In order to limit the number of hyper-parameters, we

Deep Learning from Temporal
Coherence in Video

(Mobahi, Collobert and Weston, ICML 2009)

• Jeux de donnéesDeep Learning from Temporal Coherence in Video

4.1. Object Recognition

We considered several datasets, described below.

4.1.1. Datasets

COIL100 We use the COIL100 image dataset devel-
oped at Columbia University as our main recognition
task (Nayar et al., 1996). This set contains color pic-
tures of 100 objects, each 72x72 pixels; some examples
are shown in Figure 3. There are 72 different views
for every object, i.e. there are 7200 images in total.
The images were obtained by placing the objects on a
turntable and taking a shot for each 5 degree turn. The
images were clipped and passed through illumination
normalization.

COIL100-Like We created a video dataset of aux-
iliary images to complement COIL100. The idea is to
provide images that are similar to, but not the same
objects as, the ones in COIL100. This will enable us
to measure the success of our method when the unla-
beled video comes from a different distribution. For
this purpose we collected 4 types of objects that are
also present in COIL100: namely fruits, cars, cups,
and cans with 10 objects per type (see Figure 4).

Similar to COIL100, we recorded video utilizing a
turntable. As we wanted to record a continuous stream
of video, in real-time we removed and placed each ob-
ject, where the operator is wearing a black glove which
can be seen in the video. The idea is that our setup
mimics that of a child holding a toy or other object
and rotating it in her hand, and in this way learning
about image transformations. The turntable makes 4
revolutions per minute and the recording rate is 24
fps. We downsampled the video so that two successive
frames give a 5 degree rotation of the objects.

Animal Set We also created a video dataset con-
taining objects rather dissimilar to COIL100. This will
enable us to measure the success of our method when
the unlabeled video shares no objects in common with
the supervised task of interest. To do this, we collected
a set of toy animals, consisting of 60 toys of different
types such as horse, duck, cow, sheep, deer, dog, cat,
pig, mouse, rabbit and different types of birds. The
data was collected in the same way as for COIL100-
Like. Some examples are given in Figure 5.

Although both COIL100 and our video are in color, we
convert them to gray scale so that recognition only de-
pends on the shape of the objects. This will enable us
to compare our results with other works who also use
only the shape information, which is indeed a harder
task than using color information as well.

Figure 3. Dataset 1: Examples of the 100 objects from
COIL100, each of which has 72 different poses.

Figure 4. Dataset 2: Examples of 40 COIL100-Like ob-
jects, each of which is provided with 72 different poses, as
a video stream. This video was collected to provide similar
sensory data as provided in the COIL dataset.

Figure 5. Dataset 3: Examples of 60 animals from our An-
imal Set, comprising of animals such as horses, ducks, deer
and rabbits. Again, 72 poses are provided for each animal
as a video stream.

Figure 6. Dataset 4: Examples from the ORL face dataset.

Deep Learning from Temporal Coherence in Video

4.1. Object Recognition

We considered several datasets, described below.

4.1.1. Datasets

COIL100 We use the COIL100 image dataset devel-
oped at Columbia University as our main recognition
task (Nayar et al., 1996). This set contains color pic-
tures of 100 objects, each 72x72 pixels; some examples
are shown in Figure 3. There are 72 different views
for every object, i.e. there are 7200 images in total.
The images were obtained by placing the objects on a
turntable and taking a shot for each 5 degree turn. The
images were clipped and passed through illumination
normalization.

COIL100-Like We created a video dataset of aux-
iliary images to complement COIL100. The idea is to
provide images that are similar to, but not the same
objects as, the ones in COIL100. This will enable us
to measure the success of our method when the unla-
beled video comes from a different distribution. For
this purpose we collected 4 types of objects that are
also present in COIL100: namely fruits, cars, cups,
and cans with 10 objects per type (see Figure 4).

Similar to COIL100, we recorded video utilizing a
turntable. As we wanted to record a continuous stream
of video, in real-time we removed and placed each ob-
ject, where the operator is wearing a black glove which
can be seen in the video. The idea is that our setup
mimics that of a child holding a toy or other object
and rotating it in her hand, and in this way learning
about image transformations. The turntable makes 4
revolutions per minute and the recording rate is 24
fps. We downsampled the video so that two successive
frames give a 5 degree rotation of the objects.

Animal Set We also created a video dataset con-
taining objects rather dissimilar to COIL100. This will
enable us to measure the success of our method when
the unlabeled video shares no objects in common with
the supervised task of interest. To do this, we collected
a set of toy animals, consisting of 60 toys of different
types such as horse, duck, cow, sheep, deer, dog, cat,
pig, mouse, rabbit and different types of birds. The
data was collected in the same way as for COIL100-
Like. Some examples are given in Figure 5.

Although both COIL100 and our video are in color, we
convert them to gray scale so that recognition only de-
pends on the shape of the objects. This will enable us
to compare our results with other works who also use
only the shape information, which is indeed a harder
task than using color information as well.

Figure 3. Dataset 1: Examples of the 100 objects from
COIL100, each of which has 72 different poses.

Figure 4. Dataset 2: Examples of 40 COIL100-Like ob-
jects, each of which is provided with 72 different poses, as
a video stream. This video was collected to provide similar
sensory data as provided in the COIL dataset.

Figure 5. Dataset 3: Examples of 60 animals from our An-
imal Set, comprising of animals such as horses, ducks, deer
and rabbits. Again, 72 poses are provided for each animal
as a video stream.

Figure 6. Dataset 4: Examples from the ORL face dataset.

Deep Learning from Temporal Coherence in Video

4.1. Object Recognition

We considered several datasets, described below.

4.1.1. Datasets

COIL100 We use the COIL100 image dataset devel-
oped at Columbia University as our main recognition
task (Nayar et al., 1996). This set contains color pic-
tures of 100 objects, each 72x72 pixels; some examples
are shown in Figure 3. There are 72 different views
for every object, i.e. there are 7200 images in total.
The images were obtained by placing the objects on a
turntable and taking a shot for each 5 degree turn. The
images were clipped and passed through illumination
normalization.

COIL100-Like We created a video dataset of aux-
iliary images to complement COIL100. The idea is to
provide images that are similar to, but not the same
objects as, the ones in COIL100. This will enable us
to measure the success of our method when the unla-
beled video comes from a different distribution. For
this purpose we collected 4 types of objects that are
also present in COIL100: namely fruits, cars, cups,
and cans with 10 objects per type (see Figure 4).

Similar to COIL100, we recorded video utilizing a
turntable. As we wanted to record a continuous stream
of video, in real-time we removed and placed each ob-
ject, where the operator is wearing a black glove which
can be seen in the video. The idea is that our setup
mimics that of a child holding a toy or other object
and rotating it in her hand, and in this way learning
about image transformations. The turntable makes 4
revolutions per minute and the recording rate is 24
fps. We downsampled the video so that two successive
frames give a 5 degree rotation of the objects.

Animal Set We also created a video dataset con-
taining objects rather dissimilar to COIL100. This will
enable us to measure the success of our method when
the unlabeled video shares no objects in common with
the supervised task of interest. To do this, we collected
a set of toy animals, consisting of 60 toys of different
types such as horse, duck, cow, sheep, deer, dog, cat,
pig, mouse, rabbit and different types of birds. The
data was collected in the same way as for COIL100-
Like. Some examples are given in Figure 5.

Although both COIL100 and our video are in color, we
convert them to gray scale so that recognition only de-
pends on the shape of the objects. This will enable us
to compare our results with other works who also use
only the shape information, which is indeed a harder
task than using color information as well.

Figure 3. Dataset 1: Examples of the 100 objects from
COIL100, each of which has 72 different poses.

Figure 4. Dataset 2: Examples of 40 COIL100-Like ob-
jects, each of which is provided with 72 different poses, as
a video stream. This video was collected to provide similar
sensory data as provided in the COIL dataset.

Figure 5. Dataset 3: Examples of 60 animals from our An-
imal Set, comprising of animals such as horses, ducks, deer
and rabbits. Again, 72 poses are provided for each animal
as a video stream.

Figure 6. Dataset 4: Examples from the ORL face dataset.

COIL100

COIL100-Like

Animal Set

Deep Learning from Temporal
Coherence in Video

(Mobahi, Collobert and Weston, ICML 2009)

Deep Learning from Temporal Coherence in Video

Table 1. Test Accuracy on COIL100 in various settings.
Both 30 and 100 objects were used following (Wersing &
Körner, 2003). Our temporal coherence respecting algo-
rithm videoCNN, with various choices of video, outper-
forms a standard CNN and other baselines.

Method 30 objects 100 objects

Nearest Neighbor 81.8 70.1
SVM 84.9 74.6
SpinGlass MRF 82.79 69.41
Eigen Spline 84.6 77.0
VTU 89.9 79.1
Standard CNN 84.88 71.49
videoCNN V:COIL100 - 92.25
videoCNN V:COIL“70” 95.03 -
videoCNN V:COIL-Like - 79.77
videoCNN V:Animal - 78.67

Table 2. Test Accuracy Performance on ORL Faces with k
labeled examples per subject.

Method k=1 k=2 k=5

Nearest Neighbor 69.07 81.08 94.64
PCA 56.43 71.19 88.31
LDA - 68.84 88.87
MRF 51.06 68.38 86.95
Standard CNN 71.83 82.58 94.05
videoCNN V:ORL 90.35 94.77 98.86

Compared to a plain CNN without using unlabeled
video, these are improvements of about 7% and 8%.
This indicates that although use of similar objects has
a larger improvement, the difference between the gain
obtained by COIL-Like and the Animal Set is rela-
tively small. This is important because it opens up
the possibility that the CNN structure has the ability
to learn pose invariance abstractly, without relying on
the actual object set used for training.

The drop in performance when using the COIL-
Like set as unlabeled video (videoCNN V:COIL-Like)
rather than objects from COIL100 itself (videoCNN
V:COIL100) is probably partly due to the change in
camera and environment parameters. However, our
results indicate that using unlabeled auxiliary video
is still always beneficial compared to not using video,
even when the objects in the auxiliary video are not
similar to those of the primary task.

4.2. Face Recognition

We also report a simple experiment on AT&T’s ORL
face database (Samaria & Harter, 1994), which con-
sists of 10 different gray scale images for each of the
40 distinct subjects, taken at different times and with
varying lighting and facial expressions (open / closed

eyes, smiling / not smiling). See Figure 6 for examples.

The images were placed in a “video” sequence by con-
catenating 40 segments, one for each subject, order-
ing according to the (arbitrary) numbering system
in the dataset. Note this is a “transductive” setup,
where the labeled train and test images are part of the
video (training examples are evenly spaced). We la-
beled k =1,2 or 5 images per subject and compared to
the baselines Nearest Neighbor, PCA, LDA and MRF
(Huang et al., 2004). We used the same CNN as in
Section 4.1 and rescaled the images from 92 × 112 to
72 × 72 pixels for that purpose, and otherwise per-
formed no special pre-processing. The results given in
Table 2 again indicate that learning significantly bene-
fits from unlabeled video through temporal coherence.

5. Conclusion

In this work we proposed a deep learning algorithm
for visual object recognition exploiting the temporal
coherence in video. Video acts a pseudo-supervisory
signal that improves the internal representation of im-
ages by preserving translations in consecutive frames.
This should be beneficial for many supervised tasks,
and huge collections of data can be obtained without
human annotation.

In our method, labeled and unlabeled data are trained
on simultaneously; temporal coherence of unlabeled
data acts as a regularizer for the supervised task. Po-
tentially, one can learn representations that are invari-
ant to pose, illumination, background or clutter, de-
formations (e.g. facial expressions) or occlusions with
appropriate videos. Further, our method might be use-
ful for non-visual tasks as well where sequence infor-
mation has structure, e.g. speaker verification to name
one possibility.

We conducted several experiments to evaluate our ap-
proach by considering several choices of video dataset.
Our result suggests that strong improvements can be
achieved when the unlabeled data comes from the same
dataset that labeled data comes from. When the two
sets come from different datasets, use of unlabeled data
is still beneficial, where probably the more similar the
objects are, the more beneficial the data is.

References

Becker, S. (1996a). Learning Temporally Persistent
Hierarchical Representations. Advances in Neural
Information Processing Systems (pp. 824–830).

Becker, S. (1996b). Mutual information maximization:
models of cortical self-organization. Network: Com-

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)
Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

(NW ! NV − NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:

P (v,h) =
1
Z

exp(−E(v,h))

E(v,h) = −
K∑

k=1

NH∑

i,j=1

NW∑

r,s=1

hk
ijW

k
rsvi+r−1,j+s−1

−
K∑

k=1

bk

NH∑

i,j=1

hk
ij − c

NV∑

i,j=1

vij . (1)

Using the operators defined previously,

E(v,h) = −
K∑

k=1

hk • (W̃ k ∗ v)−
K∑

k=1

bk

∑

i,j

hk
i,j − c

∑

i,j

vij .

As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk
ij = 1|v) = σ((W̃ k ∗ v)ij + bk)

P (vij = 1|h) = σ((
∑

k

W k ∗ hk)ij + c),

where σ is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling
In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.

!

"#

$#%&'

(#!

)**!"#$#%&'(&)*'+,

+# !-'.'/.#01(&)*'+,

,# !200(&)*'+,

-+

-)

.

-"

-,

Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP × NP binary units. For
each k ∈ {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C × C, and each block
α is connected to exactly one binary unit pk

α in the
pooling layer (i.e., NP = NH/C). Formally, we define
Bα ! {(i, j) : hij belongs to the block α.}.

The detection units in the block Bα and the pooling
unit pα are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are off.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:

E(v,h) = −
X

k

X

i,j

“
hk

i,j(W̃
k ∗ v)i,j + bkhk

i,j

”
− c

X

i,j

vi,j

subj. to
X

(i,j)∈Bα

hk
i,j ≤ 1, ∀k, α.

We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hk

i,j is a hid-
den unit contained in block α (i.e., (i, j) ∈ Bα), the

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

(NW ! NV − NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:

P (v,h) =
1
Z

exp(−E(v,h))

E(v,h) = −
K∑

k=1

NH∑

i,j=1

NW∑

r,s=1

hk
ijW

k
rsvi+r−1,j+s−1

−
K∑

k=1

bk

NH∑

i,j=1

hk
ij − c

NV∑

i,j=1

vij . (1)

Using the operators defined previously,

E(v,h) = −
K∑

k=1

hk • (W̃ k ∗ v)−
K∑

k=1

bk

∑

i,j

hk
i,j − c

∑

i,j

vij .

As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk
ij = 1|v) = σ((W̃ k ∗ v)ij + bk)

P (vij = 1|h) = σ((
∑

k

W k ∗ hk)ij + c),

where σ is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling
In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.

!

"#

$#%&'

(#!

)**!"#$#%&'(&)*'+,

+# !-'.'/.#01(&)*'+,

,# !200(&)*'+,

-+

-)

.

-"

-,

Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP × NP binary units. For
each k ∈ {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C × C, and each block
α is connected to exactly one binary unit pk

α in the
pooling layer (i.e., NP = NH/C). Formally, we define
Bα ! {(i, j) : hij belongs to the block α.}.

The detection units in the block Bα and the pooling
unit pα are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are off.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:

E(v,h) = −
X

k

X

i,j

“
hk

i,j(W̃
k ∗ v)i,j + bkhk

i,j

”
− c

X

i,j

vi,j

subj. to
X

(i,j)∈Bα

hk
i,j ≤ 1, ∀k, α.

We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hk

i,j is a hid-
den unit contained in block α (i.e., (i, j) ∈ Bα), the

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

(NW ! NV − NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:

P (v,h) =
1
Z

exp(−E(v,h))

E(v,h) = −
K∑

k=1

NH∑

i,j=1

NW∑

r,s=1

hk
ijW

k
rsvi+r−1,j+s−1

−
K∑

k=1

bk

NH∑

i,j=1

hk
ij − c

NV∑

i,j=1

vij . (1)

Using the operators defined previously,

E(v,h) = −
K∑

k=1

hk • (W̃ k ∗ v)−
K∑

k=1

bk

∑

i,j

hk
i,j − c

∑

i,j

vij .

As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk
ij = 1|v) = σ((W̃ k ∗ v)ij + bk)

P (vij = 1|h) = σ((
∑

k

W k ∗ hk)ij + c),

where σ is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling
In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.

!

"#

$#%&'

(#!

)**!"#$#%&'(&)*'+,

+# !-'.'/.#01(&)*'+,

,# !200(&)*'+,

-+

-)

.

-"

-,

Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP × NP binary units. For
each k ∈ {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C × C, and each block
α is connected to exactly one binary unit pk

α in the
pooling layer (i.e., NP = NH/C). Formally, we define
Bα ! {(i, j) : hij belongs to the block α.}.

The detection units in the block Bα and the pooling
unit pα are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are off.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:

E(v,h) = −
X

k

X

i,j

“
hk

i,j(W̃
k ∗ v)i,j + bkhk

i,j

”
− c

X

i,j

vi,j

subj. to
X

(i,j)∈Bα

hk
i,j ≤ 1, ∀k, α.

We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hk

i,j is a hid-
den unit contained in block α (i.e., (i, j) ∈ Bα), the

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

(NW ! NV − NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:

P (v,h) =
1
Z

exp(−E(v,h))

E(v,h) = −
K∑

k=1

NH∑

i,j=1

NW∑

r,s=1

hk
ijW

k
rsvi+r−1,j+s−1

−
K∑

k=1

bk

NH∑

i,j=1

hk
ij − c

NV∑

i,j=1

vij . (1)

Using the operators defined previously,

E(v,h) = −
K∑

k=1

hk • (W̃ k ∗ v)−
K∑

k=1

bk

∑

i,j

hk
i,j − c

∑

i,j

vij .

As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk
ij = 1|v) = σ((W̃ k ∗ v)ij + bk)

P (vij = 1|h) = σ((
∑

k

W k ∗ hk)ij + c),

where σ is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling
In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.

!

"#

$#%&'

(#!

)**!"#$#%&'(&)*'+,

+# !-'.'/.#01(&)*'+,

,# !200(&)*'+,

-+

-)

.

-"

-,

Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP × NP binary units. For
each k ∈ {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C × C, and each block
α is connected to exactly one binary unit pk

α in the
pooling layer (i.e., NP = NH/C). Formally, we define
Bα ! {(i, j) : hij belongs to the block α.}.

The detection units in the block Bα and the pooling
unit pα are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are off.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:

E(v,h) = −
X

k

X

i,j

“
hk

i,j(W̃
k ∗ v)i,j + bkhk

i,j

”
− c

X

i,j

vi,j

subj. to
X

(i,j)∈Bα

hk
i,j ≤ 1, ∀k, α.

We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hk

i,j is a hid-
den unit contained in block α (i.e., (i, j) ∈ Bα), the

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

(NW ! NV − NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:

P (v,h) =
1
Z

exp(−E(v,h))

E(v,h) = −
K∑

k=1

NH∑

i,j=1

NW∑

r,s=1

hk
ijW

k
rsvi+r−1,j+s−1

−
K∑

k=1

bk

NH∑

i,j=1

hk
ij − c

NV∑

i,j=1

vij . (1)

Using the operators defined previously,

E(v,h) = −
K∑

k=1

hk • (W̃ k ∗ v)−
K∑

k=1

bk

∑

i,j

hk
i,j − c

∑

i,j

vij .

As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk
ij = 1|v) = σ((W̃ k ∗ v)ij + bk)

P (vij = 1|h) = σ((
∑

k

W k ∗ hk)ij + c),

where σ is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling
In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.

!

"#

$#%&'

(#!

)**!"#$#%&'(&)*'+,

+# !-'.'/.#01(&)*'+,

,# !200(&)*'+,

-+

-)

.

-"

-,

Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP × NP binary units. For
each k ∈ {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C × C, and each block
α is connected to exactly one binary unit pk

α in the
pooling layer (i.e., NP = NH/C). Formally, we define
Bα ! {(i, j) : hij belongs to the block α.}.

The detection units in the block Bα and the pooling
unit pα are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are off.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:

E(v,h) = −
X

k

X

i,j

“
hk

i,j(W̃
k ∗ v)i,j + bkhk

i,j

”
− c

X

i,j

vi,j

subj. to
X

(i,j)∈Bα

hk
i,j ≤ 1, ∀k, α.

We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hk

i,j is a hid-
den unit contained in block α (i.e., (i, j) ∈ Bα), the

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

increase in energy caused by turning on unit hk
i,j is

−I(hk
i,j), and the conditional probability is given by:

P (hk
i,j = 1|v) =

exp(I(hk
i,j))

1 +
∑

(i′,j′)∈Bα
exp(I(hk

i′,j′))

P (pk
α = 0|v) =

1
1 +

∑
(i′,j′)∈Bα

exp(I(hk
i′,j′))

.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization
Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ρ. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network
Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference
Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H ′.
Suppose H ′ has K ′ groups of nodes, and there is a

set of shared weights Γ = {Γ1,1, . . . ,ΓK,K′}, where
Γk," is a weight matrix connecting pooling unit P k to
detection unit H ′". The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H ′:

E(v,h,p,h′) = −
∑

k

v • (W k ∗ hk)−
∑

k

bk

∑

ij

hk
ij

−
∑

k,"

pk • (Γk" ∗ h′")−
∑

"

b′"
∑

ij

h′"
ij

To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H ′:

I(pk
α) !

∑

"

(Γk" ∗ h′")α. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) ∈ Bα, the conditional probability is given by:

P (hk
i,j = 1|v,h′) =

exp(I(hk
i,j) + I(pk

α))

1 +
P

(i′,j′)∈Bα
exp(I(hk

i′,j′) + I(pk
α))

P (pk
α = 0|v,h′) =

1

1 +
P

(i′,j′)∈Bα
exp(I(hk

i′,j′) + I(pk
α))

.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion
Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can effectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be difficult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations sufficed.

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

(NW ! NV − NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:

P (v,h) =
1
Z

exp(−E(v,h))

E(v,h) = −
K∑

k=1

NH∑

i,j=1

NW∑

r,s=1

hk
ijW

k
rsvi+r−1,j+s−1

−
K∑

k=1

bk

NH∑

i,j=1

hk
ij − c

NV∑

i,j=1

vij . (1)

Using the operators defined previously,

E(v,h) = −
K∑

k=1

hk • (W̃ k ∗ v)−
K∑

k=1

bk

∑

i,j

hk
i,j − c

∑

i,j

vij .

As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hk
ij = 1|v) = σ((W̃ k ∗ v)ij + bk)

P (vij = 1|h) = σ((
∑

k

W k ∗ hk)ij + c),

where σ is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling
In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.

!

"#

$#%&'

(#!

)**!"#$#%&'(&)*'+,

+# !-'.'/.#01(&)*'+,

,# !200(&)*'+,

-+

-)

.

-"

-,

Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layer H, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP × NP binary units. For
each k ∈ {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C × C, and each block
α is connected to exactly one binary unit pk

α in the
pooling layer (i.e., NP = NH/C). Formally, we define
Bα ! {(i, j) : hij belongs to the block α.}.

The detection units in the block Bα and the pooling
unit pα are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are off.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:

E(v,h) = −
X

k

X

i,j

“
hk

i,j(W̃
k ∗ v)i,j + bkhk

i,j

”
− c

X

i,j

vi,j

subj. to
X

(i,j)∈Bα

hk
i,j ≤ 1, ∀k, α.

We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hk

i,j is a hid-
den unit contained in block α (i.e., (i, j) ∈ Bα), the

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)

• Combiner les couches

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

increase in energy caused by turning on unit hk
i,j is

−I(hk
i,j), and the conditional probability is given by:

P (hk
i,j = 1|v) =

exp(I(hk
i,j))

1 +
∑

(i′,j′)∈Bα
exp(I(hk

i′,j′))

P (pk
α = 0|v) =

1
1 +

∑
(i′,j′)∈Bα

exp(I(hk
i′,j′))

.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization
Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ρ. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network
Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference
Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H ′.
Suppose H ′ has K ′ groups of nodes, and there is a

set of shared weights Γ = {Γ1,1, . . . ,ΓK,K′}, where
Γk," is a weight matrix connecting pooling unit P k to
detection unit H ′". The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H ′:

E(v,h,p,h′) = −
∑

k

v • (W k ∗ hk)−
∑

k

bk

∑

ij

hk
ij

−
∑

k,"

pk • (Γk" ∗ h′")−
∑

"

b′"
∑

ij

h′"
ij

To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H ′:

I(pk
α) !

∑

"

(Γk" ∗ h′")α. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) ∈ Bα, the conditional probability is given by:

P (hk
i,j = 1|v,h′) =

exp(I(hk
i,j) + I(pk

α))

1 +
P

(i′,j′)∈Bα
exp(I(hk

i′,j′) + I(pk
α))

P (pk
α = 0|v,h′) =

1

1 +
P

(i′,j′)∈Bα
exp(I(hk

i′,j′) + I(pk
α))

.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion
Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can effectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be difficult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations sufficed.

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

increase in energy caused by turning on unit hk
i,j is

−I(hk
i,j), and the conditional probability is given by:

P (hk
i,j = 1|v) =

exp(I(hk
i,j))

1 +
∑

(i′,j′)∈Bα
exp(I(hk

i′,j′))

P (pk
α = 0|v) =

1
1 +

∑
(i′,j′)∈Bα

exp(I(hk
i′,j′))

.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization
Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ρ. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network
Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference
Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H ′.
Suppose H ′ has K ′ groups of nodes, and there is a

set of shared weights Γ = {Γ1,1, . . . ,ΓK,K′}, where
Γk," is a weight matrix connecting pooling unit P k to
detection unit H ′". The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H ′:

E(v,h,p,h′) = −
∑

k

v • (W k ∗ hk)−
∑

k

bk

∑

ij

hk
ij

−
∑

k,"

pk • (Γk" ∗ h′")−
∑

"

b′"
∑

ij

h′"
ij

To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H ′:

I(pk
α) !

∑

"

(Γk" ∗ h′")α. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) ∈ Bα, the conditional probability is given by:

P (hk
i,j = 1|v,h′) =

exp(I(hk
i,j) + I(pk

α))

1 +
P

(i′,j′)∈Bα
exp(I(hk

i′,j′) + I(pk
α))

P (pk
α = 0|v,h′) =

1

1 +
P

(i′,j′)∈Bα
exp(I(hk

i′,j′) + I(pk
α))

.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion
Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can effectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be difficult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations sufficed.

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

increase in energy caused by turning on unit hk
i,j is

−I(hk
i,j), and the conditional probability is given by:

P (hk
i,j = 1|v) =

exp(I(hk
i,j))

1 +
∑

(i′,j′)∈Bα
exp(I(hk

i′,j′))

P (pk
α = 0|v) =

1
1 +

∑
(i′,j′)∈Bα

exp(I(hk
i′,j′))

.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization
Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ρ. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network
Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference
Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H ′.
Suppose H ′ has K ′ groups of nodes, and there is a

set of shared weights Γ = {Γ1,1, . . . ,ΓK,K′}, where
Γk," is a weight matrix connecting pooling unit P k to
detection unit H ′". The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H ′:

E(v,h,p,h′) = −
∑

k

v • (W k ∗ hk)−
∑

k

bk

∑

ij

hk
ij

−
∑

k,"

pk • (Γk" ∗ h′")−
∑

"

b′"
∑

ij

h′"
ij

To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H ′:

I(pk
α) !

∑

"

(Γk" ∗ h′")α. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) ∈ Bα, the conditional probability is given by:

P (hk
i,j = 1|v,h′) =

exp(I(hk
i,j) + I(pk

α))

1 +
P

(i′,j′)∈Bα
exp(I(hk

i′,j′) + I(pk
α))

P (pk
α = 0|v,h′) =

1

1 +
P

(i′,j′)∈Bα
exp(I(hk

i′,j′) + I(pk
α))

.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion
Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can effectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be difficult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations sufficed.

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

increase in energy caused by turning on unit hk
i,j is

−I(hk
i,j), and the conditional probability is given by:

P (hk
i,j = 1|v) =

exp(I(hk
i,j))

1 +
∑

(i′,j′)∈Bα
exp(I(hk

i′,j′))

P (pk
α = 0|v) =

1
1 +

∑
(i′,j′)∈Bα

exp(I(hk
i′,j′))

.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization
Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ρ. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network
Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference
Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H ′.
Suppose H ′ has K ′ groups of nodes, and there is a

set of shared weights Γ = {Γ1,1, . . . ,ΓK,K′}, where
Γk," is a weight matrix connecting pooling unit P k to
detection unit H ′". The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H ′:

E(v,h,p,h′) = −
∑

k

v • (W k ∗ hk)−
∑

k

bk

∑

ij

hk
ij

−
∑

k,"

pk • (Γk" ∗ h′")−
∑

"

b′"
∑

ij

h′"
ij

To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hk
ij) ! bk + (W̃ k ∗ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H ′:

I(pk
α) !

∑

"

(Γk" ∗ h′")α. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) ∈ Bα, the conditional probability is given by:

P (hk
i,j = 1|v,h′) =

exp(I(hk
i,j) + I(pk

α))

1 +
P

(i′,j′)∈Bα
exp(I(hk

i′,j′) + I(pk
α))

P (pk
α = 0|v,h′) =

1

1 +
P

(i′,j′)∈Bα
exp(I(hk

i′,j′) + I(pk
α))

.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion
Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can effectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be difficult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations sufficed.

vers le haut vers le bas

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)

Filtres appris
Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

are not conditionally independent of one another given
the layers above and below. In contrast, our treatment
using undirected edges enables combining bottom-up
and top-down information more efficiently, as shown
in Section 4.5.

In our approach, probabilistic max-pooling helps to
address scalability by shrinking the higher layers;
weight-sharing (convolutions) further speeds up the
algorithm. For example, inference in a three-layer
network (with 200x200 input images) using weight-
sharing but without max-pooling was about 10 times
slower. Without weight-sharing, it was more than 100
times slower.

In work that was contemporary to and done indepen-
dently of ours, Desjardins and Bengio (2008) also ap-
plied convolutional weight-sharing to RBMs and ex-
perimented on small image patches. Our work, how-
ever, develops more sophisticated elements such as
probabilistic max-pooling to make the algorithm more
scalable.

4. Experimental results

4.1. Learning hierarchical representations
from natural images

We first tested our model’s ability to learn hierarchi-
cal representations of natural images. Specifically, we
trained a CDBN with two hidden layers from the Ky-
oto natural image dataset.3 The first layer consisted
of 24 groups (or “bases”)4 of 10x10 pixel filters, while
the second layer consisted of 100 bases, each one 10x10
as well.5 As shown in Figure 2 (top), the learned first
layer bases are oriented, localized edge filters; this re-
sult is consistent with much prior work (Olshausen &
Field, 1996; Bell & Sejnowski, 1997; Ranzato et al.,
2006). We note that the sparsity regularization dur-
ing training was necessary for learning these oriented
edge filters; when this term was removed, the algo-
rithm failed to learn oriented edges.

The learned second layer bases are shown in Fig-
ure 2 (bottom), and many of them empirically re-
sponded selectively to contours, corners, angles, and
surface boundaries in the images. This result is qual-
itatively consistent with previous work (Ito & Ko-
matsu, 2004; Lee et al., 2008).

4.2. Self-taught learning for object recognition
Raina et al. (2007) showed that large unlabeled data
can help in supervised learning tasks, even when the

3http://www.cnbc.cmu.edu/cplab/data kyoto.html
4We will call one hidden group’s weights a “basis.”
5Since the images were real-valued, we used Gaussian

visible units for the first-layer CRBM. The pooling ratio C
for each layer was 2, so the second-layer bases cover roughly
twice as large an area as the first-layer ones.

Figure 2. The first layer bases (top) and the second layer
bases (bottom) learned from natural images. Each second
layer basis (filter) was visualized as a weighted linear com-
bination of the first layer bases.

unlabeled data do not share the same class labels, or
the same generative distribution, as the labeled data.
This framework, where generic unlabeled data improve
performance on a supervised learning task, is known
as self-taught learning. In their experiments, they used
sparse coding to train a single-layer representation,
and then used the learned representation to construct
features for supervised learning tasks.

We used a similar procedure to evaluate our two-layer
CDBN, described in Section 4.1, on the Caltech-101
object classification task.6 The results are shown in
Table 1. First, we observe that combining the first
and second layers significantly improves the classifica-
tion accuracy relative to the first layer alone. Overall,
we achieve 57.7% test accuracy using 15 training im-
ages per class, and 65.4% test accuracy using 30 train-
ing images per class. Our result is competitive with
state-of-the-art results using highly-specialized single
features, such as SIFT, geometric blur, and shape-
context (Lazebnik et al., 2006; Berg et al., 2005; Zhang
et al., 2006).7 Recall that the CDBN was trained en-

6Details: Given an image from the Caltech-101
dataset (Fei-Fei et al., 2004), we scaled the image so that
its longer side was 150 pixels, and computed the activations
of the first and second (pooling) layers of our CDBN. We
repeated this procedure after reducing the input image by
half and concatenated all the activations to construct fea-
tures. We used an SVM with a spatial pyramid matching
kernel for classification, and the parameters of the SVM
were cross-validated. We randomly selected 15/30 training
set and 15/30 test set images respectively, and normal-
ized the result such that classification accuracy for each
class was equally weighted (following the standard proto-
col). We report results averaged over 10 random trials.

7Varma and Ray (2007) reported better performance
than ours (87.82% for 15 training images/class), but they
combined many state-of-the-art features (or kernels) to im-
prove the performance. In another approach, Yu et al.
(2009) used kernel regularization using a (previously pub-
lished) state-of-the-art kernel matrix to improve the per-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

are not conditionally independent of one another given
the layers above and below. In contrast, our treatment
using undirected edges enables combining bottom-up
and top-down information more efficiently, as shown
in Section 4.5.

In our approach, probabilistic max-pooling helps to
address scalability by shrinking the higher layers;
weight-sharing (convolutions) further speeds up the
algorithm. For example, inference in a three-layer
network (with 200x200 input images) using weight-
sharing but without max-pooling was about 10 times
slower. Without weight-sharing, it was more than 100
times slower.

In work that was contemporary to and done indepen-
dently of ours, Desjardins and Bengio (2008) also ap-
plied convolutional weight-sharing to RBMs and ex-
perimented on small image patches. Our work, how-
ever, develops more sophisticated elements such as
probabilistic max-pooling to make the algorithm more
scalable.

4. Experimental results

4.1. Learning hierarchical representations
from natural images

We first tested our model’s ability to learn hierarchi-
cal representations of natural images. Specifically, we
trained a CDBN with two hidden layers from the Ky-
oto natural image dataset.3 The first layer consisted
of 24 groups (or “bases”)4 of 10x10 pixel filters, while
the second layer consisted of 100 bases, each one 10x10
as well.5 As shown in Figure 2 (top), the learned first
layer bases are oriented, localized edge filters; this re-
sult is consistent with much prior work (Olshausen &
Field, 1996; Bell & Sejnowski, 1997; Ranzato et al.,
2006). We note that the sparsity regularization dur-
ing training was necessary for learning these oriented
edge filters; when this term was removed, the algo-
rithm failed to learn oriented edges.

The learned second layer bases are shown in Fig-
ure 2 (bottom), and many of them empirically re-
sponded selectively to contours, corners, angles, and
surface boundaries in the images. This result is qual-
itatively consistent with previous work (Ito & Ko-
matsu, 2004; Lee et al., 2008).

4.2. Self-taught learning for object recognition
Raina et al. (2007) showed that large unlabeled data
can help in supervised learning tasks, even when the

3http://www.cnbc.cmu.edu/cplab/data kyoto.html
4We will call one hidden group’s weights a “basis.”
5Since the images were real-valued, we used Gaussian

visible units for the first-layer CRBM. The pooling ratio C
for each layer was 2, so the second-layer bases cover roughly
twice as large an area as the first-layer ones.

Figure 2. The first layer bases (top) and the second layer
bases (bottom) learned from natural images. Each second
layer basis (filter) was visualized as a weighted linear com-
bination of the first layer bases.

unlabeled data do not share the same class labels, or
the same generative distribution, as the labeled data.
This framework, where generic unlabeled data improve
performance on a supervised learning task, is known
as self-taught learning. In their experiments, they used
sparse coding to train a single-layer representation,
and then used the learned representation to construct
features for supervised learning tasks.

We used a similar procedure to evaluate our two-layer
CDBN, described in Section 4.1, on the Caltech-101
object classification task.6 The results are shown in
Table 1. First, we observe that combining the first
and second layers significantly improves the classifica-
tion accuracy relative to the first layer alone. Overall,
we achieve 57.7% test accuracy using 15 training im-
ages per class, and 65.4% test accuracy using 30 train-
ing images per class. Our result is competitive with
state-of-the-art results using highly-specialized single
features, such as SIFT, geometric blur, and shape-
context (Lazebnik et al., 2006; Berg et al., 2005; Zhang
et al., 2006).7 Recall that the CDBN was trained en-

6Details: Given an image from the Caltech-101
dataset (Fei-Fei et al., 2004), we scaled the image so that
its longer side was 150 pixels, and computed the activations
of the first and second (pooling) layers of our CDBN. We
repeated this procedure after reducing the input image by
half and concatenated all the activations to construct fea-
tures. We used an SVM with a spatial pyramid matching
kernel for classification, and the parameters of the SVM
were cross-validated. We randomly selected 15/30 training
set and 15/30 test set images respectively, and normal-
ized the result such that classification accuracy for each
class was equally weighted (following the standard proto-
col). We report results averaged over 10 random trials.

7Varma and Ray (2007) reported better performance
than ours (87.82% for 15 training images/class), but they
combined many state-of-the-art features (or kernels) to im-
prove the performance. In another approach, Yu et al.
(2009) used kernel regularization using a (previously pub-
lished) state-of-the-art kernel matrix to improve the per-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

are not conditionally independent of one another given
the layers above and below. In contrast, our treatment
using undirected edges enables combining bottom-up
and top-down information more efficiently, as shown
in Section 4.5.

In our approach, probabilistic max-pooling helps to
address scalability by shrinking the higher layers;
weight-sharing (convolutions) further speeds up the
algorithm. For example, inference in a three-layer
network (with 200x200 input images) using weight-
sharing but without max-pooling was about 10 times
slower. Without weight-sharing, it was more than 100
times slower.

In work that was contemporary to and done indepen-
dently of ours, Desjardins and Bengio (2008) also ap-
plied convolutional weight-sharing to RBMs and ex-
perimented on small image patches. Our work, how-
ever, develops more sophisticated elements such as
probabilistic max-pooling to make the algorithm more
scalable.

4. Experimental results

4.1. Learning hierarchical representations
from natural images

We first tested our model’s ability to learn hierarchi-
cal representations of natural images. Specifically, we
trained a CDBN with two hidden layers from the Ky-
oto natural image dataset.3 The first layer consisted
of 24 groups (or “bases”)4 of 10x10 pixel filters, while
the second layer consisted of 100 bases, each one 10x10
as well.5 As shown in Figure 2 (top), the learned first
layer bases are oriented, localized edge filters; this re-
sult is consistent with much prior work (Olshausen &
Field, 1996; Bell & Sejnowski, 1997; Ranzato et al.,
2006). We note that the sparsity regularization dur-
ing training was necessary for learning these oriented
edge filters; when this term was removed, the algo-
rithm failed to learn oriented edges.

The learned second layer bases are shown in Fig-
ure 2 (bottom), and many of them empirically re-
sponded selectively to contours, corners, angles, and
surface boundaries in the images. This result is qual-
itatively consistent with previous work (Ito & Ko-
matsu, 2004; Lee et al., 2008).

4.2. Self-taught learning for object recognition
Raina et al. (2007) showed that large unlabeled data
can help in supervised learning tasks, even when the

3http://www.cnbc.cmu.edu/cplab/data kyoto.html
4We will call one hidden group’s weights a “basis.”
5Since the images were real-valued, we used Gaussian

visible units for the first-layer CRBM. The pooling ratio C
for each layer was 2, so the second-layer bases cover roughly
twice as large an area as the first-layer ones.

Figure 2. The first layer bases (top) and the second layer
bases (bottom) learned from natural images. Each second
layer basis (filter) was visualized as a weighted linear com-
bination of the first layer bases.

unlabeled data do not share the same class labels, or
the same generative distribution, as the labeled data.
This framework, where generic unlabeled data improve
performance on a supervised learning task, is known
as self-taught learning. In their experiments, they used
sparse coding to train a single-layer representation,
and then used the learned representation to construct
features for supervised learning tasks.

We used a similar procedure to evaluate our two-layer
CDBN, described in Section 4.1, on the Caltech-101
object classification task.6 The results are shown in
Table 1. First, we observe that combining the first
and second layers significantly improves the classifica-
tion accuracy relative to the first layer alone. Overall,
we achieve 57.7% test accuracy using 15 training im-
ages per class, and 65.4% test accuracy using 30 train-
ing images per class. Our result is competitive with
state-of-the-art results using highly-specialized single
features, such as SIFT, geometric blur, and shape-
context (Lazebnik et al., 2006; Berg et al., 2005; Zhang
et al., 2006).7 Recall that the CDBN was trained en-

6Details: Given an image from the Caltech-101
dataset (Fei-Fei et al., 2004), we scaled the image so that
its longer side was 150 pixels, and computed the activations
of the first and second (pooling) layers of our CDBN. We
repeated this procedure after reducing the input image by
half and concatenated all the activations to construct fea-
tures. We used an SVM with a spatial pyramid matching
kernel for classification, and the parameters of the SVM
were cross-validated. We randomly selected 15/30 training
set and 15/30 test set images respectively, and normal-
ized the result such that classification accuracy for each
class was equally weighted (following the standard proto-
col). We report results averaged over 10 random trials.

7Varma and Ray (2007) reported better performance
than ours (87.82% for 15 training images/class), but they
combined many state-of-the-art features (or kernels) to im-
prove the performance. In another approach, Yu et al.
(2009) used kernel regularization using a (previously pub-
lished) state-of-the-art kernel matrix to improve the per-

Pr
em

iè
re

co

uc
he

D
eu

xi
èm

e
co

uc
he

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 1. Classification accuracy for the Caltech-101 data

Training Size 15 30
CDBN (first layer) 53.2±1.2% 60.5±1.1%
CDBN (first+second layers) 57.7±1.5% 65.4±0.5%
Raina et al. (2007) 46.6% -
Ranzato et al. (2007) - 54.0%
Mutch and Lowe (2006) 51.0% 56.0%
Lazebnik et al. (2006) 54.0% 64.6%
Zhang et al. (2006) 59.0±0.56% 66.2±0.5%

tirely from natural scenes, which are completely un-
related to the classification task. Hence, the strong
performance of these features implies that our CDBN
learned a highly general representation of images.

4.3. Handwritten digit classification
We further evaluated the performance of our model
on the MNIST handwritten digit classification task,
a widely-used benchmark for testing hierarchical rep-
resentations. We trained 40 first layer bases from
MNIST digits, each 12x12 pixels, and 40 second layer
bases, each 6x6. The pooling ratio C was 2 for both
layers. The first layer bases learned “strokes” that
comprise the digits, and the second layer bases learned
bigger digit-parts that combine the strokes. We con-
structed feature vectors by concatenating the first and
second (pooling) layer activations, and used an SVM
for classification using these features. For each labeled
training set size, we report the test error averaged over
10 randomly chosen training sets, as shown in Table 2.
For the full training set, we obtained 0.8% test error.
Our result is comparable to the state-of-the-art (Ran-
zato et al., 2007; Weston et al., 2008).8

4.4. Unsupervised learning of object parts
We now show that our algorithm can learn hierarchi-
cal object-part representations in an unsupervised set-
ting. Building on the first layer representation learned
from natural images, we trained two additional CDBN
layers using unlabeled images from single Caltech-101
categories.9 As shown in Figure 3, the second layer
learned features corresponding to object parts, even
though the algorithm was not given any labels speci-
fying the locations of either the objects or their parts.
The third layer learned to combine the second layer’s
part representations into more complex, higher-level
features. Our model successfully learned hierarchi-
cal object-part representations of most of the other
Caltech-101 categories as well. We note that some of

formance of their convolutional neural network model.
8We note that Hinton and Salakhutdinov (2006)’s

method is non-convolutional.
9The images were unlabeled in that the position of the

object is unspecified. Training was on up to 100 images,
and testing was on different images than the training set.
The pooling ratio for the first layer was set as 3. The
second layer contained 40 bases, each 10x10, and the third
layer contained 24 bases, each 14x14. The pooling ratio in
both cases was 2.

these categories (such as elephants and chairs) have
fairly high intra-class appearance variation, due to de-
formable shapes or different viewpoints. Despite this,
our model still learns hierarchical, part-based repre-
sentations fairly robustly.

Higher layers in the CDBN learn features which are
not only higher level, but also more specific to particu-
lar object categories. We now quantitatively measure
the specificity of each layer by determining how in-
dicative each individual feature is of object categories.
(This contrasts with most work in object classifica-
tion, which focuses on the informativeness of the en-
tire feature set, rather than individual features.) More
specifically, we consider three CDBNs trained on faces,
motorbikes, and cars, respectively. For each CDBN,
we test the informativeness of individual features from
each layer for distinguishing among these three cate-
gories. For each feature,10 we computed area under the
precision-recall curve (larger means more specific).11
As shown in Figure 4, the higher-level representations
are more selective for the specific object class.

We further tested if the CDBN can learn hierarchi-
cal object-part representations when trained on im-
ages from several object categories (rather than just
one). We trained the second and third layer represen-
tations using unlabeled images randomly selected from
four object categories (cars, faces, motorbikes, and air-
planes). As shown in Figure 3 (far right), the second
layer learns class-specific as well as shared parts, and
the third layer learns more object-specific representa-
tions. (The training examples were unlabeled, so in a
sense, this means the third layer implicitly clusters the
images by object category.) As before, we quantita-
tively measured the specificity of each layer’s individ-
ual features to object categories. Because the train-
ing was completely unsupervised, whereas the AUC-
PR statistic requires knowing which specific object or
object parts the learned bases should represent, we
instead computed conditional entropy.12 Informally
speaking, conditional entropy measures the entropy of

10For a given image, we computed the layerwise activa-
tions using our algorithm, partitioned the activation into
LxL regions for each group, and computed the q% highest
quantile activation for each region and each group. If the
q% highest quantile activation in region i is γ, we then de-
fine a Bernoulli random variable Xi,L,q with probability γ
of being 1. To measure the informativeness between a fea-
ture and the class label, we computed the mutual informa-
tion between Xi,L,q and the class label. Results reported
are using (L, q) values that maximized the average mutual
information (averaging over i).

11For each feature, by comparing its values over pos-
itive examples and negative examples, we obtained the
precision-recall curve for each classification problem.

12We computed the quantile features γ for each layer
as previously described, and measured conditional entropy
H(class|γ > 0.95).

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Visages

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)

Voitures

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)

Visages, voitures, éléphants et chaises

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations

(Lee, Grosse, Ranganath and Ng, ICML 2009)

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Faces

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Motorbikes

first layer
second layer
third layer

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Area under the PR curve (AUC)

Cars

first layer
second layer
third layer

Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference
Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Reconstruction de visages

Unsupervised feature learning for audio classification
using convolutional deep belief networks

(Lee, Largman, Pham and Ng, NIPS 2009)

• Possible de considérer un signal sonore
comme une image, via son spectrogramme

• Un filtre couvre tous les canaux de
fréquences, mais seulement 6 “frames”

• Utilise la PCA pour réduire le nombre de
canaux de fréquences

Unsupervised feature learning for audio classification
using convolutional deep belief networks

(Lee, Largman, Pham and Ng, NIPS 2009)

For training the convolutional RBMs, computing the exact gradient for the log-likelihood term is in-
tractable. However, contrastive divergence [12] can be used to approximate the gradient effectively.
Since a typical CRBM is highly overcomplete, a sparsity penalty term is added to the log-likelihood
objective [8, 9]. More specifically, the training objective can be written as

minimizeW,b,c Llikelihood(W, b, c) + Lsparsity(W, b, c), (7)
where Llikelihood is a negative log-likelihood that measures how well the CRBM approximates the
input data distribution, and Lsparsity is a penalty term that constrains the hidden units to having
sparse average activations. This sparsity regularization can be viewed as limiting the “capacity”
of the network, and it often results in more easily interpretable feature representations. Once the
parameters for all the layers are trained, we stack the CRBMs to form a convolutional deep belief
network. For inference, we use feed-forward approximation.

2.2 Application to audio data
For the application of CDBNs to audio data, we first convert time-domain signals into spectro-
grams. However, the dimensionality of the spectrograms is large (e.g., 160 channels). We apply
PCA whitening to the spectrograms and create lower dimensional representations. Thus, the data
we feed into the CDBN consists of nc channels of one-dimensional vectors of length nV , where nc is
the number of PCA components in our representation. Similarly, the first-layer bases are comprised
of nc channels of one-dimensional filters of length nW .

3 Unsupervised feature learning
3.1 Training on unlabeled TIMIT data
We trained the first and second-layer CDBN representations using a large, unlabeled speech dataset.
First, we extracted the spectrogram from each utterance of the TIMIT training data [13]. The spec-
trogram had a 20 ms window size with 10 ms overlaps. The spectrogram was further processed using
PCA whitening (with 80 components) to reduce the dimensionality. We then trained 300 first-layer
bases with a filter length (nW) of 6 and a max-pooling ratio (local neighborhood size) of 3. We
further trained 300 second-layer bases using the max-pooled first-layer activations as input, again
with a filter length of 6 and a max-pooling ratio of 3.

3.2 Visualization
In this section, we illustrate what the network “learns” through visualization. We visualize the first-
layer bases by multiplying the inverse of the PCA whitening on each first-layer basis (Figure 1).
Each second-layer basis is visualized as a weighted linear combination of the first-layer bases.

high freq.

 low freq.

Figure 1: Visualization of randomly selected first-layer CDBN bases trained on the TIMIT data.
Each column represents a “temporal receptive field” of a first-layer basis in the spectrogram space.
The frequency channels are ordered from the lowest frequency (bottom) to the highest frequency
(top). All figures in the paper are best viewed in color.

3.2.1 Phonemes and the CDBN features
In Figure 2, we show how our bases relate to phonemes by comparing visualizations of each
phoneme with the bases that are most activated by that phoneme.

For each phoneme, we show five spectrograms of sound clips of that phoneme (top five columns in
each phoneme group), and the five first-layer bases with the highest average activations on the given
phoneme (bottom five columns in each phoneme group). Many of the first-layer bases closely match
the shapes of phonemes. There are prominent horizontal bands in the lower frequencies of the first-
layer bases that respond most to vowels (for example, “ah” and “oy”). The bases that respond most

3

Filtres appris

Unsupervised feature learning for audio classification
using convolutional deep belief networks

(Lee, Largman, Pham and Ng, NIPS 2009)

Filtres appris

Example phones ("ah") Example phones ("oy") Example phones ("el") Example phones ("s")

First layer bases First layer bases First layer bases First layer bases

Figure 2: Visualization of the four different phonemes and their corresponding first-layer CDBN
bases. For each phoneme: (top) the spectrograms of the five randomly selected phones; (bottom)
five first-layer bases with the highest average activations on the given phoneme.

to fricatives (for example, “s”) typically take the form of widely distributed areas of energy in the
high frequencies of the spectrogram. Both of these patterns reflect the structure of the corresponding
phoneme spectrograms.

Closer inspection of the bases provides slight evidence that the first-layer bases also capture more
fine-grained details. For example, the first and third “oy” bases reflect the upward-slanting pattern
in the phoneme spectrograms. The top “el” bases mirror the intensity patterns of the corresponding
phoneme spectrograms: a high intensity region appears in the lowest frequencies, and another region
of lesser intensity appears a bit higher up.

3.2.2 Speaker gender information and the CDBN features

In Figure 3, we show an analysis of two-layer CDBN feature representations with respect to the gen-
der classification task (Section 4.2). Note that the network was trained on unlabeled data; therefore,
no information about speaker gender was given during training.

Example phones (female) First layer bases ("female") Second layer bases ("female")

Example phones (male) First layer bases ("male") Second layer bases ("male")

Figure 3: (Left) five spectrogram samples of “ae” phoneme from female (top)/male (bottom) speak-
ers. (Middle) Visualization of the five first-layer bases that most differentially activate for fe-
male/male speakers. (Right) Visualization of the five second-layer bases that most differentially
activate for female/male speakers.

For comparison with the CDBN features, randomly selected spectrograms of female (top left five
columns) and male (bottom left five columns) pronunciations of the “ae” phoneme from the TIMIT
dataset are shown. Spectrograms for the female pronunciations are qualitatively distinguishable by a
finer horizontal banding pattern in low frequencies, whereas male pronunciations have more blurred

4

Example phones ("ah") Example phones ("oy") Example phones ("el") Example phones ("s")

First layer bases First layer bases First layer bases First layer bases

Figure 2: Visualization of the four different phonemes and their corresponding first-layer CDBN
bases. For each phoneme: (top) the spectrograms of the five randomly selected phones; (bottom)
five first-layer bases with the highest average activations on the given phoneme.

to fricatives (for example, “s”) typically take the form of widely distributed areas of energy in the
high frequencies of the spectrogram. Both of these patterns reflect the structure of the corresponding
phoneme spectrograms.

Closer inspection of the bases provides slight evidence that the first-layer bases also capture more
fine-grained details. For example, the first and third “oy” bases reflect the upward-slanting pattern
in the phoneme spectrograms. The top “el” bases mirror the intensity patterns of the corresponding
phoneme spectrograms: a high intensity region appears in the lowest frequencies, and another region
of lesser intensity appears a bit higher up.

3.2.2 Speaker gender information and the CDBN features

In Figure 3, we show an analysis of two-layer CDBN feature representations with respect to the gen-
der classification task (Section 4.2). Note that the network was trained on unlabeled data; therefore,
no information about speaker gender was given during training.

Example phones (female) First layer bases ("female") Second layer bases ("female")

Example phones (male) First layer bases ("male") Second layer bases ("male")

Figure 3: (Left) five spectrogram samples of “ae” phoneme from female (top)/male (bottom) speak-
ers. (Middle) Visualization of the five first-layer bases that most differentially activate for fe-
male/male speakers. (Right) Visualization of the five second-layer bases that most differentially
activate for female/male speakers.

For comparison with the CDBN features, randomly selected spectrograms of female (top left five
columns) and male (bottom left five columns) pronunciations of the “ae” phoneme from the TIMIT
dataset are shown. Spectrograms for the female pronunciations are qualitatively distinguishable by a
finer horizontal banding pattern in low frequencies, whereas male pronunciations have more blurred

4

Unsupervised feature learning for audio classification
using convolutional deep belief networks

(Lee, Largman, Pham and Ng, NIPS 2009)

Table 1: Test classification accuracy for speaker identification using summary statistics
#training utterances per speaker RAW MFCC CDBN L1 CDBN L2 CDBN L1+L2

1 46.7% 54.4% 74.5% 62.8% 72.8%
2 43.5% 69.9% 76.7% 66.2% 76.7%
3 67.9% 76.5% 91.3% 84.3% 91.8%
5 80.6% 82.6% 93.7% 89.6% 93.8%
8 90.4% 92.0% 97.9% 95.2% 97.0%

Table 2: Test classification accuracy for speaker identification using all frames
#training utterances per speaker MFCC ([16]’s method) CDBN MFCC ([16]) + CDBN

1 40.2% 90.0% 90.7%
2 87.9% 97.9% 98.7%
3 95.9% 98.7% 99.2%
5 99.2% 99.2% 99.6%
8 99.7% 99.7% 100.0%

ing (besides the summary statistics which were needed to reduce the number of features), the CDBN
features outperform MFCC features, especially in a setting with a very limited number of labeled
examples.

We further experimented to determine if the CDBN features can achieve competitive performance in
comparison to other more sophisticated, state-of-the-art methods. For each feature representation,
we used the classifier that achieved the highest performance. More specifically, for the MFCC fea-
tures we replicated Reynolds (1995)’s method,7 and for the CDBN features we used a SVM based
ensemble method.8 As shown in Table 2, the CDBN features consistently outperformed MFCC fea-
tures when the number of training examples was small. We also combined both methods by taking a
linear combination of the two classifier outputs (before taking the final classification prediction from
each algorithm).9 The resulting combined classifier performed the best, achieving 100% accuracy
for the case of 8 training utterances per speaker.

4.2 Speaker gender classification

We also evaluated the same CDBN features which were learned for the speaker identification task on
the gender classification task. We report the classification accuracy for various quantities of training
examples (utterances) per gender. For each number of training examples, we randomly sampled
training examples and 200 testing examples; we report the test classification accuracy averaged
over 20 trials. As shown in Table 3, both the first and second CDBN features outperformed the
baseline features, especially when the number of training examples were small. The second-layer
CDBN features consistently performed better than the first-layer CDBN features. This suggests that
the second-layer representation learned more invariant features that are relevant for speaker gender
classification, justifying the use of “deep” architectures.

4.3 Phone classification

Finally, we evaluated our learned representation on phone classification tasks. For this experiment,
we treated each phone segment as an individual example and computed the spectrogram (RAW) and
MFCC features for each phone segment. Similarly, we computed the first-layer CDBN representa-
tions. Following the standard protocol [15], we report the 39 way phone classification accuracy on
the test data (TIMIT core test set) for various numbers of training sentences. For each number of
training examples, we report the average classification accuracy over 5 random trials. The summary

7Details: In [16], MFCC features (with multiple frames) were computed for each utterance; then a Gaussian
mixture model was trained for each speaker (treating each individual MFCC frame as a input example to the
GMM. For the a given test utterance, the prediction was made by determining the GMM model that had the
highest test log-likelihood.

8In detail, we treated each single-frame CDBN features as an individual example. Then, we trained a multi-
class linear SVM for these individual frames. For testing, we computed SVM prediction score for each speaker,
and then aggregated predictions from all the frames. Overall, the highest scoring speaker was selected for the
prediction.

9The constant for the linear combination was fixed across all the numbers of training utterances, and it was
selected using cross validation.

6

Unsupervised feature learning for audio classification
using convolutional deep belief networks

(Lee, Largman, Pham and Ng, NIPS 2009)

Table 3: Test accuracy for gender classification problem
#training utterances per gender RAW MFCC CDBN L1 CDBN L2 CDBN L1+L2

1 68.4% 58.5% 78.5% 85.8% 83.6%
2 76.7% 78.7% 86.0% 92.5% 92.3%
3 79.5% 84.1% 88.9% 94.2% 94.2%
5 84.4% 86.9% 93.1% 95.8% 95.6%
7 89.2% 89.0% 94.2% 96.6% 96.5%

10 91.3% 89.8% 94.7% 96.7% 96.6%

Table 4: Test accuracy for phone classification problem

#training utterances RAW MFCC MFCC ([15]’s method) CDBN L1 MFCC+CDBN L1 ([15])
100 36.9% 58.3% 66.6% 53.7% 67.2%
200 37.8% 61.5% 70.3% 56.7% 71.0%
500 38.7% 64.9% 74.1% 59.7% 75.1%

1000 39.0% 67.2% 76.3% 61.6% 77.1%
2000 39.2% 69.2% 78.4% 63.1% 79.2%
3696 39.4% 70.8% 79.6% 64.4% 80.3%

results are shown in Table 4. In this experiment, the first-layer CDBN features performed better
than spectrogram features, but they did not outperform the MFCC features. However, by combining
MFCC features and CDBN features, we could achieve about 0.7% accuracy improvement consis-
tently over all the numbers of training utterances. In the realm of phone classification, in which
significant research effort is often needed to achieve even improvements well under a percent, this
is a significant improvement. [17, 18, 19, 20]

This suggests that the first-layer CDBN features learned somewhat informative features for phone
classification tasks in an unsupervised way. In contrast to the gender classification task, the second-
layer CDBN features did not offer much improvement over the first-layer CDBN features. This
result is not unexpected considering the fact that the time-scale of most phonemes roughly corre-
sponds to the time-scale of the first-layer CDBN features.

5 Application to music classification tasks
In this section, we assess the applicability of CDBN features to various music classification tasks.

Table 5: Test accuracy for 5-way music genre classification
Train examples RAW MFCC CDBN L1 CDBN L2 CDBN L1+L2

1 51.6% 54.0% 66.1% 62.5% 64.3%
2 57.0% 62.1% 69.7% 67.9% 69.5%
3 59.7% 65.3% 70.0% 66.7% 69.5%
5 65.8% 68.3% 73.1% 69.2% 72.7%

5.1 Music genre classification

For the task of music genre classification, we trained the first and second-layer CDBN representa-
tions on an unlabeled collection of music data.10 First, we computed the spectrogram (20 ms window
size with 10 ms overlaps) representation for individual songs. The spectrogram was PCA-whitened
and then fed into the CDBN as input data. We trained 300 first-layer bases with a filter length of 10
and a max-pooling ratio of 3. In addition, we trained 300 second-layer bases with a filter length of
10 and a max-pooling ratio of 3.

We evaluated the learned CDBN representation for 5-way genre classification tasks. The training
and test songs for the classification tasks were randomly sampled from 5 genres (classical, electric,
jazz, pop, and rock) and did not overlap with the unlabeled data. We randomly sampled 3-second
segments from each song and treated each segment as an individual training or testing example. We
report the classification accuracy for various numbers of training examples. For each number of
training examples, we averaged over 20 random trials. The results are shown in Table 5. In this task,
the first-layer CDBN features performed the best overall.

10Available from http://ismir2004.ismir.net/ISMIR_Contest.html.

7

Unsupervised feature learning for audio classification
using convolutional deep belief networks

(Lee, Largman, Pham and Ng, NIPS 2009)

Table 3: Test accuracy for gender classification problem
#training utterances per gender RAW MFCC CDBN L1 CDBN L2 CDBN L1+L2

1 68.4% 58.5% 78.5% 85.8% 83.6%
2 76.7% 78.7% 86.0% 92.5% 92.3%
3 79.5% 84.1% 88.9% 94.2% 94.2%
5 84.4% 86.9% 93.1% 95.8% 95.6%
7 89.2% 89.0% 94.2% 96.6% 96.5%

10 91.3% 89.8% 94.7% 96.7% 96.6%

Table 4: Test accuracy for phone classification problem

#training utterances RAW MFCC MFCC ([15]’s method) CDBN L1 MFCC+CDBN L1 ([15])
100 36.9% 58.3% 66.6% 53.7% 67.2%
200 37.8% 61.5% 70.3% 56.7% 71.0%
500 38.7% 64.9% 74.1% 59.7% 75.1%

1000 39.0% 67.2% 76.3% 61.6% 77.1%
2000 39.2% 69.2% 78.4% 63.1% 79.2%
3696 39.4% 70.8% 79.6% 64.4% 80.3%

results are shown in Table 4. In this experiment, the first-layer CDBN features performed better
than spectrogram features, but they did not outperform the MFCC features. However, by combining
MFCC features and CDBN features, we could achieve about 0.7% accuracy improvement consis-
tently over all the numbers of training utterances. In the realm of phone classification, in which
significant research effort is often needed to achieve even improvements well under a percent, this
is a significant improvement. [17, 18, 19, 20]

This suggests that the first-layer CDBN features learned somewhat informative features for phone
classification tasks in an unsupervised way. In contrast to the gender classification task, the second-
layer CDBN features did not offer much improvement over the first-layer CDBN features. This
result is not unexpected considering the fact that the time-scale of most phonemes roughly corre-
sponds to the time-scale of the first-layer CDBN features.

5 Application to music classification tasks
In this section, we assess the applicability of CDBN features to various music classification tasks.

Table 5: Test accuracy for 5-way music genre classification
Train examples RAW MFCC CDBN L1 CDBN L2 CDBN L1+L2

1 51.6% 54.0% 66.1% 62.5% 64.3%
2 57.0% 62.1% 69.7% 67.9% 69.5%
3 59.7% 65.3% 70.0% 66.7% 69.5%
5 65.8% 68.3% 73.1% 69.2% 72.7%

5.1 Music genre classification

For the task of music genre classification, we trained the first and second-layer CDBN representa-
tions on an unlabeled collection of music data.10 First, we computed the spectrogram (20 ms window
size with 10 ms overlaps) representation for individual songs. The spectrogram was PCA-whitened
and then fed into the CDBN as input data. We trained 300 first-layer bases with a filter length of 10
and a max-pooling ratio of 3. In addition, we trained 300 second-layer bases with a filter length of
10 and a max-pooling ratio of 3.

We evaluated the learned CDBN representation for 5-way genre classification tasks. The training
and test songs for the classification tasks were randomly sampled from 5 genres (classical, electric,
jazz, pop, and rock) and did not overlap with the unlabeled data. We randomly sampled 3-second
segments from each song and treated each segment as an individual training or testing example. We
report the classification accuracy for various numbers of training examples. For each number of
training examples, we averaged over 20 random trials. The results are shown in Table 5. In this task,
the first-layer CDBN features performed the best overall.

10Available from http://ismir2004.ismir.net/ISMIR_Contest.html.

7

5.2 Music artist classification
Furthermore, we evaluated whether the CDBN features are useful in identifying individual artists.11

Following the same procedure as in Section 5.1, we trained the first and second-layer CDBN rep-
resentations from an unlabeled collection of classical music data. Some representative bases are
shown in Figure 4. Then we evaluated the learned CDBN representation for 4-way artist identifi-
cation tasks. The disjoint sets of training and test songs for the classification tasks were randomly
sampled from the songs of four artists. The unlabeled data and the labeled data did not include the
same artists. We randomly sampled 3-second segments from each song and treated each segment as
an individual example. We report the classification accuracy for various quantities of training ex-
amples. For each number of training examples, we averaged over 20 random trials. The results are
shown in Table 6. The results show that both the first and second-layer CDBN features performed
better than the baseline features, and that either using the second-layer features only or combining
the first and the second-layer features yielded the best results. This suggests that the second-layer
CDBN representation might have captured somewhat useful, higher-level features than the first-layer
CDBN representation.

high freq.

 low freq.

Figure 4: Visualization of randomly selected first-layer CDBN bases trained on classical music data.

Table 6: Test accuracy for 4-way artist identification
Train examples RAW MFCC CDBN L1 CDBN L2 CDBN L1+L2

1 56.0% 63.7% 67.6% 67.7% 69.2%
2 69.4% 66.1% 76.1% 74.2% 76.3%
3 73.9% 67.9% 78.0% 75.8% 78.7%
5 79.4% 71.6% 80.9% 81.9% 81.4%

6 Discussion and conclusion
Modern speech datasets are much larger than the TIMIT dataset. While the challenge of larger
datasets often lies in considering harder tasks, our objective in using the TIMIT data was to restrict
the amount of labeled data our algorithm had to learn from. It remains an interesting problem to
apply deep learning to larger datasets and more challenging tasks.

In this paper, we applied convolutional deep belief networks to audio data and evaluated on various
audio classification tasks. By leveraging a large amount of unlabeled data, our learned features
often equaled or surpassed MFCC features, which are hand-tailored to audio data. Furthermore,
even when our features did not outperform MFCC, we could achieve higher classification accuracy
by combining both. Also, our results show that a single CDBN feature representation can achieve
high performance on multiple audio recognition tasks. We hope that our approach will inspire more
research on automatically learning deep feature hierarchies for audio data.

Acknowledgment
We thank Yoshua Bengio, Dan Jurafsky, Yun-Hsuan Sung, Pedro Moreno, Roger Grosse for helpful
discussions. We also thank anonymous reviewers for their constructive comments. This work was
supported in part by the National Science Foundation under grant EFRI-0835878, and in part by the
Office of Naval Research under MURI N000140710747.

11In our experiments, we found that artist identification task was more difficult than the speaker identification
task because the local sound patterns can be highly variable even for the same artist.

8

A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning

(Collobert and Weston, ICML 2008)

A Unified Architecture for Natural Language Processing

ing the lookup-table to each of its words.

It is important to note that the parameters W of the
layer are automatically trained during the learning
process using backpropagation.

Variations on Word Representations In practice,
one may want to introduce some basic pre-processing,
such as word-stemming or dealing with upper and
lower case. In our experiments, we limited ourselves to
converting all words to lower case, and represent the
capitalization as a separate feature (yes or no).

When a word is decomposed into K elements (fea-
tures), it can be represented as a tuple i =
{i1, i2, . . . iK} ∈ D1 × · · ·×DK , where Dk is the dic-
tionary for the kth-element. We associate to each ele-
ment a lookup-table LTW k(·), with parameters W k ∈
Rdk×|Dk| where dk ∈ N is a user-specified vector size.
A word i is then embedded in a d =

∑
k dk dimensional

space by concatenating all lookup-table outputs:

LTW 1,...,W K (i)T = (LTW 1(i1)T, . . . , LTW K (iK)T)

Classifying with Respect to a Predicate In a
complex task like SRL, the class label of each word in a
sentence depends on a given predicate. It is thus neces-
sary to encode in the NN architecture which predicate
we are considering in the sentence.

We propose to add a feature for each word that encodes
its relative distance to the chosen predicate. For the ith

word in the sentence, if the predicate is at position posp

we use an additional lookup table LT distp(i− posp).

3.2. Variable Sentence Length

The lookup table layer maps the original sentence into
a sequence x(·) of n identically sized vectors:

(x1,x2, . . . , xn), ∀t xt ∈ Rd . (1)

Obviously the size n of the sequence varies depending
on the sentence. Unfortunately normal NNs are not
able to handle sequences of variable length.

The simplest solution is to use a window approach:
consider a window of fixed size ksz around each word
we want to label. While this approach works with
great success on simple tasks like POS, it fails on more
complex tasks like SRL. In the latter case it is common
for the role of a word to depend on words far away
in the sentence, and hence outside of the considered
window.

When modeling long-distance dependencies is impor-
tant, Time-Delay Neural Networks (TDNNs) (Waibel
et al., 1989) are a better choice. Here, time refers

Input Sentence
the cat sat on the matfeature 1 (text)
s1(1) s1(2) s1(3) s1(4) s1(5) s1(6)feature 2

...
feature K sK(1) sK(2) sK(3) sK(4) sK(5) sK(6)

Max Over Time ...

Optional Classical NN Layer(s)

Softmax

Lookup Tables

LTw

...

1

LTwK

#hidden units * (n-2)

Convolution Layer

...

#hidden units

#classes

(d1+d2+...dK)*n

n words, K features

Figure 1. A general deep NN architecture for NLP. Given
an input sentence, the NN outputs class probabilities for
one chosen word. A classical window approach is a special
case where the input has a fixed size ksz, and the TDNN
kernel size is ksz; in that case the TDNN layer outputs
only one vector and the Max layer performs an identity.

to the idea that a sequence has a notion of order. A
TDNN “reads” the sequence in an online fashion: at
time t ≥ 1, one sees xt, the tth word in the sentence.

A classical TDNN layer performs a convolution on a
given sequence x(·), outputting another sequence o(·)
whose value at time t is:

o(t) =
n−t∑

j=1−t

Lj · xt+j , (2)

where Lj ∈ Rnhu×d (−n ≤ j ≤ n) are the parameters
of the layer (with nhu hidden units) trained by back-
propagation. One usually constrains this convolution
by defining a kernel width, ksz, which enforces

∀ |j| > (ksz − 1)/2, Lj = 0 . (3)

A classical window approach only considers words in
a window of size ksz around the word to be labeled.
Instead, if we use (2) and (3), a TDNN considers at the
same time all windows of ksz words in the sentence.

TDNN layers can also be stacked so that one can ex-
tract local features in lower layers, and more global
features in subsequent ones. This is an approach typ-
ically used in convolutional networks for vision tasks,
such as the LeNet architecture (LeCun et al., 1998).

We then add to our architecture a layer which captures
the most relevant features over the sentence by feeding

A Unified Architecture for Natural Language Processing

ing the lookup-table to each of its words.

It is important to note that the parameters W of the
layer are automatically trained during the learning
process using backpropagation.

Variations on Word Representations In practice,
one may want to introduce some basic pre-processing,
such as word-stemming or dealing with upper and
lower case. In our experiments, we limited ourselves to
converting all words to lower case, and represent the
capitalization as a separate feature (yes or no).

When a word is decomposed into K elements (fea-
tures), it can be represented as a tuple i =
{i1, i2, . . . iK} ∈ D1 × · · ·×DK , where Dk is the dic-
tionary for the kth-element. We associate to each ele-
ment a lookup-table LTW k(·), with parameters W k ∈
Rdk×|Dk| where dk ∈ N is a user-specified vector size.
A word i is then embedded in a d =

∑
k dk dimensional

space by concatenating all lookup-table outputs:

LTW 1,...,W K (i)T = (LTW 1(i1)T, . . . , LTW K (iK)T)

Classifying with Respect to a Predicate In a
complex task like SRL, the class label of each word in a
sentence depends on a given predicate. It is thus neces-
sary to encode in the NN architecture which predicate
we are considering in the sentence.

We propose to add a feature for each word that encodes
its relative distance to the chosen predicate. For the ith

word in the sentence, if the predicate is at position posp

we use an additional lookup table LT distp(i− posp).

3.2. Variable Sentence Length

The lookup table layer maps the original sentence into
a sequence x(·) of n identically sized vectors:

(x1,x2, . . . , xn), ∀t xt ∈ Rd . (1)

Obviously the size n of the sequence varies depending
on the sentence. Unfortunately normal NNs are not
able to handle sequences of variable length.

The simplest solution is to use a window approach:
consider a window of fixed size ksz around each word
we want to label. While this approach works with
great success on simple tasks like POS, it fails on more
complex tasks like SRL. In the latter case it is common
for the role of a word to depend on words far away
in the sentence, and hence outside of the considered
window.

When modeling long-distance dependencies is impor-
tant, Time-Delay Neural Networks (TDNNs) (Waibel
et al., 1989) are a better choice. Here, time refers

Input Sentence
the cat sat on the matfeature 1 (text)
s1(1) s1(2) s1(3) s1(4) s1(5) s1(6)feature 2

...
feature K sK(1) sK(2) sK(3) sK(4) sK(5) sK(6)

Max Over Time ...

Optional Classical NN Layer(s)

Softmax

Lookup Tables

LTw

...

1

LTwK

#hidden units * (n-2)

Convolution Layer

...

#hidden units

#classes

(d1+d2+...dK)*n

n words, K features

Figure 1. A general deep NN architecture for NLP. Given
an input sentence, the NN outputs class probabilities for
one chosen word. A classical window approach is a special
case where the input has a fixed size ksz, and the TDNN
kernel size is ksz; in that case the TDNN layer outputs
only one vector and the Max layer performs an identity.

to the idea that a sequence has a notion of order. A
TDNN “reads” the sequence in an online fashion: at
time t ≥ 1, one sees xt, the tth word in the sentence.

A classical TDNN layer performs a convolution on a
given sequence x(·), outputting another sequence o(·)
whose value at time t is:

o(t) =
n−t∑

j=1−t

Lj · xt+j , (2)

where Lj ∈ Rnhu×d (−n ≤ j ≤ n) are the parameters
of the layer (with nhu hidden units) trained by back-
propagation. One usually constrains this convolution
by defining a kernel width, ksz, which enforces

∀ |j| > (ksz − 1)/2, Lj = 0 . (3)

A classical window approach only considers words in
a window of size ksz around the word to be labeled.
Instead, if we use (2) and (3), a TDNN considers at the
same time all windows of ksz words in the sentence.

TDNN layers can also be stacked so that one can ex-
tract local features in lower layers, and more global
features in subsequent ones. This is an approach typ-
ically used in convolutional networks for vision tasks,
such as the LeNet architecture (LeCun et al., 1998).

We then add to our architecture a layer which captures
the most relevant features over the sentence by feeding

A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning

(Collobert and Weston, ICML 2008)

A Unified Architecture for Natural Language Processing

Lookup Tables

Convolution

Task 1

Max

Classical NN Layer(s)

Softmax

LTw2 LTw3

Lookup Tables

Convolution

Task 2

Max

Classical NN Layer(s)

Softmax

LTw1 LTw2‘

Figure 2. Example of deep multitasking with NN. Task 1
and Task 2 are two tasks trained with the architecture
presented in Figure 1. One lookup-table (in black) is shared
(the other lookup-tables and layers are task specific). The
principle is the same with more than two tasks.

eral techniques have already been explored.

Cascading Features The most obvious way to
achieve MTL is to train one task, and then use this
task as a feature for another task. This is a very com-
mon approach in NLP. For example, in the case of
SRL, several methods (e.g., (Pradhan et al., 2004))
train a POS classifier and use the output as features
for training a parser, which is then used for building
features for SRL itself. Unfortunately, tasks (features)
are learnt separately in such a cascade, thus propagat-
ing errors from one classifier to the next.

Shallow Joint Training If one possesses a dataset la-
beled for several tasks, it is then possible to train these
tasks jointly in a shallow manner: one unique model
can predict all task labels at the same time. Using this
scheme, the authors of (Sutton et al., 2007) proposed a
conditional random field approach where they showed
improvements from joint training on POS tagging and
noun-phrase chunking tasks. However the requirement
of jointly annotated data is a limitation, as this is often
not the case. Similarly, in (Miller et al., 2000) NER,
parsing and relation extraction were jointly trained in
a statistical parsing model achieving improved perfor-
mance on all tasks. This work has the same joint label-
ing requirement problem, which the authors avoided
by using a predictor to fill in the missing annotations.

In (Sutton & McCallum, 2005a) the authors showed
that one could learn the tasks independently, hence
using different training sets, by only leveraging predic-
tions jointly in a test time decoding step, and still ob-
tain improved results. The problem is, however, that
this will not make use of the shared tasks at training
time. The NN approach used here seems more flexible
in these regards.

Finally, the authors of (Musillo & Merlo, 2006) made
an attempt at improving the semantic role labeling
task by joint inference with syntactic parsing, but their
results are not state-of-the-art. The authors of (Sutton
& McCallum, 2005b) also describe a negative result at
the same joint task.

5. Leveraging Unlabeled Data

Labeling a dataset can be an expensive task, especially
in NLP where labeling often requires skilled linguists.
On the other hand, unlabeled data is abundant and
freely available on the web. Leveraging unlabeled data
in NLP tasks seems to be a very attractive, and chal-
lenging, goal.

In our MTL framework presented in Figure 2, there is
nothing stopping us from jointly training supervised
tasks on labeled data and unsupervised tasks on un-
labeled data. We now present an unsupervised task
suitable for NLP.

Language Model We consider a language model
based on a simple fixed window of text of size ksz us-
ing our NN architecture, given in Figure 2. We trained
our language model to discriminate a two-class classi-
fication task: if the word in the middle of the input
window is related to its context or not. We construct
a dataset for this task by considering all possible ksz
windows of text from the entire of English Wikipedia
(http://en.wikipedia.org). Positive examples are
windows from Wikipedia, negative examples are the
same windows but where the middle word has been
replaced by a random word.

We train this problem with a ranking-type cost:

s∈S w∈D

max (0, 1− f(s) + f(sw)) , (4)

where S is the set of sentence windows of text, D is the
dictionary of words, and f(·) represents our NN archi-
tecture without the softmax layer and sw is a sentence
window where the middle word has been replaced by
the word w. We sample this cost online w.r.t. (s, w).

We will see in our experiments that the features (em-
bedding) learnt by the lookup-table layer of this NN
clusters semantically similar words. These discovered
features will prove very useful for our shared tasks.

Previous Work on Language Models (Bengio &
Ducharme, 2001) and (Schwenk & Gauvain, 2002) al-
ready presented very similar language models. How-
ever, their goal was to give a probability of a word
given previous ones in a sentence. Here, we only want
to have a good representation of words: we take advan-
tage of the complete context of a word (before and af-

A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning

(Collobert and Weston, ICML 2008)

• Utilise une tâche de modélisation du langage
comme tâche non-supervisée

A Unified Architecture for Natural Language Processing

Lookup Tables

Convolution

Task 1

Max

Classical NN Layer(s)

Softmax

LTw2 LTw3

Lookup Tables

Convolution

Task 2

Max

Classical NN Layer(s)

Softmax

LTw1 LTw2‘

Figure 2. Example of deep multitasking with NN. Task 1
and Task 2 are two tasks trained with the architecture
presented in Figure 1. One lookup-table (in black) is shared
(the other lookup-tables and layers are task specific). The
principle is the same with more than two tasks.

eral techniques have already been explored.

Cascading Features The most obvious way to
achieve MTL is to train one task, and then use this
task as a feature for another task. This is a very com-
mon approach in NLP. For example, in the case of
SRL, several methods (e.g., (Pradhan et al., 2004))
train a POS classifier and use the output as features
for training a parser, which is then used for building
features for SRL itself. Unfortunately, tasks (features)
are learnt separately in such a cascade, thus propagat-
ing errors from one classifier to the next.

Shallow Joint Training If one possesses a dataset la-
beled for several tasks, it is then possible to train these
tasks jointly in a shallow manner: one unique model
can predict all task labels at the same time. Using this
scheme, the authors of (Sutton et al., 2007) proposed a
conditional random field approach where they showed
improvements from joint training on POS tagging and
noun-phrase chunking tasks. However the requirement
of jointly annotated data is a limitation, as this is often
not the case. Similarly, in (Miller et al., 2000) NER,
parsing and relation extraction were jointly trained in
a statistical parsing model achieving improved perfor-
mance on all tasks. This work has the same joint label-
ing requirement problem, which the authors avoided
by using a predictor to fill in the missing annotations.

In (Sutton & McCallum, 2005a) the authors showed
that one could learn the tasks independently, hence
using different training sets, by only leveraging predic-
tions jointly in a test time decoding step, and still ob-
tain improved results. The problem is, however, that
this will not make use of the shared tasks at training
time. The NN approach used here seems more flexible
in these regards.

Finally, the authors of (Musillo & Merlo, 2006) made
an attempt at improving the semantic role labeling
task by joint inference with syntactic parsing, but their
results are not state-of-the-art. The authors of (Sutton
& McCallum, 2005b) also describe a negative result at
the same joint task.

5. Leveraging Unlabeled Data

Labeling a dataset can be an expensive task, especially
in NLP where labeling often requires skilled linguists.
On the other hand, unlabeled data is abundant and
freely available on the web. Leveraging unlabeled data
in NLP tasks seems to be a very attractive, and chal-
lenging, goal.

In our MTL framework presented in Figure 2, there is
nothing stopping us from jointly training supervised
tasks on labeled data and unsupervised tasks on un-
labeled data. We now present an unsupervised task
suitable for NLP.

Language Model We consider a language model
based on a simple fixed window of text of size ksz us-
ing our NN architecture, given in Figure 2. We trained
our language model to discriminate a two-class classi-
fication task: if the word in the middle of the input
window is related to its context or not. We construct
a dataset for this task by considering all possible ksz
windows of text from the entire of English Wikipedia
(http://en.wikipedia.org). Positive examples are
windows from Wikipedia, negative examples are the
same windows but where the middle word has been
replaced by a random word.

We train this problem with a ranking-type cost:

s∈S w∈D

max (0, 1− f(s) + f(sw)) , (4)

where S is the set of sentence windows of text, D is the
dictionary of words, and f(·) represents our NN archi-
tecture without the softmax layer and sw is a sentence
window where the middle word has been replaced by
the word w. We sample this cost online w.r.t. (s, w).

We will see in our experiments that the features (em-
bedding) learnt by the lookup-table layer of this NN
clusters semantically similar words. These discovered
features will prove very useful for our shared tasks.

Previous Work on Language Models (Bengio &
Ducharme, 2001) and (Schwenk & Gauvain, 2002) al-
ready presented very similar language models. How-
ever, their goal was to give a probability of a word
given previous ones in a sentence. Here, we only want
to have a good representation of words: we take advan-
tage of the complete context of a word (before and af-

représentation d’une fenêtre
de texte de Wikipedia

même fenêtre, mais avec
le mot au milieuw

A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning

(Collobert and Weston, ICML 2008)

A Unified Architecture for Natural Language Processing

Table 2. A Deep Architecture for SRL improves by learning auxiliary tasks that share the first layer that represents words
as wsz-dimensional vectors. We give word error rates for wsz=15, 50 and 100 and various shared tasks.

wsz=15 wsz=50 wsz=100
SRL 16.54 17.33 18.40
SRL + POS 15.99 16.57 16.53
SRL + Chunking 16.42 16.39 16.48
SRL + NER 16.67 17.29 17.21
SRL + Synonyms 15.46 15.17 15.17
SRL + Language model 14.42 14.30 14.46
SRL + POS + Chunking 16.46 15.95 16.41
SRL + POS + NER 16.45 16.89 16.29
SRL + POS + Chunking + NER 16.33 16.36 16.27
SRL + POS + Chunking + NER + Synonyms 15.71 14.76 15.48
SRL + POS + Chunking + NER + Language model 14.63 14.44 14.50

!"#$%&

'()*+

,
-
"
./
'
00
)
0

% %% 1% 2%%3

%&

%4

%5

%6

%7

18

1%

11

9:;
9:;<=>9
9:;<?@ABC
9:;<=>9<?@ABC
9:;<=>9<?@ABC<B':
9:;<9DB>BDE9
9:;<=>9<?@ABC<B':<9DB>BDE9
9:;<;FBGHE>I';
9:;<=>9<?@ABC<B':<;FBGHE>I';

!"#$%&

'()*+

,
-
"
./
'
00
)
0

1 23% 4 53% 11 123% 14 153%16

1%

14

17

15

18

9&

91

99

:;<
:;<=>?:
:;<=@ABCD
:;<=>?:=@ABCD
:;<=>?:=@ABCD=C';
:;<=:EC?CEF:
:;<=>?:=@ABCD=C';=:EC?CEF:
:;<=<GCH3F?I'<
:;<=>?:=@ABCD=C';=<GCH3F?I'<

!"#$%&&

'()*+

,
-
"
./
'
00
)
0

% 123 4 523 %% %123%6

%3

%4

%7

%5

%8

9&

9%

99

:;<
:;<=>?:
:;<=@ABCD
:;<=>?:=@ABCD
:;<=>?:=@ABCD=C';
:;<=:EC?CEF:
:;<=>?:=@ABCD=C';=:EC?CEF:
:;<=<GCH2F?I'<
:;<=>?:=@ABCD=C';=<GCH2F?I'<

Figure 3. Test error versus number of training epochs over PropBank, for the SRL task alone and SRL jointly trained
with various other NLP tasks, using deep NNs.

Results: Language Model Because the language
model was trained on a huge database we first trained
it alone. It takes about a week to train on one com-
puter. The embedding obtained in the word lookup-
table was extremely good, even for uncommon words,
as shown in Table 1. The embedding obtained by
training on labeled data from WordNet “synonyms”
is also good (results not shown) however the coverage
is not as good as using unlabeled data, e.g. “Dream-
cast” is not in the database.

The resulting word lookup-table from the language
model was used as an initializer of the lookup-table
used in MTL experiments with a language model.

Results: SRL Our main interest was improving SRL
performance, the most complex of our tasks. In Ta-
ble 2, we show results comparing the SRL task alone
with the SRL task jointly trained with different com-
binations of the other tasks. For all our experiments,
training was achieved in a few epochs (about a day)
over the PropBank dataset as shown in Figure 3. Test-
ing takes 0.015s to label a complete sentence (given one
verb).

All MTL experiments performed better than SRL
alone. With larger wsz (and thus large capacity) the
relative improvement becomes larger from using MTL
compared to the task alone, which shows MTL is a
good way of regularizing: in fact with MTL results
are fairly stable with capacity changes.

The semi-supervised training of SRL using the lan-
guage model performs better than other combinations.
Our best model performed as low as 14.30% in per-
word error rate, which is to be compared to previ-
ously published results of 16.36% with an NN archi-
tecture (Collobert & Weston, 2007) and 16.54% for a
state-of-the-art method based on parse trees (Pradhan
et al., 2004)1. Further, our system is the only one not
to use POS tags or parse tree features.

Results: POS and Chunking Training takes about
30 min for these tasks alone. Testing time for label-
ing a complete sentence is about 0.003s. We obtained
modest improvements to POS and chunking results us-

1Our loss function optimized per-word error rate. We
note that many SRL results e.g. the CONLL 2005 evalua-
tion use F1 as a standard measure.

État de l’art (Pradhan et al. 2004) 16.54

A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning

(Collobert and Weston, ICML 2008)

A Unified Architecture for Natural Language Processing

ter) to predict its relevance. Perhaps this is the reason
the authors were never able to obtain a good embed-
ding of their words. Also, using probabilities imposes
using a cross-entropy type criterion and can require
many tricks to speed-up the training, due to normal-
ization issues. Our criterion (4) is much simpler in
that respect.

The authors of (Okanohara & Tsujii, 2007), like us,
also take a two-class approach (true/fake sentences).
They use a shallow (kernel) classifier.

Previous Work in Semi-Supervised Learning
For an overview of semi-supervised learning, see
(Chapelle et al., 2006). There have been several uses
of semi-supervised learning in NLP before, for exam-
ple in NER (Rosenfeld & Feldman, 2007), machine
translation (Ueffing et al., 2007), parsing (McClosky
et al., 2006) and text classification (Joachims, 1999).
The first work is a highly problem-specific approach
whereas the last three all use a self-training type ap-
proach (Transductive SVMs in the case of text classifi-
cation, which is a kind of self-training method). These
methods augment the training set with labeled exam-
ples from the unlabeled set which are predicted by the
model itself. This can give large improvements in a
model, but care must be taken as the predictions are
of course prone to noise.

The authors of (Ando & Zhang, 2005) propose a setup
more similar to ours: they learn from unlabeled data
as an auxiliary task in a MTL framework. The main
difference is that they use shallow classifiers; however
they report positive results on POS and NER tasks.

Semantically Related Words Task We found it
interesting to compare the embedding obtained with
a language model on unlabeled data with an em-
bedding obtained with labeled data. WordNet is
a database which contains semantic relations (syn-
onyms, holonyms, hypernyms, ...) between around
150, 000 words. We used it to train a NN similar to
the language model one. We considered the problem
as a two-class classification task: positive examples are
pairs with a relation in Wordnet, and negative exam-
ples are random pairs.

6. Experiments

We used Sections 02-21 of the PropBank dataset ver-
sion 1 (about 1 million words) for training and Sec-
tion 23 for testing as standard in all SRL experiments.
POS and chunking tasks use the same data split via
the Penn TreeBank. NER labeled data was obtained
by running the Stanford Named Entity Recognizer (a

Table 1. Language model performance for learning an em-
bedding in wsz = 50 dimensions (dictionary size: 30, 000).
For each column the queried word is followed by its index in
the dictionary (higher means more rare) and its 10 nearest
neighbors (arbitrary using the Euclidean metric).

france jesus xbox reddish scratched
454 1973 6909 11724 29869

spain christ playstation yellowish smashed
italy god dreamcast greenish ripped
russia resurrection psNUMBER brownish brushed
poland prayer snes bluish hurled
england yahweh wii creamy grabbed
denmark josephus nes whitish tossed
germany moses nintendo blackish squeezed
portugal sin gamecube silvery blasted
sweden heaven psp greyish tangled
austria salvation amiga paler slashed

CRF based classifier) over the same data.

Language models were trained on Wikipedia. In all
cases, any numeric number was converted as “NUM-
BER”. Accentuated characters were transformed to
their non-accentuated versions. All paragraphs con-
taining other non-ASCII characters were discarded.
For Wikipedia, we obtain a database of 631M words.
We used WordNet to train the “synonyms” (semanti-
cally related words) task.

All tasks use the same dictionary of the 30, 000 most
common words from Wikipedia, converted to lower
case. Other words were considered as unknown and
mapped to a special word.

Architectures All tasks were trained using the NN
shown in Figure 1. POS, NER, and chunking tasks
were trained with the window version with ksz = 5.
We chose linear models for POS and NER. For chunk-
ing we chose a hidden layer of 200 units. The language
model task had a window size ksz = 11, and a hidden
layer of 100 units. All these tasks used two lookup-
tables: one of dimension wsz for the word in lower
case, and one of dimension 2 specifying if the first let-
ter of the word is a capital letter or not.

For SRL, the network had a convolution layer with
ksz = 3 and 100 hidden units, followed by another
hidden layer of 100 hidden units. It had three lookup-
tables in the first layer: one for the word (in lower
case), and two that encode relative distances (to the
word of interest and the verb). The last two lookup-
tables embed in 5 dimensional spaces. Verb positions
are obtained with our POS classifier.

The language model network had only one lookup-
table (the word in lower case) and 100 hidden units.
It used a window of size ksz = 11.

We show results for different encoding sizes of the word
in lower case: wsz = 15, 50 and 100.

(montrer visualisation t-SNE)

Réseaux à convolution et
“deep learning”

• Y a-t-il d’autres façon d’initialiser des
réseaux à convolution de façon non-
supervisée?

• Y a-t-il d’autres tâches qui seraient mieux
résolues par un réseau à convolution?

• Y a-t-il de meilleures architectures de
réseaux à convolution?

! Pistes de recherche !

Why Does Unsupervised Pre-training
Help Deep Learning?

(Erhan, Bengio, Courville, Manzagol and Vincent, JMLR 2010)

ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

6. The Effect of Unsupervised Pre-training

We start by a presentation of large-scale simulations that were intended to confirm some of the

previously published results about deep architectures. In the process of analyzing them, we start

making connections to our hypotheses and motivate the experiments that follow.

6.1 Better Generalization

When choosing the number of units per layer, the learning rate and the number of training iterations

to optimize classification error on the validation set, unsupervised pre-training gives substantially

lower test classification error than no pre-training, for the same depth or for smaller depth on various

vision data sets (Ranzato et al., 2007; Bengio et al., 2007; Larochelle et al., 2009, 2007; Vincent

et al., 2008) no larger than the MNIST digit data set (experiments reported from 10,000 to 50,000

training examples).

Such work was performed with only one or a handful of different random initialization seeds,

so one of the goals of this study was to ascertain the effect of the random seed used when initial-

izing ordinary neural networks (deep or shallow) and the pre-training procedure. For this purpose,

between 50 and 400 different seeds were used to obtain the graphics on MNIST.

Figure 1: Effect of depth on performance for a model trained (left) without unsupervised pre-

training and (right) with unsupervised pre-training, for 1 to 5 hidden layers (networks

with 5 layers failed to converge to a solution, without the use of unsupervised pre-

training). Experiments on MNIST. Box plots show the distribution of errors associated

with 400 different initialization seeds (top and bottom quartiles in box, plus outliers be-

yond top and bottom quartiles). Other hyperparameters are optimized away (on the val-

idation set). Increasing depth seems to increase the probability of finding poor apparent

local minima.

Figure 1 shows the resulting distribution of test classification error, obtained with and without

pre-training, as we increase the depth of the network. Figure 2 shows these distributions as his-

tograms in the case of 1 and 4 layers. As can be seen in Figure 1, unsupervised pre-training allows

592

A) sans pré-entraînement B) avec pré-entraînement

Why Does Unsupervised Pre-training
Help Deep Learning?

(Erhan, Bengio, Courville, Manzagol and Vincent, JMLR 2010)

WHY DOES UNSUPERVISED PRE-TRAINING HELP DEEP LEARNING?

classification error to go down steadily as we move from 1 to 4 hidden layers, whereas without

pre-training the error goes up after 2 hidden layers. It should also be noted that we were unable to

effectively train 5-layer models without use of unsupervised pre-training. Not only is the error ob-

tained on average with unsupervised pre-training systematically lower than without the pre-training,

it appears also more robust to the random initialization. With unsupervised pre-training the variance

stays at about the same level up to 4 hidden layers, with the number of bad outliers growing slowly.

Contrast this with the case without pre-training: the variance and number of bad outliers grows

sharply as we increase the number of layers beyond 2. The gain obtained with unsupervised pre-

training is more pronounced as we increase the number of layers, as is the gain in robustness to

random initialization. This can be seen in Figure 2. The increase in error variance and mean for

deeper architectures without pre-training suggests that increasing depth increases the probability

of finding poor apparent local minimawhen starting from random initialization. It is also interest-

ing to note the low variance and small spread of errors obtained with 400 seeds with unsupervised

pre-training: it suggests that unsupervised pre-training is robust with respect to the random

initialization seed (the one used to initialize parameters before pre-training).

Figure 2: Histograms presenting the test errors obtained on MNIST using models trained with or

without pre-training (400 different initializations each). Left: 1 hidden layer. Right: 4

hidden layers.

These experiments show that the variance of final test error with respect to initialization random

seed is larger without pre-training, and this effect is magnified for deeper architectures. It should

however be noted that there is a limit to the success of this technique: performance degrades for 5

layers on this problem.

6.2 Visualization of Features

Figure 3 shows the weights (called filters) of the first layer of the DBN before and after supervised

fine-tuning. For visualizing what units do on the 2nd and 3rd layer, we used the activation maxi-

mization technique described by Erhan et al. (2009): to visualize what a unit responds most to, the

method looks for the bounded input pattern that maximizes the activation of a given unit. This is an

593

Variance liée à l’initialisation aléatoire

Why Does Unsupervised Pre-training
Help Deep Learning?

(Erhan, Bengio, Courville, Manzagol and Vincent, JMLR 2010)

Variance liée à l’initialisation aléatoire (t-SNE)

ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

focus respectively on local9 and global structure.10 Each point is colored according to the training

iteration, to help follow the trajectory movement.

!100 !80 !60 !40 !20 0 20 40 60 80 100
!100

!80

!60

!40

!20

0

20

40

60

80

100

2 layers without pre!training

2 layers with pre!training

Figure 5: 2D visualizations with tSNE of the functions represented by 50 networks with and 50 net-

works without pre-training, as supervised training proceeds over MNIST. See Section 6.3

for an explanation. Color from dark blue to cyan and red indicates a progression in train-

ing iterations (training is longer without pre-training). The plot shows models with 2

hidden layers but results are similar with other depths.

What seems to come out of these visualizations is the following:

1. The pre-trained and not pre-trained models start and stay in different regions of function

space.

2. From the visualization focusing on local structure (Figure 5) we see that all trajectories of

a given type (with pre-training or without) initially move together. However, at some point

(after about 7 epochs) the different trajectories (corresponding to different random seeds)

diverge (slowing down into elongated jets) and never get back close to each other (this is

more true for trajectories of networks without pre-training). This suggests that each trajectory

moves into a different apparent local minimum.11

9. t-Distributed Stochastic Neighbor Embedding, or tSNE, by van der Maaten and Hinton (2008), with the default pa-

rameters available in the public implementation: http://ict.ewi.tudelft.nl/˜lvandermaaten/t-SNE.html.

10. Isomap by Tenenbaum et al. (2000), with one connected component.

11. One may wonder if the divergence points correspond to a turning point in terms of overfitting. As shall be seen in

Figure 8, the test error does not improve much after the 7th epoch, which reinforces this hypothesis.

596

Why Does Unsupervised Pre-training
Help Deep Learning?

(Erhan, Bengio, Courville, Manzagol and Vincent, JMLR 2010)

Variance liée à l’initialisation aléatoire (ISOMAP)

WHY DOES UNSUPERVISED PRE-TRAINING HELP DEEP LEARNING?

!4000 !3000 !2000 !1000 0 1000 2000 3000 4000
!1500

!1000

!500

0

500

1000

1500

Without pre!training

With pre!training

Figure 6: 2D visualization with ISOMAP of the functions represented by 50 networks with and

50 networks without pre-training, as supervised training proceeds over MNIST. See Sec-

tion 6.3 for an explanation. Color from dark blue to cyan indicates a progression in

training iterations (training is longer without pre-training). The plot shows models with

2 hidden layers but results are similar with other depths.

3. From the visualization focusing on global structure (Figure 6), we see the pre-trained models

live in a disjoint and much smaller region of space than the not pre-trained models. In fact,

from the standpoint of the functions found without pre-training, the pre-trained solutions

look all the same, and their self-similarity increases (variance across seeds decreases) during

training, while the opposite is observed without pre-training. This is consistent with the

formalization of pre-training from Section 3, in which we described a theoretical justification

for viewing unsupervised pre-training as a regularizer; there, the probabilities of pre-traininig

parameters landing in a basin of attraction is small.

The visualizations of the training trajectories do seem to confirm our suspicions. It is difficult

to guarantee that each trajectory actually does end up in a different local minimum (corresponding

to a different function and not only to different parameters). However, all tests performed (visual

inspection of trajectories in function space, but also estimation of second derivatives in the directions

of all the estimated eigenvectors of the Jacobian not reported in details here) were consistent with

that interpretation.

We have also analyzed models obtained at the end of training, to visualize the training criterion

in the neighborhood of the parameter vector !∗ obtained. This is achieved by randomly sampling

a direction v (from the stochastic gradient directions) and by plotting the training criterion around

597

Why Does Unsupervised Pre-training
Help Deep Learning?

(Erhan, Bengio, Courville, Manzagol and Vincent, JMLR 2010)

Erreur d’entraînement vs erreur de test

WHY DOES UNSUPERVISED PRE-TRAINING HELP DEEP LEARNING?

Figure 8: Evolution without pre-training (blue) and with pre-training (red) on MNIST of the log of

the test NLL plotted against the log of the train NLL as training proceeds. Each of the

2× 400 curves represents a different initialization. The errors are measured after each
pass over the data. The rightmost points were measured after the first pass of gradient

updates. Since training error tends to decrease during training, the trajectories run from

right (high training error) to left (low training error). Trajectories moving up (as we go

leftward) indicate a form of overfitting. All trajectories are plotted on top of each other.

final configurations for parameter values. Like regularizers in general, unsupervised pre-training (in

this case, with denoising auto-encoders) might thus be seen as decreasing the variance and introduc-

ing a bias (towards parameter configurations suitable for performing denoising). Unlike ordinary

regularizers, unsupervised pre-training does so in a data-dependent manner.

7.3 Experiment 3: The Influence of the Layer Size

Another signature characteristic of regularization is that the effectiveness of regularization increases

as capacity (e.g., the number of hidden units) increases, effectively trading off one constraint on the

model complexity for another. In this experiment we explore the relationship between the number of

units per layer and the effectiveness of unsupervised pre-training. The hypothesis that unsupervised

pre-training acts as a regularizer would suggest that we should see a trend of increasing effectiveness

of unsupervised pre-training as the number of units per layer are increased.

We trained models on MNIST with and without pre-training using increasing layer sizes: 25,

50, 100, 200, 400, 800 units per layer. Results are shown in Figure 9. Qualitatively similar results

were obtained on Shapeset. In the case of SDAE, we were expecting the denoising pre-training

procedure to help classification performance most for large layers; this is because the denoising

pre-training allows useful representations to be learned in the over-complete case, in which a layer

is larger than its input (Vincent et al., 2008). What we observe is a more systematic effect: while

unsupervised pre-training helps for larger layers and deeper networks, it also appears to hurt for too

small networks.

Figure 9 also shows that DBNs behave qualitatively like SDAEs, in the sense that unsupervised

pre-training architectures with smaller layers hurts performance. Experiments on InfiniteMNIST

reveal results that are qualitatively the same. Such an experiment seemingly points to a re-verification

of the regularization hypothesis. In this case, it would seem that unsupervised pre-training acts as an

additional regularizer for both DBN and SDAE models—on top of the regularization provided by

601

WHY DOES UNSUPERVISED PRE-TRAINING HELP DEEP LEARNING?

Figure 8: Evolution without pre-training (blue) and with pre-training (red) on MNIST of the log of

the test NLL plotted against the log of the train NLL as training proceeds. Each of the

2× 400 curves represents a different initialization. The errors are measured after each
pass over the data. The rightmost points were measured after the first pass of gradient

updates. Since training error tends to decrease during training, the trajectories run from

right (high training error) to left (low training error). Trajectories moving up (as we go

leftward) indicate a form of overfitting. All trajectories are plotted on top of each other.

final configurations for parameter values. Like regularizers in general, unsupervised pre-training (in

this case, with denoising auto-encoders) might thus be seen as decreasing the variance and introduc-

ing a bias (towards parameter configurations suitable for performing denoising). Unlike ordinary

regularizers, unsupervised pre-training does so in a data-dependent manner.

7.3 Experiment 3: The Influence of the Layer Size

Another signature characteristic of regularization is that the effectiveness of regularization increases

as capacity (e.g., the number of hidden units) increases, effectively trading off one constraint on the

model complexity for another. In this experiment we explore the relationship between the number of

units per layer and the effectiveness of unsupervised pre-training. The hypothesis that unsupervised

pre-training acts as a regularizer would suggest that we should see a trend of increasing effectiveness

of unsupervised pre-training as the number of units per layer are increased.

We trained models on MNIST with and without pre-training using increasing layer sizes: 25,

50, 100, 200, 400, 800 units per layer. Results are shown in Figure 9. Qualitatively similar results

were obtained on Shapeset. In the case of SDAE, we were expecting the denoising pre-training

procedure to help classification performance most for large layers; this is because the denoising

pre-training allows useful representations to be learned in the over-complete case, in which a layer

is larger than its input (Vincent et al., 2008). What we observe is a more systematic effect: while

unsupervised pre-training helps for larger layers and deeper networks, it also appears to hurt for too

small networks.

Figure 9 also shows that DBNs behave qualitatively like SDAEs, in the sense that unsupervised

pre-training architectures with smaller layers hurts performance. Experiments on InfiniteMNIST

reveal results that are qualitatively the same. Such an experiment seemingly points to a re-verification

of the regularization hypothesis. In this case, it would seem that unsupervised pre-training acts as an

additional regularizer for both DBN and SDAE models—on top of the regularization provided by

601

Why Does Unsupervised Pre-training
Help Deep Learning?

(Erhan, Bengio, Courville, Manzagol and Vincent, JMLR 2010)

Variation du nombre de neurones par couche

ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

Figure 9: Effect of layer size on the changes brought by unsupervised pre-training, for networks

with 1, 2 or 3 hidden layers. Experiments on MNIST. Error bars have a height of two

standard deviations (over initialization seed). Pre-training hurts for smaller layer sizes

and shallower networks, but it helps for all depths for larger networks.

the small size of the hidden layers. As the model size decreases from 800 hidden units, the general-

ization error increases, and it increases more with unsupervised pre-training presumably because of

the extra regularization effect: small networks have a limited capacity already so further restricting

it (or introducing an additional bias) can harm generalization. Such a result seems incompatible

with a pure optimization effect. We also obtain the result that DBNs and SDAEs seem to have

qualitatively similar effects as pre-training strategies.

The effect can be explained in terms of the role of unsupervised pre-training as promoting input

transformations (in the hidden layers) that are useful at capturing the main variations in the input

distribution P(X). It may be that only a small subset of these variations are relevant for predicting
the class label Y . When the hidden layers are small it is less likely that the transformations for

predicting Y are included in the lot learned by unsupervised pre-training.

7.4 Experiment 4: Challenging the Optimization Hypothesis

Experiments 1–3 results are consistent with the regularization hypothesis and Experiments 2–3

would appear to directly support the regularization hypothesis over the alternative—that unsuper-

vised pre-training aids in optimizing the deep model objective function.

In the literature there is some support for the optimization hypothesis. Bengio et al. (2007)

constrained the top layer of a deep network to have 20 units and measured the training error of

networks with and without pre-training. The idea was to prevent the networks from overfitting the

training error simply with the top hidden layer, thus to make it clearer whether some optimization

602

Why Does Unsupervised Pre-training
Help Deep Learning?

(Erhan, Bengio, Courville, Manzagol and Vincent, JMLR 2010)

Cas spécial: infinité d’exemples

WHY DOES UNSUPERVISED PRE-TRAINING HELP DEEP LEARNING?

Figure 11: Comparison between 1 and 3-layer networks trained on InfiniteMNIST. Online classi-

fication error, computed as an average over a block of last 100,000 errors.

We can draw several observations from these experiments. First, 3-layer networks without

pre-training are worse at generalization, compared to the 1-layer equivalent. This confirms the

hypothesis that even in an online setting, optimization of deep networks is harder than shallow

ones. Second, 3-layer SDAE models seem to generalize better than 3-layer DBNs. Finally and

most importantly, the pre-training advantage does not vanish as the number of training examples

increases, on the contrary.

Note that the number of hidden units of each model is a hyperparameter.14 So theoretical results

suggest that 1-layer networks without pre-training should in principle be able to represent the input

distribution as capacity and data grow. Instead, without pre-training, the networks are not able to

take advantage of the additional capacity, which again points towards the optimization explanation.

It is clear, however, that the starting point of the non-convex optimization matters, even for

networks that are seemingly “easier” to optimize (1-layer ones), which supports our hypothesis.

Another experiment that shows the effects of large-scale online stochastic non-convex optimiza-

tion is shown in Figure 12. In the setting of InfiniteMNIST, we compute the error on the training

set, in the same order that we presented the examples to the models. We observe several interesting

results: first, note that both models are better at classifying more recently seen examples. This is a

natural effect of stochastic gradient descent with a constant learning rate (which gives exponentially

more weight to recent examples). Note also that examples at the beginning of training are essen-

tially like test examples for both models, in terms of error. Finally, we observe that the pre-trained

14. This number was chosen individually for each model s.t. the error on the last 1 million examples is minimized. In

practice, this meant 2000 units for 1-layer networks and 1000 units/layer for 3-layer networks.

605

Why Does Unsupervised Pre-training
Help Deep Learning?

(Erhan, Bengio, Courville, Manzagol and Vincent, JMLR 2010)

Cas spécial: infinité d’exemples

ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

Figure 12: Error of 1-layer network with RBM pre-training and without, on the 10 million examples

used for training it. The errors are calculated in the same order (from left to right, above)

as the examples were presented during training. Each error bar corresponds to a block

of consecutive training examples.

model is better across the board on the training set. This fits well with the optimization hypothesis,

since it shows that unsupervised pre-training has an optimization effect.

What happens in this setting is that the training and generalization errors converge as the em-

pirical distribution (defined by the training set) converges to the true data distribution. These results

show that the effectiveness of unsupervised pre-training does not diminish with increasing data set

sizes. This would be unexpected from a superficial understanding of unsupervised pre-training as

a regularization method. However it is entirely consistent with our interpretation, stated in our

hypothesis, of the role of unsupervised pre-training in the online setting with stochastic gradient

descent training on a non-convex objective function.

8.2 Experiment 7: The Effect of Example Ordering

The hypothesized mechanism implies, due to the dynamics of learning—the increase in weight mag-

nitude and non-linearity as training proceeds, as well as the dependence of the basin of attraction on

early data—that, when training with stochastic gradient descent, we should see increased sensitivity

to early examples. In the case of InfiniteMNIST we operate in an online stochastic optimization

regime, where we try to find a local minimum of a highly non-convex objective function. It is then

interesting to study to what extent the outcome of this optimization is influenced by the examples

seen at different points during training, and whether the early examples have a stronger influence

(which would not be the case with a convex objective).

To quantify the variance of the outcome with respect to training samples at different points dur-

ing training, and to compare these variances for models with and without pre-training, we proceeded

with the following experiment. Given a data set with 10 million examples, we vary (by resampling)

606

Why Does Unsupervised Pre-training
Help Deep Learning?

(Erhan, Bengio, Courville, Manzagol and Vincent, JMLR 2010)

Cas spécial: infinité d’exemples

WHY DOES UNSUPERVISED PRE-TRAINING HELP DEEP LEARNING?

the first million examples (across 10 different random draws, sampling a different set of 1 million

examples each time) and keep the other ones fixed. After training the (10) models, we measure the

variance (across the 10 draws) of the output of the networks on a fixed test set (i.e., we measure the

variance in function space). We then vary the next million examples in the same fashion, and so on,

to see how much each of the ten parts of the training set influenced the final function.

Figure 13: Variance of the output of a trained network with 1 layer. The variance is computed as

a function of the point at which we vary the training samples. Note that the 0.25 mark
corresponds to the start of pre-training.

Figure 13 shows the outcome of such an analysis. The samples at the beginning15 do seem to

influence the output of the networks more than the ones at the end. However, this variance is lower

for the networks that have been pre-trained. In addition to that, one should note that the variance of

pre-trained network at 0.25 (i.e., the variance of the output as a function of the first samples used for
supervised training) is lower than the variance of the supervised network at 0.0. Such results imply
that unsupervised pre-training can be seen as a sort of variance reduction technique, consistent with

a regularization hypothesis. Finally, both networks are more influenced by the last examples used

for optimization, which is simply due to the fact that we use stochastic gradient with a constant

learning rate, where the most recent examples’ gradient has a greater influence.

These results are consistent with what our hypothesis predicts: both the fact that early examples

have greater influence (i.e., the variance is higher) and that pre-trained models seem to reduce this

variance are in agreement with what we would have expected.

15. Which are unsupervised examples, for the red curve, until the 0.25 mark in Figure 13.

607

Why Does Unsupervised Pre-training
Help Deep Learning?

(Erhan, Bengio, Courville, Manzagol and Vincent, JMLR 2010)

Pré-entraînement du différentes couches

ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

8.3 Experiment 8: Pre-training only k layers

From Figure 11 we can see that unsupervised pre-training makes quite a difference for 3 layers, on

InfiniteMNIST. In Figure 14 we explore the link between depth and unsupervised pre-training in

more detail. The setup is as follows: for both MNIST and InfiniteMNIST we pre-train only the

bottom k layers and randomly initialize the top n− k layers in the usual way. In this experiment,

n= 3 and we vary k from 0 (which corresponds to a network with no pre-training) to k = n (which

corresponds to the normal pre-trained case).

For MNIST, we plot the log(train NLL) vs. log(test NLL) trajectories, where each point corre-

sponds to a measurement after a certain number of epochs. The trajectories go roughly from the

right to left and from top to bottom, corresponding to the lowering of the training and test errors.

We can also see that models overfit from a certain point onwards.

Figure 14: On the left: for MNIST, a plot of the log(train NLL) vs. log(test NLL) at each epoch of

training. We pre-train the first layer, the first two layers and all three layers using RBMs

and randomly initialize the other layers; we also compare with the network whose layers

are all randomly initialized. On the right: InfiniteMNIST, the online classification

error. We pre-train the first layer, the first two layers or all three layers using denoising

auto-encoders and leave the rest of the network randomly initialized.

For InfiniteMNIST, we simply show the online error. The results are ambiguous w.r.t the

difficulty of optimizing the lower layers versus the higher ones. We would have expected that the

largest incremental benefit came from pre-training the first layer or first two layers. It is true for

the first two layers, but not the first. As we pre-train more layers, the models become better at

generalization. In the case of the finite MNIST, note how the final training error (after the same

number of epochs) becomes worse with pre-training of more layers. This clearly brings additional

support to the regularization explanation.

608

Reinforcement Learning with Factored
States and Actions

(Sallans and Hinton, JMLR 2004)

• Idée: utiliser la “free energy” comme
prédicteur des “Q values”

REINFORCEMENT LEARNING WITH FACTORED STATES AND ACTIONS

In the following section, the number of binary state variables will be denoted by N; the number

of binary action variables by M; and the number of hidden variables by K. We will represent a

discrete multinomial state or action variable of arity J by using a “one-of-J” set of binary variables

which are constrained so that exactly one of them is unity, and the rest are zero.

We will use Gibbs sampling to select actions. To take the multinomial restriction into account,

the sampling method must be modified. Specifically, instead of sampling each variable in sequence,

we will sample simultaneously over a group of J variables that represents a multinomial variable

of arity J. This is done by first computing the energy of each instantiation where one of the group

takes on a value of unity, and the others are zero. Let Fi be the free energy of the instantiation where

si = 1. This instantiation is selected as the new sample with probability e−Fi/[! j e
−Fj].

The restricted Boltzmann machine is shown in Figure 2(a). We use si to denote the ith state

variable and a j to denote the jth action variable. We will denote the binary hidden variables by hk.

Weights between hidden and state variables will be denoted wik, and weights between hidden and

action variables will be denoted u jk (Figure 2 (b)).

kh
b)a)

ik
jk

s ai j

w
u

state variables

hidden variables

action variables

Figure 2: a) The restricted Boltzmann machine. The estimated action-value of a setting of the state

and action variables is found by holding these variables fixed and computing the negative

free energy of the model. Actions are selected by holding the state variables fixed and

sampling from the action variables.

b) The state variables are denoted si, the actions a j and the hidden variables hk. A hidden-

state weight is denoted by wik and a hidden-action weight by u jk.

In the following, keep in mind that state variables are always held fixed, and the actions are

always sampled such that any one-of-J multinomial restrictions are respected. Given these restric-

tions, we can ignore the fact that the binary vector may represent the values of a set of multinomial

variables. The representation of the free energy is the same as in the binary case.2

For a state s = {si : i ∈ {1, ...,N}} and an action a = {a j : j ∈ {1, ...,M}}, the free energy is

given by Eq.(6), restated here in terms of state, action, and hidden variables:

F(s,a) = −
K

!
k=1

(
N

!
i=1

(wiksi 〈hk〉)+
M

!
j=1

(u jka j 〈hk〉)

)

+
K

!
k=1

〈hk〉 log〈hk〉+(1−〈hk〉) log(1−〈hk〉). (10)

2. This is equivalent to the Potts multinomial model formulation (Potts, 1952).

1073

REINFORCEMENT LEARNING WITH FACTORED STATES AND ACTIONS

In the following section, the number of binary state variables will be denoted by N; the number

of binary action variables by M; and the number of hidden variables by K. We will represent a

discrete multinomial state or action variable of arity J by using a “one-of-J” set of binary variables

which are constrained so that exactly one of them is unity, and the rest are zero.

We will use Gibbs sampling to select actions. To take the multinomial restriction into account,

the sampling method must be modified. Specifically, instead of sampling each variable in sequence,

we will sample simultaneously over a group of J variables that represents a multinomial variable

of arity J. This is done by first computing the energy of each instantiation where one of the group

takes on a value of unity, and the others are zero. Let Fi be the free energy of the instantiation where

si = 1. This instantiation is selected as the new sample with probability e−Fi/[! j e
−Fj].

The restricted Boltzmann machine is shown in Figure 2(a). We use si to denote the ith state

variable and a j to denote the jth action variable. We will denote the binary hidden variables by hk.

Weights between hidden and state variables will be denoted wik, and weights between hidden and

action variables will be denoted u jk (Figure 2 (b)).

kh
b)a)

ik
jk

s ai j

w
u

state variables

hidden variables

action variables

Figure 2: a) The restricted Boltzmann machine. The estimated action-value of a setting of the state

and action variables is found by holding these variables fixed and computing the negative

free energy of the model. Actions are selected by holding the state variables fixed and

sampling from the action variables.

b) The state variables are denoted si, the actions a j and the hidden variables hk. A hidden-

state weight is denoted by wik and a hidden-action weight by u jk.

In the following, keep in mind that state variables are always held fixed, and the actions are

always sampled such that any one-of-J multinomial restrictions are respected. Given these restric-

tions, we can ignore the fact that the binary vector may represent the values of a set of multinomial

variables. The representation of the free energy is the same as in the binary case.2

For a state s = {si : i ∈ {1, ...,N}} and an action a = {a j : j ∈ {1, ...,M}}, the free energy is

given by Eq.(6), restated here in terms of state, action, and hidden variables:

F(s,a) = −
K

!
k=1

(
N

!
i=1

(wiksi 〈hk〉)+
M

!
j=1

(u jka j 〈hk〉)

)

+
K

!
k=1

〈hk〉 log〈hk〉+(1−〈hk〉) log(1−〈hk〉). (10)

2. This is equivalent to the Potts multinomial model formulation (Potts, 1952).

1073

Q̂(s,a) = −F (s,a) =
K∑

k=1

log(1 + exp(W!
·ks + U!

·ka))

entraîné par SARSA

Reinforcement Learning with Factored
States and Actions

(Sallans and Hinton, JMLR 2004)

• Exploration/exploitation

• Suffit d’échantillonner de (Gibbs sampling)

• Si T grand, se rapproche de la maximisation

SALLANS AND HINTON

6. The Product of Experts as Function Approximator

Consider a product of experts model, where the visible variables are state and action variables. The

free energy allows a PoE to act as a function approximator, in the following sense. For any input

(instantiation of the visible variables), the output of the function approximator is taken to be the free

energy. With no hidden variables, the output is simply the energy. For a Boltzmann machine, this is

similar to a linear neural network with no hidden units. With hidden variables, the Boltzmann ma-

chine is similar to a neural network with hidden units. However, unlike traditional neural networks,

having probabilistic semantics attached to the model allows us to (at least approximately) sample

variables according to the Boltzmann distribution. This is ideal for value function approximation,

because we can sample actions according to a Boltzmann exploration policy, conditioned on set-

tings of the state variables, even in large action spaces for which actually computing the Boltzmann

distribution would be intractable. To do this, we have to create a correspondence between the value

of a state-action pair, and its negative free energy under the Boltzmann machine model.

We create this correspondence using the parameter update rule for reinforcement learning with

function approximation (Eq.5). The parameters of the PoE model are updated to try to reduce the

temporal-difference error (Eq.4). By reducing the temporal-difference error, we make the value

approximated by the product of experts closer to the correct value.

Once the negative free energy under the PoE model approximates the value, we use MCMC

sampling to select actions. After training, the probability of sampling an action from the product of

experts while holding the state fixed is given by the Boltzmann distribution:

P(a|s) =
e−F(s,a)/T

Z
≈
eQ(s,a)/T

Z
,

where Z is a normalizing constant, and T is the exploration temperature. Samples can be selected

at a particular exploration temperature by dividing the free energy by this temperature.

Intuitively, good actions will become more probable under the model, and bad actions will

become less probable under the model. Although finding optimal actions would still be difficult for

large problems, selecting an action with a probability that is approximately the probability under the

Boltzmann distribution can normally be done with a small number of iterations of MCMC sampling

(and could include simulated annealing). In principle, if we let the MCMC sampling converge to the

equilibrium distribution, we could draw unbiased samples from the Boltzmann exploration policy at

a given temperature. In particular we can select actions according to a Boltzmann exploration policy

that may be intractable to compute explicitly, because normalization would require summing over

an exponential number of actions. In practice, we only sample for a short period of time. It should

be noted that this “brief” sampling comes with no performance guarantees, and may be problematic

in large action spaces. However, we can easily incorporate improvements in sampling techniques to

improve performance in large discrete and real-valued action spaces.

6.1 Restricted Boltzmann Machines

Here we detail the approximation architecture for the specific example of a restricted Boltzmann

machine. We approximate the value function of an MDP with the negative free energy of the re-

stricted Boltzmann machine (Eq.6). The state and action variables will be assumed to be discrete,

and will be represented by the visible binary variables of the restricted Boltzmann machine.

1072

à T = 1, c’est une RBM!

SALLANS AND HINTON

6. The Product of Experts as Function Approximator

Consider a product of experts model, where the visible variables are state and action variables. The

free energy allows a PoE to act as a function approximator, in the following sense. For any input

(instantiation of the visible variables), the output of the function approximator is taken to be the free

energy. With no hidden variables, the output is simply the energy. For a Boltzmann machine, this is

similar to a linear neural network with no hidden units. With hidden variables, the Boltzmann ma-

chine is similar to a neural network with hidden units. However, unlike traditional neural networks,

having probabilistic semantics attached to the model allows us to (at least approximately) sample

variables according to the Boltzmann distribution. This is ideal for value function approximation,

because we can sample actions according to a Boltzmann exploration policy, conditioned on set-

tings of the state variables, even in large action spaces for which actually computing the Boltzmann

distribution would be intractable. To do this, we have to create a correspondence between the value

of a state-action pair, and its negative free energy under the Boltzmann machine model.

We create this correspondence using the parameter update rule for reinforcement learning with

function approximation (Eq.5). The parameters of the PoE model are updated to try to reduce the

temporal-difference error (Eq.4). By reducing the temporal-difference error, we make the value

approximated by the product of experts closer to the correct value.

Once the negative free energy under the PoE model approximates the value, we use MCMC

sampling to select actions. After training, the probability of sampling an action from the product of

experts while holding the state fixed is given by the Boltzmann distribution:

P(a|s) =
e−F(s,a)/T

Z
≈
eQ(s,a)/T

Z
,

where Z is a normalizing constant, and T is the exploration temperature. Samples can be selected

at a particular exploration temperature by dividing the free energy by this temperature.

Intuitively, good actions will become more probable under the model, and bad actions will

become less probable under the model. Although finding optimal actions would still be difficult for

large problems, selecting an action with a probability that is approximately the probability under the

Boltzmann distribution can normally be done with a small number of iterations of MCMC sampling

(and could include simulated annealing). In principle, if we let the MCMC sampling converge to the

equilibrium distribution, we could draw unbiased samples from the Boltzmann exploration policy at

a given temperature. In particular we can select actions according to a Boltzmann exploration policy

that may be intractable to compute explicitly, because normalization would require summing over

an exponential number of actions. In practice, we only sample for a short period of time. It should

be noted that this “brief” sampling comes with no performance guarantees, and may be problematic

in large action spaces. However, we can easily incorporate improvements in sampling techniques to

improve performance in large discrete and real-valued action spaces.

6.1 Restricted Boltzmann Machines

Here we detail the approximation architecture for the specific example of a restricted Boltzmann

machine. We approximate the value function of an MDP with the negative free energy of the re-

stricted Boltzmann machine (Eq.6). The state and action variables will be assumed to be discrete,

and will be represented by the visible binary variables of the restricted Boltzmann machine.

1072

Reinforcement Learning with Factored
States and Actions

(Sallans and Hinton, JMLR 2004)

• Tâche: grand espace d’action

• État = 12 bits, action = 40 bits

• Transition d’état uniforme, renforcement immédiat

SALLANS AND HINTON

Key state

Current
state

Current action: 10010
Key action: 11011

Reward: 3

Figure 3: The large action task. The space of state bit vectors is divided into clusters of those which

are nearest to each “key” state. Each key state is associated with a key action. The reward

received by the learner is the number of bits shared by the selected action and the key

action for the current state.

randomly selected. The network was run for 12 000 actions with a learning rate going from 0.1
to 0.01 and temperature going from 1.0 to 0.1 exponentially over the course of training. Each

iteration was initialized with a random state. Each action selection consisted of 100 iterations of

Gibbs sampling. The task was repeated 10 times for each method. The competing methods also

had learning rates and (in the case of the backprop network) exploration schedules. The backprop

network used a learning rate going from 0.005 to 0.004, and an !-greedy exploration strategy going

from 1 to 0 linearly over the course of the task. The direct policy method used a learning rate going

from 0.1 to 0.01 over the course of the task. All learning parameters were selected by trial and error

during preliminary experiments, with the best-performing parameters reported here.

Because the optimal action is known for each state we can compare the results to the optimal

policy. We also compare to the two competing methods: the direct-policy method of Peshkin et al.

(2000), and the feedforward neural network. The results are shown in Figure 4.

The learner must overcome two difficulties. First, it must find actions that receive rewards for

a given state. Then, it must cluster the states which share commonly rewarded actions to infer

the underlying key states. As the state space contains 212 entries and the action space contains

240 entries, this is not a trivial task. Yet the PoE achieves almost perfect performance after 12 000

actions. In comparison, the two other algorithms achieve suboptimal performance. The direct policy

method seems to be particularly susceptible to local optima, yielding a large variance in solution

quality. The backpropagation network may have continued to improve, given more training time.

7.2 The Blockers Task

The blockers task is a co-operative multi-agent task in which there are offensive players trying to

reach an end zone, and defensive players trying to block them (see Figure 5).

The task is co-operative: As long as one agent reaches the end-zone, the “team” is rewarded. The

team receives a reward of +1 when an agent reaches the end-zone, and a reward of −1 otherwise.

The blockers are pre-programmed with a fixed blocking strategy. Each agent occupies one square

on the grid, and each blocker occupies three horizontally adjacent squares. An agent cannot move

into a square occupied by a blocker or another agent. The task has non-wrap-around edge conditions

on the bottom, left and right sides of the field, and the blockers and agents can move up, down, left

or right. Agents are ordered. If two agents want to move in to the same square, the first agent in

1076

Reinforcement Learning with Factored
States and Actions

(Sallans and Hinton, JMLR 2004)

REINFORCEMENT LEARNING WITH FACTORED STATES AND ACTIONS

0 2 4 6 8 10 12
15

20

25

30

35

40

45

1000s Iterations

A
v
e
ra

g
e
 R

e
w

a
rd

Figure 4: Results for the large action task. The graphs shows average reward versus iteration of

training for three algorithms. The optimal policy gives an average reward of 40 (upper

line). A random policy gives gives an average return of 20 (lower line). The solid line

shows the PoE network, the dashed line shows the backprop network performance, and

the dash-dotted line shows the direct policy method. Errorbars indicate 95% confidence

intervals, computed across 10 repetitions of the task.

end-zone

blockers

agents

Figure 5: An example of the “blocker” task. Agents must get past the blockers to the end-zone. The

blockers are pre-programmed with a strategy to stop them, but if the agents co-operate

the blockers cannot stop them all simultaneously.

the ordering will succeed, and any others trying to move into that square will be unsuccessful. Note

that later agents can not see the moves of earlier agents when making decisions. The ordering is just

used to resolve collisions. If a move is unsuccessful, then the agent remains in its current square.

The blockers’ moves are also ordered, but subsequent blockers do make decisions based on

the moves of earlier blockers. The blockers operate a zone-based defense. Each blocker takes

responsibility for a group of four columns. For example, blocker 1 is responsible for columns 1

1077

RBM

direct policy
(Peshkin et al.)

NNet + sim. anneal.

Reinforcement Learning with Factored
States and Actions

(Sallans and Hinton, JMLR 2004)

• Tâche: “blocker”

• Tâche collaborative: +1 si l’équipe gagne, -1 sinon

• Une partie dure 20/40 actions pour 1/2 “blockers”

REINFORCEMENT LEARNING WITH FACTORED STATES AND ACTIONS

0 2 4 6 8 10 12
15

20

25

30

35

40

45

1000s Iterations

A
v
e
ra

g
e
 R

e
w

a
rd

Figure 4: Results for the large action task. The graphs shows average reward versus iteration of

training for three algorithms. The optimal policy gives an average reward of 40 (upper

line). A random policy gives gives an average return of 20 (lower line). The solid line

shows the PoE network, the dashed line shows the backprop network performance, and

the dash-dotted line shows the direct policy method. Errorbars indicate 95% confidence

intervals, computed across 10 repetitions of the task.

end-zone

blockers

agents

Figure 5: An example of the “blocker” task. Agents must get past the blockers to the end-zone. The

blockers are pre-programmed with a strategy to stop them, but if the agents co-operate

the blockers cannot stop them all simultaneously.

the ordering will succeed, and any others trying to move into that square will be unsuccessful. Note

that later agents can not see the moves of earlier agents when making decisions. The ordering is just

used to resolve collisions. If a move is unsuccessful, then the agent remains in its current square.

The blockers’ moves are also ordered, but subsequent blockers do make decisions based on

the moves of earlier blockers. The blockers operate a zone-based defense. Each blocker takes

responsibility for a group of four columns. For example, blocker 1 is responsible for columns 1

1077

SALLANS AND HINTON

through 4, blocker 2 is responsible for columns 4 through 7, and so on. If an agent moves into

one of its columns and is in front of the end-zone, a blocker will move to block it. Because of the

ordering, blockers will not move to stop agents that have already been stopped by other blockers.

A restricted Boltzmann machine with 4 hidden variables was trained using the SARSA learning

rule on a 5×4 blocker task with two agents and one blocker. The collective state consisted of three
position variables (two agents and one blocker) which could take on integer values {1, ...,20}. The
collective action consisted of two action variables taking on values from {1, ...,4}. The PoE was
compared to the backpropagation network and the direct policy method.

Each test was replicated 10 times. Each test run lasted for 300 000 collective actions, with a

learning rate going from 0.1 to 0.01 linearly and temperature going from 1.0 to 0.01 exponentially
over the course of training. Gibbs sampling and simulated annealing lasted for 10 iterations. The

learning rates of the competing methods were the same as for the PoE network. The backpropaga-

tion network used an !-greedy policy going linearly from 1 to 0 over the course of the task. The

parameters for all of the methods were selected by trial and error using initial experiments, and the

best performing values are reported here.

Each trial was terminated after either the end-zone was reached, or 20 collective actions were

taken, whichever occurred first. Each trial was initialized with the blocker placed randomly in the

top row and the agents placed randomly in the bottom row. The results are shown in Figure 6.

0 60 120 180 240 300
!1

!0.95

!0.9

!0.85

!0.8

!0.75

!0.7

!0.65

!0.6

!0.55

1000s Iterations

A
v
e

ra
g

e
 R

e
w

a
rd

Figure 6: Results for the 2-agent blocker task. The graph shows average reward versus iteration

of training for three algorithms. The solid line shows the PoE approximation; the dot-

dashed line shows the direct policy method; and the dashed line shows the backprop

network. The error bars show 95% confidence intervals.

Overall, the PoE network performs better than the two other algorithms. All three algorithms

have the potential to find suboptimal local optima. Again, the direct policy algorithm seems to be

particularly susceptible to this. The backprop network might have done better if it was allowed to

continue training. The direct policy method finds a solution noticeably faster than the other two

algorithms.

A restricted Boltzmann machine with 16 hidden variables was trained on a 4× 7 blockers task
with three agents and two blockers. Again, the input consisted of position variables for each blocker

1078

Reinforcement Learning with Factored
States and Actions

(Sallans and Hinton, JMLR 2004)

RBM

direct policy
(Peshkin et al.)

NNet + sim. anneal.

1 “blocker”

REINFORCEMENT LEARNING WITH FACTORED STATES AND ACTIONS

and agent, and action variables for each agent. The network was trained for 300 000 collective

actions, with a learning rate going from 0.1 to 0.05 linearly and temperature from 1 to 0.06 expo-
nentially over the course of the task. Each trial was terminated after either the end-zone was reached,

or 40 steps were taken, whichever occurred first. Again, the two competitor algorithms were also

used. Each competitor had 16 hidden units, and simulated annealing and Gibbs sampling lasted for

10 iterations. The competing methods used the same learning rates and exploration strategy as in

the previous experiment. Again, the task was replicated 10 times for each algorithm. The results

are shown in Figure 7.

0 60 120 180 240 300
!1

!0.98

!0.96

!0.94

!0.92

!0.9

!0.88

!0.86

!0.84

!0.82

1000s Iterations

A
v
e

ra
g

e
 R

e
w

a
rd

Figure 7: Results for the 3-agent blocker task. The graph shows average reward versus iteration

of training for three algorithms. The solid line shows the PoE approximation; the dot-

dashed line shows the direct policy method; and the dashed line shows the backprop

network. The error bars show 95% confidence intervals.

In this larger version of the task, the backprop network does extremely poorly. The direct policy

method does significantly worse than the PoE method. Of the three methods, the PoE method was

able to find the best solution, although a suboptimal one. An example of a typical run for the 4×7
task is shown in Figure 8. The strategy discovered by the learner is to force the blockers apart with

two agents, and move up the middle with the third. In the example, notice that Agent 1 seems to

distract the “wrong” blocker given its earlier position. The agents in this example have learned a

sub-optimal policy, where Agent 1 moves up as far as possible, and then left as far as possible,

irrespective of its initial position.

Examples of features learned by the experts are shown in Figure 9. The hidden variables be-

come active for a specific configuration in state space, and recommend a specific set of actions.

Histograms below each feature indicate when that feature tends to be active during a trial. The his-

tograms show that feature activity is localized in time. Features can be thought of as macro-actions

or short-term policy segments. Each hidden variable becomes active during a particular “phase” of

a trial, recommends the actions appropriate to that phase, and then ceases to be active.

1079

Reinforcement Learning with Factored
States and Actions

(Sallans and Hinton, JMLR 2004)

RBM

direct policy
(Peshkin et al.)

NNet + sim. anneal.

2 “blocker”

Reinforcement Learning with Factored
States and Actions

(Sallans and Hinton, JMLR 2004)SALLANS AND HINTON

a)

123

b)

1

2

3

c)

1

2

3

d)

1 2

3

Figure 8: Example agent strategy after learning the 4× 7 blocker task. a) The three agents are
initialized to random locations along the bottom of the field. b) Two of the agents run to

the top of the playing field. c) These two agents split and run to the sides. d) The third

agent moves up the middle to the end-zone.

8. Discussion

The action sampling method is closely related to actor-critic methods (Sutton, 1984; Barto et al.,

1983). An actor-critic method can be viewed as a biased scheme for selecting actions according

to the value assigned to them by the critic. The selection is biased by the choice of actor param-

eterization. The sampling method of action selection is unbiased if the Markov chain is allowed

to converge, but requires more computation. This is exactly the trade-off explored in the graphical

models literature between the use of Monte Carlo inference (Neal, 1992) and variational approxi-

mations (Neal and Hinton, 1998; Jaakkola, 1997). Further, the resultant policy can potentially be

more complicated than a typical parameterized actor would allow. This is because a parameterized

distribution over actions has to be explicitly normalized. For example, an actor network might pa-

rameterize all policies in which the probability over each action variable is independent. This is the

restriction implemented by Peshkin et al. (2000), and is also used for the direct policy method in

our experimental section.

The sampling algorithm is also related to probability matching (Sabes and Jordan, 1996), in

which good actions are made more probable under a model, and the temperature at which the prob-

1080

Reinforcement Learning with Factored
States and Actions

(Sallans and Hinton, JMLR 2004)

REINFORCEMENT LEARNING WITH FACTORED STATES AND ACTIONS

a)

D D

U U

R RL

Agent 1 Agent 2 Agent 3

U

L R

D

L

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

b)

U

D

L R

D D

U U

R RLL

Agent 1 Agent 2 Agent 3

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

c) Agent 1

D

Agent 2 Agent 3

DD

U UU

L LLR R R

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

d)

D D

U U

R RL

Agent 1 Agent 2 Agent 3

U

L R

D

L

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

Figure 9: Features of the learned value function approximator for the 3-agent blocker task. The

four features (a,b,c and d) correspond to the four stages shown in Figure 8. Each feature

corresponds to a hidden variable in the RBM. The Hinton diagram shows where each

of the three agents must be in order to “activate” the hidden variable (cause it to have

a value of unity with high probability). The vector diagram indicates what actions are

recommended by the hidden variable. The histogram is a plot of frequency of activation

of the hidden variable versus time in a trial. It shows when during a run this feature tends

to be active. The learned features are localized in state space and action space. Feature

activity is localized in time.

ability is computed is slowly reduced over time in order to move from exploration to exploitation

and avoid local minima. Unlike the sampling algorithm, the probability matching algorithm used

a parameterized distribution which was maximized using gradient descent, and it did not address

temporal credit assignment.

1081

Reinforcement Learning with Factored
States and Actions

(Sallans and Hinton, JMLR 2004)

• Serait-il possible d’étendre cette approche

à des réseaux profonds?

• La deuxième couche pourrait modéliser
des “macro” actions

• Comment combiner avec l’apprentissage
non-supervisé?

! Piste de recherche !

Factored Conditional Restricted Boltzmann
Machines for Modeling Motion Style

(Taylor and Hinton, ICML 2009)

• Modélisation de séquences

Factored Conditional Restricted Boltzmann Machines

In this paper, we explore the idea of multiplicative inter-
actions in a different type of CRBM (Taylor et al., 2007).
Instead of gating lateral interactions with hidden units, we
allow a set of context variables to gate the three types of
connections (“sub-models”) in the CRBM shown in Fig.
1. Our modification of the CRBM architecture does not
change the desirable properties related to inference and
learning but makes the model context-sensitive.

While our model is applicable to general time series where
conditional data is available (e.g. seasonal variables for
modeling rainfall occurrences, economic indicators for
modeling financial instruments) we apply our work to cap-
turing aspects of style in data captured from human mo-
tion (mocap). Taylor et al. (2007) showed that a CRBM
could capture many different styles with a single set of pa-
rameters. Generation of different styles was purely based
on initialization, and the model architecture did not allow
control of transitions among styles nor did it permit style
blending. By using style variables to gate the connections
of a CRBM, we obtain a much more powerful generative
model that permits controlled transitioning and blending.
We demonstrate that in a conditional model, gating is supe-
rior to simply using labels to bias the hidden units, which
is the technique most commonly applied to static models.

This paper is also part of a large body of work related to
the separation of style and content in motion. The ability to
separately specify the style (e.g. sad) and the content (e.g.
walk to location A) is highly desirable for animators. Pre-
vious work has looked at applying user-specified style to an
existing motion sequence (Hsu et al., 2005; Torresani et al.,
2007). The drawback to these approaches is that the user
must provide the content. We propose a generative model
for content that adapts to stylistic controls. Recently, mod-
els based on the Gaussian Process Latent Variable Model
(Lawrence, 2004) have been successfully applied to sepa-
rate content and style in human motion (Wang et al., 2007).
The advantage of our approach over such methods is that
our model does not need to retain the training dataset (just
a few frames for initialization) and is thus suitable for low-
memory devices. Furthermore, training is linear in the
number of frames, and so our model can scale up to mas-
sive datasets, unlike the kernel-based methods which are
cubic in the number of frames. The rich, distributed hid-
den state of our model means that it does not suffer from
the limited representational power of HMM-based methods
(e.g. Brand & Hertzmann, 2000).

2. Background
2.1. Conditional RBMs

The CRBM (Fig. 1) is a non-linear generative model for
time series data that uses an undirected model with binary

!!"#$!!!!!!!"#%!!!!!!!!"

!

!

&'(()*!+,-).

/'0'1+)!+,-).

Figure 1. Architecture of the CRBM

latent variables, h, connected to a collection of visible vari-
ables, v. The visible variables can use any distribution in
the exponential family (Welling et al., 2005), but for mocap
data, we use real-valued Gaussian units (Freund & Haus-
sler, 1992). At each time step t, v and h receive directed
connections from the visible variables at the last N time-
steps. To simplify the presentation, we will assume the data
at t − 1, . . . , t −N is concatenated into a “history” vector
which we call v<t. We will use k to index the elements of
v<t. The model defines a joint probability distribution over
vt and ht, conditional on v<t and model parameters, θ:

p(vt,ht|v<t, θ) = exp (−E (vt,ht|v<t, θ)) /Z

E =
∑

i

(âi,t − vi,t)2

2σ2
i

−
∑

j

b̂j,thj,t−
∑

ij

Wij
vi,t

σi
hj,t (1)

where Z is a constant called the partition function
which is exponentially expensive to compute exactly.
The dynamic biases, âi,t = ai +

∑
k Akivk,<t and

b̂j,t = bj +
∑

k Bkjvk,<t, express the net input from the
past to the visible and hidden units, respectively. As is
commonly done, we set σi = 1.

Such an architecture makes on-line inference efficient and
allows us to train by minimizing contrastive divergence (for
details, see Hinton, 2002). Taylor et al. (2007) applied
the CRBM to synthesize novel motion and perform on-line
filling in of data lost during motion capture.

An important feature of the CRBM is that once it is trained,
we can add layers like in a Deep Belief Network (Hinton
et al., 2006). The previous layer CRBM is kept, and the
sequence of hidden state vectors, while driven by the data,
is treated as a new kind of “fully observed” data. The next

Factored Conditional Restricted Boltzmann Machines

In this paper, we explore the idea of multiplicative inter-
actions in a different type of CRBM (Taylor et al., 2007).
Instead of gating lateral interactions with hidden units, we
allow a set of context variables to gate the three types of
connections (“sub-models”) in the CRBM shown in Fig.
1. Our modification of the CRBM architecture does not
change the desirable properties related to inference and
learning but makes the model context-sensitive.

While our model is applicable to general time series where
conditional data is available (e.g. seasonal variables for
modeling rainfall occurrences, economic indicators for
modeling financial instruments) we apply our work to cap-
turing aspects of style in data captured from human mo-
tion (mocap). Taylor et al. (2007) showed that a CRBM
could capture many different styles with a single set of pa-
rameters. Generation of different styles was purely based
on initialization, and the model architecture did not allow
control of transitions among styles nor did it permit style
blending. By using style variables to gate the connections
of a CRBM, we obtain a much more powerful generative
model that permits controlled transitioning and blending.
We demonstrate that in a conditional model, gating is supe-
rior to simply using labels to bias the hidden units, which
is the technique most commonly applied to static models.

This paper is also part of a large body of work related to
the separation of style and content in motion. The ability to
separately specify the style (e.g. sad) and the content (e.g.
walk to location A) is highly desirable for animators. Pre-
vious work has looked at applying user-specified style to an
existing motion sequence (Hsu et al., 2005; Torresani et al.,
2007). The drawback to these approaches is that the user
must provide the content. We propose a generative model
for content that adapts to stylistic controls. Recently, mod-
els based on the Gaussian Process Latent Variable Model
(Lawrence, 2004) have been successfully applied to sepa-
rate content and style in human motion (Wang et al., 2007).
The advantage of our approach over such methods is that
our model does not need to retain the training dataset (just
a few frames for initialization) and is thus suitable for low-
memory devices. Furthermore, training is linear in the
number of frames, and so our model can scale up to mas-
sive datasets, unlike the kernel-based methods which are
cubic in the number of frames. The rich, distributed hid-
den state of our model means that it does not suffer from
the limited representational power of HMM-based methods
(e.g. Brand & Hertzmann, 2000).

2. Background
2.1. Conditional RBMs

The CRBM (Fig. 1) is a non-linear generative model for
time series data that uses an undirected model with binary

!!"#$!!!!!!!"#%!!!!!!!!"

!

!

&'(()*!+,-).

/'0'1+)!+,-).

Figure 1. Architecture of the CRBM

latent variables, h, connected to a collection of visible vari-
ables, v. The visible variables can use any distribution in
the exponential family (Welling et al., 2005), but for mocap
data, we use real-valued Gaussian units (Freund & Haus-
sler, 1992). At each time step t, v and h receive directed
connections from the visible variables at the last N time-
steps. To simplify the presentation, we will assume the data
at t − 1, . . . , t −N is concatenated into a “history” vector
which we call v<t. We will use k to index the elements of
v<t. The model defines a joint probability distribution over
vt and ht, conditional on v<t and model parameters, θ:

p(vt,ht|v<t, θ) = exp (−E (vt,ht|v<t, θ)) /Z

E =
∑

i

(âi,t − vi,t)2

2σ2
i

−
∑

j

b̂j,thj,t−
∑

ij

Wij
vi,t

σi
hj,t (1)

where Z is a constant called the partition function
which is exponentially expensive to compute exactly.
The dynamic biases, âi,t = ai +

∑
k Akivk,<t and

b̂j,t = bj +
∑

k Bkjvk,<t, express the net input from the
past to the visible and hidden units, respectively. As is
commonly done, we set σi = 1.

Such an architecture makes on-line inference efficient and
allows us to train by minimizing contrastive divergence (for
details, see Hinton, 2002). Taylor et al. (2007) applied
the CRBM to synthesize novel motion and perform on-line
filling in of data lost during motion capture.

An important feature of the CRBM is that once it is trained,
we can add layers like in a Deep Belief Network (Hinton
et al., 2006). The previous layer CRBM is kept, and the
sequence of hidden state vectors, while driven by the data,
is treated as a new kind of “fully observed” data. The next

Factored Conditional Restricted Boltzmann Machines

In this paper, we explore the idea of multiplicative inter-
actions in a different type of CRBM (Taylor et al., 2007).
Instead of gating lateral interactions with hidden units, we
allow a set of context variables to gate the three types of
connections (“sub-models”) in the CRBM shown in Fig.
1. Our modification of the CRBM architecture does not
change the desirable properties related to inference and
learning but makes the model context-sensitive.

While our model is applicable to general time series where
conditional data is available (e.g. seasonal variables for
modeling rainfall occurrences, economic indicators for
modeling financial instruments) we apply our work to cap-
turing aspects of style in data captured from human mo-
tion (mocap). Taylor et al. (2007) showed that a CRBM
could capture many different styles with a single set of pa-
rameters. Generation of different styles was purely based
on initialization, and the model architecture did not allow
control of transitions among styles nor did it permit style
blending. By using style variables to gate the connections
of a CRBM, we obtain a much more powerful generative
model that permits controlled transitioning and blending.
We demonstrate that in a conditional model, gating is supe-
rior to simply using labels to bias the hidden units, which
is the technique most commonly applied to static models.

This paper is also part of a large body of work related to
the separation of style and content in motion. The ability to
separately specify the style (e.g. sad) and the content (e.g.
walk to location A) is highly desirable for animators. Pre-
vious work has looked at applying user-specified style to an
existing motion sequence (Hsu et al., 2005; Torresani et al.,
2007). The drawback to these approaches is that the user
must provide the content. We propose a generative model
for content that adapts to stylistic controls. Recently, mod-
els based on the Gaussian Process Latent Variable Model
(Lawrence, 2004) have been successfully applied to sepa-
rate content and style in human motion (Wang et al., 2007).
The advantage of our approach over such methods is that
our model does not need to retain the training dataset (just
a few frames for initialization) and is thus suitable for low-
memory devices. Furthermore, training is linear in the
number of frames, and so our model can scale up to mas-
sive datasets, unlike the kernel-based methods which are
cubic in the number of frames. The rich, distributed hid-
den state of our model means that it does not suffer from
the limited representational power of HMM-based methods
(e.g. Brand & Hertzmann, 2000).

2. Background
2.1. Conditional RBMs

The CRBM (Fig. 1) is a non-linear generative model for
time series data that uses an undirected model with binary

!!"#$!!!!!!!"#%!!!!!!!!"

!

!

&'(()*!+,-).

/'0'1+)!+,-).

Figure 1. Architecture of the CRBM

latent variables, h, connected to a collection of visible vari-
ables, v. The visible variables can use any distribution in
the exponential family (Welling et al., 2005), but for mocap
data, we use real-valued Gaussian units (Freund & Haus-
sler, 1992). At each time step t, v and h receive directed
connections from the visible variables at the last N time-
steps. To simplify the presentation, we will assume the data
at t − 1, . . . , t −N is concatenated into a “history” vector
which we call v<t. We will use k to index the elements of
v<t. The model defines a joint probability distribution over
vt and ht, conditional on v<t and model parameters, θ:

p(vt,ht|v<t, θ) = exp (−E (vt,ht|v<t, θ)) /Z

E =
∑

i

(âi,t − vi,t)2

2σ2
i

−
∑

j

b̂j,thj,t−
∑

ij

Wij
vi,t

σi
hj,t (1)

where Z is a constant called the partition function
which is exponentially expensive to compute exactly.
The dynamic biases, âi,t = ai +

∑
k Akivk,<t and

b̂j,t = bj +
∑

k Bkjvk,<t, express the net input from the
past to the visible and hidden units, respectively. As is
commonly done, we set σi = 1.

Such an architecture makes on-line inference efficient and
allows us to train by minimizing contrastive divergence (for
details, see Hinton, 2002). Taylor et al. (2007) applied
the CRBM to synthesize novel motion and perform on-line
filling in of data lost during motion capture.

An important feature of the CRBM is that once it is trained,
we can add layers like in a Deep Belief Network (Hinton
et al., 2006). The previous layer CRBM is kept, and the
sequence of hidden state vectors, while driven by the data,
is treated as a new kind of “fully observed” data. The next

Factored Conditional Restricted Boltzmann Machines

In this paper, we explore the idea of multiplicative inter-
actions in a different type of CRBM (Taylor et al., 2007).
Instead of gating lateral interactions with hidden units, we
allow a set of context variables to gate the three types of
connections (“sub-models”) in the CRBM shown in Fig.
1. Our modification of the CRBM architecture does not
change the desirable properties related to inference and
learning but makes the model context-sensitive.

While our model is applicable to general time series where
conditional data is available (e.g. seasonal variables for
modeling rainfall occurrences, economic indicators for
modeling financial instruments) we apply our work to cap-
turing aspects of style in data captured from human mo-
tion (mocap). Taylor et al. (2007) showed that a CRBM
could capture many different styles with a single set of pa-
rameters. Generation of different styles was purely based
on initialization, and the model architecture did not allow
control of transitions among styles nor did it permit style
blending. By using style variables to gate the connections
of a CRBM, we obtain a much more powerful generative
model that permits controlled transitioning and blending.
We demonstrate that in a conditional model, gating is supe-
rior to simply using labels to bias the hidden units, which
is the technique most commonly applied to static models.

This paper is also part of a large body of work related to
the separation of style and content in motion. The ability to
separately specify the style (e.g. sad) and the content (e.g.
walk to location A) is highly desirable for animators. Pre-
vious work has looked at applying user-specified style to an
existing motion sequence (Hsu et al., 2005; Torresani et al.,
2007). The drawback to these approaches is that the user
must provide the content. We propose a generative model
for content that adapts to stylistic controls. Recently, mod-
els based on the Gaussian Process Latent Variable Model
(Lawrence, 2004) have been successfully applied to sepa-
rate content and style in human motion (Wang et al., 2007).
The advantage of our approach over such methods is that
our model does not need to retain the training dataset (just
a few frames for initialization) and is thus suitable for low-
memory devices. Furthermore, training is linear in the
number of frames, and so our model can scale up to mas-
sive datasets, unlike the kernel-based methods which are
cubic in the number of frames. The rich, distributed hid-
den state of our model means that it does not suffer from
the limited representational power of HMM-based methods
(e.g. Brand & Hertzmann, 2000).

2. Background
2.1. Conditional RBMs

The CRBM (Fig. 1) is a non-linear generative model for
time series data that uses an undirected model with binary

!!"#$!!!!!!!"#%!!!!!!!!"

!

!

&'(()*!+,-).

/'0'1+)!+,-).

Figure 1. Architecture of the CRBM

latent variables, h, connected to a collection of visible vari-
ables, v. The visible variables can use any distribution in
the exponential family (Welling et al., 2005), but for mocap
data, we use real-valued Gaussian units (Freund & Haus-
sler, 1992). At each time step t, v and h receive directed
connections from the visible variables at the last N time-
steps. To simplify the presentation, we will assume the data
at t − 1, . . . , t −N is concatenated into a “history” vector
which we call v<t. We will use k to index the elements of
v<t. The model defines a joint probability distribution over
vt and ht, conditional on v<t and model parameters, θ:

p(vt,ht|v<t, θ) = exp (−E (vt,ht|v<t, θ)) /Z

E =
∑

i

(âi,t − vi,t)2

2σ2
i

−
∑

j

b̂j,thj,t−
∑

ij

Wij
vi,t

σi
hj,t (1)

where Z is a constant called the partition function
which is exponentially expensive to compute exactly.
The dynamic biases, âi,t = ai +

∑
k Akivk,<t and

b̂j,t = bj +
∑

k Bkjvk,<t, express the net input from the
past to the visible and hidden units, respectively. As is
commonly done, we set σi = 1.

Such an architecture makes on-line inference efficient and
allows us to train by minimizing contrastive divergence (for
details, see Hinton, 2002). Taylor et al. (2007) applied
the CRBM to synthesize novel motion and perform on-line
filling in of data lost during motion capture.

An important feature of the CRBM is that once it is trained,
we can add layers like in a Deep Belief Network (Hinton
et al., 2006). The previous layer CRBM is kept, and the
sequence of hidden state vectors, while driven by the data,
is treated as a new kind of “fully observed” data. The next

Factored Conditional Restricted Boltzmann Machines

In this paper, we explore the idea of multiplicative inter-
actions in a different type of CRBM (Taylor et al., 2007).
Instead of gating lateral interactions with hidden units, we
allow a set of context variables to gate the three types of
connections (“sub-models”) in the CRBM shown in Fig.
1. Our modification of the CRBM architecture does not
change the desirable properties related to inference and
learning but makes the model context-sensitive.

While our model is applicable to general time series where
conditional data is available (e.g. seasonal variables for
modeling rainfall occurrences, economic indicators for
modeling financial instruments) we apply our work to cap-
turing aspects of style in data captured from human mo-
tion (mocap). Taylor et al. (2007) showed that a CRBM
could capture many different styles with a single set of pa-
rameters. Generation of different styles was purely based
on initialization, and the model architecture did not allow
control of transitions among styles nor did it permit style
blending. By using style variables to gate the connections
of a CRBM, we obtain a much more powerful generative
model that permits controlled transitioning and blending.
We demonstrate that in a conditional model, gating is supe-
rior to simply using labels to bias the hidden units, which
is the technique most commonly applied to static models.

This paper is also part of a large body of work related to
the separation of style and content in motion. The ability to
separately specify the style (e.g. sad) and the content (e.g.
walk to location A) is highly desirable for animators. Pre-
vious work has looked at applying user-specified style to an
existing motion sequence (Hsu et al., 2005; Torresani et al.,
2007). The drawback to these approaches is that the user
must provide the content. We propose a generative model
for content that adapts to stylistic controls. Recently, mod-
els based on the Gaussian Process Latent Variable Model
(Lawrence, 2004) have been successfully applied to sepa-
rate content and style in human motion (Wang et al., 2007).
The advantage of our approach over such methods is that
our model does not need to retain the training dataset (just
a few frames for initialization) and is thus suitable for low-
memory devices. Furthermore, training is linear in the
number of frames, and so our model can scale up to mas-
sive datasets, unlike the kernel-based methods which are
cubic in the number of frames. The rich, distributed hid-
den state of our model means that it does not suffer from
the limited representational power of HMM-based methods
(e.g. Brand & Hertzmann, 2000).

2. Background
2.1. Conditional RBMs

The CRBM (Fig. 1) is a non-linear generative model for
time series data that uses an undirected model with binary

!!"#$!!!!!!!"#%!!!!!!!!"

!

!

&'(()*!+,-).

/'0'1+)!+,-).

Figure 1. Architecture of the CRBM

latent variables, h, connected to a collection of visible vari-
ables, v. The visible variables can use any distribution in
the exponential family (Welling et al., 2005), but for mocap
data, we use real-valued Gaussian units (Freund & Haus-
sler, 1992). At each time step t, v and h receive directed
connections from the visible variables at the last N time-
steps. To simplify the presentation, we will assume the data
at t − 1, . . . , t −N is concatenated into a “history” vector
which we call v<t. We will use k to index the elements of
v<t. The model defines a joint probability distribution over
vt and ht, conditional on v<t and model parameters, θ:

p(vt,ht|v<t, θ) = exp (−E (vt,ht|v<t, θ)) /Z

E =
∑

i

(âi,t − vi,t)2

2σ2
i

−
∑

j

b̂j,thj,t−
∑

ij

Wij
vi,t

σi
hj,t (1)

where Z is a constant called the partition function
which is exponentially expensive to compute exactly.
The dynamic biases, âi,t = ai +

∑
k Akivk,<t and

b̂j,t = bj +
∑

k Bkjvk,<t, express the net input from the
past to the visible and hidden units, respectively. As is
commonly done, we set σi = 1.

Such an architecture makes on-line inference efficient and
allows us to train by minimizing contrastive divergence (for
details, see Hinton, 2002). Taylor et al. (2007) applied
the CRBM to synthesize novel motion and perform on-line
filling in of data lost during motion capture.

An important feature of the CRBM is that once it is trained,
we can add layers like in a Deep Belief Network (Hinton
et al., 2006). The previous layer CRBM is kept, and the
sequence of hidden state vectors, while driven by the data,
is treated as a new kind of “fully observed” data. The next

Factored Conditional Restricted Boltzmann
Machines for Modeling Motion Style

(Taylor and Hinton, ICML 2009)

• Combinaison en
plusieurs couches

Factored Conditional Restricted Boltzmann Machines

the past that is much stronger than the information coming
from the label (Fig. 3b). The model has learned to respect
consistency of styles between frames and so will resist a
transition introduced by changing the label units.

!

(a)

!

!!"#$!!!!!!!!!!"#%!!!!!!!!!!"!

(b)

Figure 3. a) In a deep belief network, clamping the label units
changes the energy function. b) In a conditional model, label in-
formation is swamped by the signal coming from the past.

As in the gated CRBM, we are motivated to let style change
the interactions of the units as opposed to simply their ef-
fective biases. Memisevic (2008) used factored three-way
interactions to allow the hidden units of a gated CRBM
to control the effect of one video frame on the subsequent
video frame. Figure 4 shows a different way of using fac-
tored three-way interactions to allow real-valued style fea-
tures, derived from discrete style labels, to control three
different sets of pairwise interactions. Like the standard
CRBM (Eq. 1), the model defines a joint probability distri-
bution over vt and ht, conditional on the past N observa-
tions, v<t, and model parameters, θ. However, the distri-
bution is also conditional on the style labels, yt. Similar
to our discussion of the CRBM, we assume binary stochas-
tic hidden units and real-valued visible units with additive,
Gaussian noise. For notational ease, we assume σi = 1.
The energy function is:

E (vt,ht|v<t,yt, θ) =
1
2

∑

i

(âi,t − vi,t)
2

−
∑

f

∑

ijl

Wv
ifWh

jfW z
lfvi,thj,tzl,t −

∑

j

b̂j,thj,t. (3)

The three terms in Eq. 3 correspond to the three sub-models
(coloured blue, red, and green, respectively in Fig. 4). For
each sub-model, what was a matrix of weights is now re-

!"#$%&'()*+&
,*-.-&/(%(&(%&01*&!234!2"5&

6$%#$%&'()*+&
,*-.-&/(%(&(%&01*&!5&

78//*"&'()*+&

9(:%;+<&

!

!

!

!
9*(%$+*<&

=%)'*&

Figure 4. A factored CRBM whose interactions are gated by real-
valued stylistic features.

placed by three sets of weights connecting units to fac-
tors. The types of weights are differentiated again by su-
perscripts. For example, the matrix of undirected weights
in the standard CRBM, Wij , has been replaced by three
matrices involved in a factored, multiplicative interaction:
Wv

if , Wh
jf , and W z

lf . The same process is applied to the
other two sub-models. Note that the three sub-models may
have a different number of factors (which we index by f ,
m, and n).

The dynamic biases become:

âi,t = ai +
∑

m

Av
im

∑

k

Av<t

km vk,<t

∑

l

Az
lmzl,t, (4)

b̂j,t = bj +
∑

n

Bh
jn

∑

k

Bv<t

kn vk,<t

∑

l

Bz
lnzl,t (5)

where the dynamic component of Eq. 4 and Eq. 5 is simply
the total input to the visible/hidden unit via the factors. The
total input is a three-way product between the input to the
factors (coming from the past and from the style features)
and the weight from the factors to the visible/hidden unit.
The dynamic biases include a static component, a and b.
As in the gated CRBM, we could also add three types of
gated biases, corresponding to the pairwise interactions in
each of the sub-models. In our experiments, we have not
used any gated biases.

The deterministic features, zt, are a linear function of the

Factored Conditional Restricted Boltzmann
Machines for Modeling Motion Style

(Taylor and Hinton, ICML 2009)

• Utilisation de connections de haut ordreFactored Conditional Restricted Boltzmann Machines

the past that is much stronger than the information coming
from the label (Fig. 3b). The model has learned to respect
consistency of styles between frames and so will resist a
transition introduced by changing the label units.

!

(a)

!

!!"#$!!!!!!!!!!"#%!!!!!!!!!!"!

(b)

Figure 3. a) In a deep belief network, clamping the label units
changes the energy function. b) In a conditional model, label in-
formation is swamped by the signal coming from the past.

As in the gated CRBM, we are motivated to let style change
the interactions of the units as opposed to simply their ef-
fective biases. Memisevic (2008) used factored three-way
interactions to allow the hidden units of a gated CRBM
to control the effect of one video frame on the subsequent
video frame. Figure 4 shows a different way of using fac-
tored three-way interactions to allow real-valued style fea-
tures, derived from discrete style labels, to control three
different sets of pairwise interactions. Like the standard
CRBM (Eq. 1), the model defines a joint probability distri-
bution over vt and ht, conditional on the past N observa-
tions, v<t, and model parameters, θ. However, the distri-
bution is also conditional on the style labels, yt. Similar
to our discussion of the CRBM, we assume binary stochas-
tic hidden units and real-valued visible units with additive,
Gaussian noise. For notational ease, we assume σi = 1.
The energy function is:

E (vt,ht|v<t,yt, θ) =
1
2

∑

i

(âi,t − vi,t)
2

−
∑

f

∑

ijl

Wv
ifWh

jfW z
lfvi,thj,tzl,t −

∑

j

b̂j,thj,t. (3)

The three terms in Eq. 3 correspond to the three sub-models
(coloured blue, red, and green, respectively in Fig. 4). For
each sub-model, what was a matrix of weights is now re-

!"#$%&'()*+&
,*-.-&/(%(&(%&01*&!234!2"5&

6$%#$%&'()*+&
,*-.-&/(%(&(%&01*&!5&

78//*"&'()*+&

9(:%;+<&

!

!

!

!
9*(%$+*<&

=%)'*&

Figure 4. A factored CRBM whose interactions are gated by real-
valued stylistic features.

placed by three sets of weights connecting units to fac-
tors. The types of weights are differentiated again by su-
perscripts. For example, the matrix of undirected weights
in the standard CRBM, Wij , has been replaced by three
matrices involved in a factored, multiplicative interaction:
Wv

if , Wh
jf , and W z

lf . The same process is applied to the
other two sub-models. Note that the three sub-models may
have a different number of factors (which we index by f ,
m, and n).

The dynamic biases become:

âi,t = ai +
∑

m

Av
im

∑

k

Av<t

km vk,<t

∑

l

Az
lmzl,t, (4)

b̂j,t = bj +
∑

n

Bh
jn

∑

k

Bv<t

kn vk,<t

∑

l

Bz
lnzl,t (5)

where the dynamic component of Eq. 4 and Eq. 5 is simply
the total input to the visible/hidden unit via the factors. The
total input is a three-way product between the input to the
factors (coming from the past and from the style features)
and the weight from the factors to the visible/hidden unit.
The dynamic biases include a static component, a and b.
As in the gated CRBM, we could also add three types of
gated biases, corresponding to the pairwise interactions in
each of the sub-models. In our experiments, we have not
used any gated biases.

The deterministic features, zt, are a linear function of the

Factored Conditional Restricted Boltzmann Machines

the past that is much stronger than the information coming
from the label (Fig. 3b). The model has learned to respect
consistency of styles between frames and so will resist a
transition introduced by changing the label units.

!

(a)

!

!!"#$!!!!!!!!!!"#%!!!!!!!!!!"!

(b)

Figure 3. a) In a deep belief network, clamping the label units
changes the energy function. b) In a conditional model, label in-
formation is swamped by the signal coming from the past.

As in the gated CRBM, we are motivated to let style change
the interactions of the units as opposed to simply their ef-
fective biases. Memisevic (2008) used factored three-way
interactions to allow the hidden units of a gated CRBM
to control the effect of one video frame on the subsequent
video frame. Figure 4 shows a different way of using fac-
tored three-way interactions to allow real-valued style fea-
tures, derived from discrete style labels, to control three
different sets of pairwise interactions. Like the standard
CRBM (Eq. 1), the model defines a joint probability distri-
bution over vt and ht, conditional on the past N observa-
tions, v<t, and model parameters, θ. However, the distri-
bution is also conditional on the style labels, yt. Similar
to our discussion of the CRBM, we assume binary stochas-
tic hidden units and real-valued visible units with additive,
Gaussian noise. For notational ease, we assume σi = 1.
The energy function is:

E (vt,ht|v<t,yt, θ) =
1
2

∑

i

(âi,t − vi,t)
2

−
∑

f

∑

ijl

Wv
ifWh

jfW z
lfvi,thj,tzl,t −

∑

j

b̂j,thj,t. (3)

The three terms in Eq. 3 correspond to the three sub-models
(coloured blue, red, and green, respectively in Fig. 4). For
each sub-model, what was a matrix of weights is now re-

!"#$%&'()*+&
,*-.-&/(%(&(%&01*&!234!2"5&

6$%#$%&'()*+&
,*-.-&/(%(&(%&01*&!5&

78//*"&'()*+&

9(:%;+<&

!

!

!

!
9*(%$+*<&

=%)'*&

Figure 4. A factored CRBM whose interactions are gated by real-
valued stylistic features.

placed by three sets of weights connecting units to fac-
tors. The types of weights are differentiated again by su-
perscripts. For example, the matrix of undirected weights
in the standard CRBM, Wij , has been replaced by three
matrices involved in a factored, multiplicative interaction:
Wv

if , Wh
jf , and W z

lf . The same process is applied to the
other two sub-models. Note that the three sub-models may
have a different number of factors (which we index by f ,
m, and n).

The dynamic biases become:

âi,t = ai +
∑

m

Av
im

∑

k

Av<t

km vk,<t

∑

l

Az
lmzl,t, (4)

b̂j,t = bj +
∑

n

Bh
jn

∑

k

Bv<t

kn vk,<t

∑

l

Bz
lnzl,t (5)

where the dynamic component of Eq. 4 and Eq. 5 is simply
the total input to the visible/hidden unit via the factors. The
total input is a three-way product between the input to the
factors (coming from the past and from the style features)
and the weight from the factors to the visible/hidden unit.
The dynamic biases include a static component, a and b.
As in the gated CRBM, we could also add three types of
gated biases, corresponding to the pairwise interactions in
each of the sub-models. In our experiments, we have not
used any gated biases.

The deterministic features, zt, are a linear function of the

Factored Conditional Restricted Boltzmann Machines

the past that is much stronger than the information coming
from the label (Fig. 3b). The model has learned to respect
consistency of styles between frames and so will resist a
transition introduced by changing the label units.

!

(a)

!

!!"#$!!!!!!!!!!"#%!!!!!!!!!!"!

(b)

Figure 3. a) In a deep belief network, clamping the label units
changes the energy function. b) In a conditional model, label in-
formation is swamped by the signal coming from the past.

As in the gated CRBM, we are motivated to let style change
the interactions of the units as opposed to simply their ef-
fective biases. Memisevic (2008) used factored three-way
interactions to allow the hidden units of a gated CRBM
to control the effect of one video frame on the subsequent
video frame. Figure 4 shows a different way of using fac-
tored three-way interactions to allow real-valued style fea-
tures, derived from discrete style labels, to control three
different sets of pairwise interactions. Like the standard
CRBM (Eq. 1), the model defines a joint probability distri-
bution over vt and ht, conditional on the past N observa-
tions, v<t, and model parameters, θ. However, the distri-
bution is also conditional on the style labels, yt. Similar
to our discussion of the CRBM, we assume binary stochas-
tic hidden units and real-valued visible units with additive,
Gaussian noise. For notational ease, we assume σi = 1.
The energy function is:

E (vt,ht|v<t,yt, θ) =
1
2

∑

i

(âi,t − vi,t)
2

−
∑

f

∑

ijl

Wv
ifWh

jfW z
lfvi,thj,tzl,t −

∑

j

b̂j,thj,t. (3)

The three terms in Eq. 3 correspond to the three sub-models
(coloured blue, red, and green, respectively in Fig. 4). For
each sub-model, what was a matrix of weights is now re-

!"#$%&'()*+&
,*-.-&/(%(&(%&01*&!234!2"5&

6$%#$%&'()*+&
,*-.-&/(%(&(%&01*&!5&

78//*"&'()*+&

9(:%;+<&

!

!

!

!
9*(%$+*<&

=%)'*&

Figure 4. A factored CRBM whose interactions are gated by real-
valued stylistic features.

placed by three sets of weights connecting units to fac-
tors. The types of weights are differentiated again by su-
perscripts. For example, the matrix of undirected weights
in the standard CRBM, Wij , has been replaced by three
matrices involved in a factored, multiplicative interaction:
Wv

if , Wh
jf , and W z

lf . The same process is applied to the
other two sub-models. Note that the three sub-models may
have a different number of factors (which we index by f ,
m, and n).

The dynamic biases become:

âi,t = ai +
∑

m

Av
im

∑

k

Av<t

km vk,<t

∑

l

Az
lmzl,t, (4)

b̂j,t = bj +
∑

n

Bh
jn

∑

k

Bv<t

kn vk,<t

∑

l

Bz
lnzl,t (5)

where the dynamic component of Eq. 4 and Eq. 5 is simply
the total input to the visible/hidden unit via the factors. The
total input is a three-way product between the input to the
factors (coming from the past and from the style features)
and the weight from the factors to the visible/hidden unit.
The dynamic biases include a static component, a and b.
As in the gated CRBM, we could also add three types of
gated biases, corresponding to the pairwise interactions in
each of the sub-models. In our experiments, we have not
used any gated biases.

The deterministic features, zt, are a linear function of the

= connections factorisées

Factored Conditional Restricted Boltzmann
Machines for Modeling Motion Style

(Taylor and Hinton, ICML 2009)

(montrer démo web)

Efficient Learning of
Deep Boltzmann Machines

(Salakhutdinov and Larochelle, AISTATS 2010)
Efficient Learning of Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief Network Deep Boltzmann Machine

Figure 1: Left: Deep Belief Network: the top two layers form
an undirected bipartite graph called a Restricted Boltzmann Ma-
chine, and the remaining layers form a sigmoid belief net with
directed, top-down connections. Right: Deep Boltzmann Ma-
chine: All connections between layers are undirected but with no
within-layer connections.

A critical disadvantage of this greedy algorithm however

is that it is based on a very approximate inference proce-

dure, limited to a single bottom-up pass. One consequence

of ignoring top-down influences on the inference process

is that the model can fail to adequately account for uncer-

tainty when interpreting ambiguous sensory inputs. More-

over, the existing greedy procedure is clearly suboptimal:

it learns one layer of features at a time and never re-adjusts

its lower-level parameters. Although global fine-tuning us-

ing the contrastive wake-sleep algorithm has been used by

Hinton et al. (2006), it is very slow and inefficient.

Recently, Salakhutdinov and Hinton (2009) introduced a

new learning algorithm for a different type of hierarchi-

cal probabilistic model, called Deep Boltzmann Machine

(DBM). Unlike Deep Belief Networks, a DBM is a type

of Markov random field, where all connections between

layers are undirected. Deep Boltzmann Machines are in-

teresting for several reasons. First, it retains much of the

desiderata found in Deep Belief Networks: it discovers sev-

eral layers of increasingly complex representations of the

input, it comes with an efficient layer-by-layer pretraining

procedure, it can be trained on unlabeled data and can be

fine-tuned for a specific task using the (possibly limited)

labeled data. Second, unlike existing models with deep ar-

chitectures, including DBN’s and deep convolutional neu-

ral networks (Bengio & LeCun, 2007), the approximate

inference procedure for DBM’s incorporates a top-down

feedback in addition to the usual bottom-up pass, allow-

ing Deep Boltzmann Machines to better incorporate uncer-

tainty about ambiguous inputs. Third, and perhaps more

importantly, parameters of all layers can be optimized

jointly by following the approximate gradient of a varia-

tional lower-bound on the likelihood function. This greatly

facilitates learning better generative models.

However, a crucial disadvantage of Deep Boltzmann Ma-

chines is that approximate inference, which is based on the

mean-field approach, is considerably (between 25 and 50

times) slower compared to a single bottom-up pass as in

Deep Belief Networks. This makes the joint optimization

of DBM parameters impractical for large datasets. It also

reduces the appeal of using DBM’s for extracting useful

feature representations, since the expensive mean-field in-

ference must be performed for every new test input.

In this paper, we introduce a new approximate inference

algorithm that effectively “learns to do inference”. The al-

gorithm uses a separate “recognition” model to initialize

the values of the latent variables in all layers using a single

bottom-up pass. Using this recognition model, followed

by a single top-down plus bottom-up pass, allows us to

learn good generative models. Compared to Deep Belief

Networks, inference is at most three times slower, which

makes large-scale learning of Deep Boltzmann Machines

practical. More importantly, we show that incorporating a

top-down pass allows us to learn considerably better gener-

ative and discriminative models.

2 Deep Boltzmann Machines (DBM’s)

A Deep Boltzmann Machine is a network of symmetrically

coupled stochastic binary units. It contains a set of visible

units v ∈ {0, 1}D, and a sequence of layers of hidden units

h1 ∈ {0, 1}F1 , h2 ∈ {0, 1}F2 ,..., hL ∈ {0, 1}FL . There

are connections only between hidden units in adjacent lay-

ers, as well as between the visible units and the hidden units

in the first hidden layer.

Consider a Deep Boltzmann Machine with three hidden

layers1 (i.e. L = 3), as shown in Fig. 1, right panel. The
energy of the state {v,h} is defined as:

E(v,h; θ) = −v
!
W

1
h

1 − h
1!

W
2
h

2 − h
2!

W
3
h

3,

where h = {h1,h2,h3} are the set of hidden units, and
θ = {W1,W2,W3} are the model parameters, represent-
ing visible-to-hidden and hidden-to-hidden symmetric in-

teraction terms2. The probability that the model assigns to

a visible vector v is:

P (v; θ) =
P ∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h1,h2,h3; θ)).

The derivative of the log-likelihood with respect to param-

eter vectorW 1 takes the following form:

∂ log P (v; θ)

∂W 1
= EPdata

[vh
1!] − EPmodel

[vh
1!], (1)

where EPdata
[·] denotes an expectation with respect

to the completed data distribution Pdata(h,v; θ) =
P (h|v; θ)Pdata(v), with Pdata(v) = 1

N

∑

n δ(v − vn)

1We use three hidden layers in our presentation for simplicity.
Extensions to models with more than three layers is trivial.

2We omit the bias terms for clarity of presentation.

Efficient Learning of Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief Network Deep Boltzmann Machine

Figure 1: Left: Deep Belief Network: the top two layers form
an undirected bipartite graph called a Restricted Boltzmann Ma-
chine, and the remaining layers form a sigmoid belief net with
directed, top-down connections. Right: Deep Boltzmann Ma-
chine: All connections between layers are undirected but with no
within-layer connections.

A critical disadvantage of this greedy algorithm however

is that it is based on a very approximate inference proce-

dure, limited to a single bottom-up pass. One consequence

of ignoring top-down influences on the inference process

is that the model can fail to adequately account for uncer-

tainty when interpreting ambiguous sensory inputs. More-

over, the existing greedy procedure is clearly suboptimal:

it learns one layer of features at a time and never re-adjusts

its lower-level parameters. Although global fine-tuning us-

ing the contrastive wake-sleep algorithm has been used by

Hinton et al. (2006), it is very slow and inefficient.

Recently, Salakhutdinov and Hinton (2009) introduced a

new learning algorithm for a different type of hierarchi-

cal probabilistic model, called Deep Boltzmann Machine

(DBM). Unlike Deep Belief Networks, a DBM is a type

of Markov random field, where all connections between

layers are undirected. Deep Boltzmann Machines are in-

teresting for several reasons. First, it retains much of the

desiderata found in Deep Belief Networks: it discovers sev-

eral layers of increasingly complex representations of the

input, it comes with an efficient layer-by-layer pretraining

procedure, it can be trained on unlabeled data and can be

fine-tuned for a specific task using the (possibly limited)

labeled data. Second, unlike existing models with deep ar-

chitectures, including DBN’s and deep convolutional neu-

ral networks (Bengio & LeCun, 2007), the approximate

inference procedure for DBM’s incorporates a top-down

feedback in addition to the usual bottom-up pass, allow-

ing Deep Boltzmann Machines to better incorporate uncer-

tainty about ambiguous inputs. Third, and perhaps more

importantly, parameters of all layers can be optimized

jointly by following the approximate gradient of a varia-

tional lower-bound on the likelihood function. This greatly

facilitates learning better generative models.

However, a crucial disadvantage of Deep Boltzmann Ma-

chines is that approximate inference, which is based on the

mean-field approach, is considerably (between 25 and 50

times) slower compared to a single bottom-up pass as in

Deep Belief Networks. This makes the joint optimization

of DBM parameters impractical for large datasets. It also

reduces the appeal of using DBM’s for extracting useful

feature representations, since the expensive mean-field in-

ference must be performed for every new test input.

In this paper, we introduce a new approximate inference

algorithm that effectively “learns to do inference”. The al-

gorithm uses a separate “recognition” model to initialize

the values of the latent variables in all layers using a single

bottom-up pass. Using this recognition model, followed

by a single top-down plus bottom-up pass, allows us to

learn good generative models. Compared to Deep Belief

Networks, inference is at most three times slower, which

makes large-scale learning of Deep Boltzmann Machines

practical. More importantly, we show that incorporating a

top-down pass allows us to learn considerably better gener-

ative and discriminative models.

2 Deep Boltzmann Machines (DBM’s)

A Deep Boltzmann Machine is a network of symmetrically

coupled stochastic binary units. It contains a set of visible

units v ∈ {0, 1}D, and a sequence of layers of hidden units

h1 ∈ {0, 1}F1 , h2 ∈ {0, 1}F2 ,..., hL ∈ {0, 1}FL . There

are connections only between hidden units in adjacent lay-

ers, as well as between the visible units and the hidden units

in the first hidden layer.

Consider a Deep Boltzmann Machine with three hidden

layers1 (i.e. L = 3), as shown in Fig. 1, right panel. The
energy of the state {v,h} is defined as:

E(v,h; θ) = −v
!
W

1
h

1 − h
1!

W
2
h

2 − h
2!

W
3
h

3,

where h = {h1,h2,h3} are the set of hidden units, and
θ = {W1,W2,W3} are the model parameters, represent-
ing visible-to-hidden and hidden-to-hidden symmetric in-

teraction terms2. The probability that the model assigns to

a visible vector v is:

P (v; θ) =
P ∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h1,h2,h3; θ)).

The derivative of the log-likelihood with respect to param-

eter vectorW 1 takes the following form:

∂ log P (v; θ)

∂W 1
= EPdata

[vh
1!] − EPmodel

[vh
1!], (1)

where EPdata
[·] denotes an expectation with respect

to the completed data distribution Pdata(h,v; θ) =
P (h|v; θ)Pdata(v), with Pdata(v) = 1

N

∑

n δ(v − vn)

1We use three hidden layers in our presentation for simplicity.
Extensions to models with more than three layers is trivial.

2We omit the bias terms for clarity of presentation.

Efficient Learning of
Deep Boltzmann Machines

(Salakhutdinov and Larochelle, AISTATS 2010)

Efficient Learning of Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief Network Deep Boltzmann Machine

Figure 1: Left: Deep Belief Network: the top two layers form
an undirected bipartite graph called a Restricted Boltzmann Ma-
chine, and the remaining layers form a sigmoid belief net with
directed, top-down connections. Right: Deep Boltzmann Ma-
chine: All connections between layers are undirected but with no
within-layer connections.

A critical disadvantage of this greedy algorithm however

is that it is based on a very approximate inference proce-

dure, limited to a single bottom-up pass. One consequence

of ignoring top-down influences on the inference process

is that the model can fail to adequately account for uncer-

tainty when interpreting ambiguous sensory inputs. More-

over, the existing greedy procedure is clearly suboptimal:

it learns one layer of features at a time and never re-adjusts

its lower-level parameters. Although global fine-tuning us-

ing the contrastive wake-sleep algorithm has been used by

Hinton et al. (2006), it is very slow and inefficient.

Recently, Salakhutdinov and Hinton (2009) introduced a

new learning algorithm for a different type of hierarchi-

cal probabilistic model, called Deep Boltzmann Machine

(DBM). Unlike Deep Belief Networks, a DBM is a type

of Markov random field, where all connections between

layers are undirected. Deep Boltzmann Machines are in-

teresting for several reasons. First, it retains much of the

desiderata found in Deep Belief Networks: it discovers sev-

eral layers of increasingly complex representations of the

input, it comes with an efficient layer-by-layer pretraining

procedure, it can be trained on unlabeled data and can be

fine-tuned for a specific task using the (possibly limited)

labeled data. Second, unlike existing models with deep ar-

chitectures, including DBN’s and deep convolutional neu-

ral networks (Bengio & LeCun, 2007), the approximate

inference procedure for DBM’s incorporates a top-down

feedback in addition to the usual bottom-up pass, allow-

ing Deep Boltzmann Machines to better incorporate uncer-

tainty about ambiguous inputs. Third, and perhaps more

importantly, parameters of all layers can be optimized

jointly by following the approximate gradient of a varia-

tional lower-bound on the likelihood function. This greatly

facilitates learning better generative models.

However, a crucial disadvantage of Deep Boltzmann Ma-

chines is that approximate inference, which is based on the

mean-field approach, is considerably (between 25 and 50

times) slower compared to a single bottom-up pass as in

Deep Belief Networks. This makes the joint optimization

of DBM parameters impractical for large datasets. It also

reduces the appeal of using DBM’s for extracting useful

feature representations, since the expensive mean-field in-

ference must be performed for every new test input.

In this paper, we introduce a new approximate inference

algorithm that effectively “learns to do inference”. The al-

gorithm uses a separate “recognition” model to initialize

the values of the latent variables in all layers using a single

bottom-up pass. Using this recognition model, followed

by a single top-down plus bottom-up pass, allows us to

learn good generative models. Compared to Deep Belief

Networks, inference is at most three times slower, which

makes large-scale learning of Deep Boltzmann Machines

practical. More importantly, we show that incorporating a

top-down pass allows us to learn considerably better gener-

ative and discriminative models.

2 Deep Boltzmann Machines (DBM’s)

A Deep Boltzmann Machine is a network of symmetrically

coupled stochastic binary units. It contains a set of visible

units v ∈ {0, 1}D, and a sequence of layers of hidden units

h1 ∈ {0, 1}F1 , h2 ∈ {0, 1}F2 ,..., hL ∈ {0, 1}FL . There

are connections only between hidden units in adjacent lay-

ers, as well as between the visible units and the hidden units

in the first hidden layer.

Consider a Deep Boltzmann Machine with three hidden

layers1 (i.e. L = 3), as shown in Fig. 1, right panel. The
energy of the state {v,h} is defined as:

E(v,h; θ) = −v
!
W

1
h

1 − h
1!

W
2
h

2 − h
2!

W
3
h

3,

where h = {h1,h2,h3} are the set of hidden units, and
θ = {W1,W2,W3} are the model parameters, represent-
ing visible-to-hidden and hidden-to-hidden symmetric in-

teraction terms2. The probability that the model assigns to

a visible vector v is:

P (v; θ) =
P ∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h1,h2,h3; θ)).

The derivative of the log-likelihood with respect to param-

eter vectorW 1 takes the following form:

∂ log P (v; θ)

∂W 1
= EPdata

[vh
1!] − EPmodel

[vh
1!], (1)

where EPdata
[·] denotes an expectation with respect

to the completed data distribution Pdata(h,v; θ) =
P (h|v; θ)Pdata(v), with Pdata(v) = 1

N

∑

n δ(v − vn)

1We use three hidden layers in our presentation for simplicity.
Extensions to models with more than three layers is trivial.

2We omit the bias terms for clarity of presentation.

Efficient Learning of Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief Network Deep Boltzmann Machine

Figure 1: Left: Deep Belief Network: the top two layers form
an undirected bipartite graph called a Restricted Boltzmann Ma-
chine, and the remaining layers form a sigmoid belief net with
directed, top-down connections. Right: Deep Boltzmann Ma-
chine: All connections between layers are undirected but with no
within-layer connections.

A critical disadvantage of this greedy algorithm however

is that it is based on a very approximate inference proce-

dure, limited to a single bottom-up pass. One consequence

of ignoring top-down influences on the inference process

is that the model can fail to adequately account for uncer-

tainty when interpreting ambiguous sensory inputs. More-

over, the existing greedy procedure is clearly suboptimal:

it learns one layer of features at a time and never re-adjusts

its lower-level parameters. Although global fine-tuning us-

ing the contrastive wake-sleep algorithm has been used by

Hinton et al. (2006), it is very slow and inefficient.

Recently, Salakhutdinov and Hinton (2009) introduced a

new learning algorithm for a different type of hierarchi-

cal probabilistic model, called Deep Boltzmann Machine

(DBM). Unlike Deep Belief Networks, a DBM is a type

of Markov random field, where all connections between

layers are undirected. Deep Boltzmann Machines are in-

teresting for several reasons. First, it retains much of the

desiderata found in Deep Belief Networks: it discovers sev-

eral layers of increasingly complex representations of the

input, it comes with an efficient layer-by-layer pretraining

procedure, it can be trained on unlabeled data and can be

fine-tuned for a specific task using the (possibly limited)

labeled data. Second, unlike existing models with deep ar-

chitectures, including DBN’s and deep convolutional neu-

ral networks (Bengio & LeCun, 2007), the approximate

inference procedure for DBM’s incorporates a top-down

feedback in addition to the usual bottom-up pass, allow-

ing Deep Boltzmann Machines to better incorporate uncer-

tainty about ambiguous inputs. Third, and perhaps more

importantly, parameters of all layers can be optimized

jointly by following the approximate gradient of a varia-

tional lower-bound on the likelihood function. This greatly

facilitates learning better generative models.

However, a crucial disadvantage of Deep Boltzmann Ma-

chines is that approximate inference, which is based on the

mean-field approach, is considerably (between 25 and 50

times) slower compared to a single bottom-up pass as in

Deep Belief Networks. This makes the joint optimization

of DBM parameters impractical for large datasets. It also

reduces the appeal of using DBM’s for extracting useful

feature representations, since the expensive mean-field in-

ference must be performed for every new test input.

In this paper, we introduce a new approximate inference

algorithm that effectively “learns to do inference”. The al-

gorithm uses a separate “recognition” model to initialize

the values of the latent variables in all layers using a single

bottom-up pass. Using this recognition model, followed

by a single top-down plus bottom-up pass, allows us to

learn good generative models. Compared to Deep Belief

Networks, inference is at most three times slower, which

makes large-scale learning of Deep Boltzmann Machines

practical. More importantly, we show that incorporating a

top-down pass allows us to learn considerably better gener-

ative and discriminative models.

2 Deep Boltzmann Machines (DBM’s)

A Deep Boltzmann Machine is a network of symmetrically

coupled stochastic binary units. It contains a set of visible

units v ∈ {0, 1}D, and a sequence of layers of hidden units

h1 ∈ {0, 1}F1 , h2 ∈ {0, 1}F2 ,..., hL ∈ {0, 1}FL . There

are connections only between hidden units in adjacent lay-

ers, as well as between the visible units and the hidden units

in the first hidden layer.

Consider a Deep Boltzmann Machine with three hidden

layers1 (i.e. L = 3), as shown in Fig. 1, right panel. The
energy of the state {v,h} is defined as:

E(v,h; θ) = −v
!
W

1
h

1 − h
1!

W
2
h

2 − h
2!

W
3
h

3,

where h = {h1,h2,h3} are the set of hidden units, and
θ = {W1,W2,W3} are the model parameters, represent-
ing visible-to-hidden and hidden-to-hidden symmetric in-

teraction terms2. The probability that the model assigns to

a visible vector v is:

P (v; θ) =
P ∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h1,h2,h3; θ)).

The derivative of the log-likelihood with respect to param-

eter vectorW 1 takes the following form:

∂ log P (v; θ)

∂W 1
= EPdata

[vh
1!] − EPmodel

[vh
1!], (1)

where EPdata
[·] denotes an expectation with respect

to the completed data distribution Pdata(h,v; θ) =
P (h|v; θ)Pdata(v), with Pdata(v) = 1

N

∑

n δ(v − vn)

1We use three hidden layers in our presentation for simplicity.
Extensions to models with more than three layers is trivial.

2We omit the bias terms for clarity of presentation.

{
n’est plus facile à calculer

{ {n’est plus
facile à calculer

toujours aussi
difficile à calculer

Efficient Learning of
Deep Boltzmann Machines

(Salakhutdinov and Larochelle, AISTATS 2010)

Ruslan Salakhutdinov, Hugo Larochelle

representing the empirical distribution, and EPmodel
[·] is

an expectation with respect to the distribution defined by

the model. The derivatives with respect to parameters W 2

and W 3 take similar forms but instead involve the cross-

products h1h2! and h2h3! respectively.

Exact maximum likelihood learning in this model is in-

tractable. The exact computation of the data-dependent ex-

pectation takes time that is exponential in the number of

hidden units, whereas the exact computation of the model’s

expectation takes time that is exponential in the number of

hidden and visible units.

2.1 Approximate Maximum Likelihood Learning

The original learning algorithm for general Boltzmann ma-

chines used randomly initialized Markov chains in order

to approximate both expectations needed to approximate

gradients of the likelihood function (Hinton & Sejnowski,

1983). However, this learning procedure is too slow to be

practical. To alleviate this problem, (Salakhutdinov (2008);

Salakhutdinov and Hinton (2009)) proposed a variational

approach, where mean-field inference is used to estimate

data-dependent expectations and an MCMC based stochas-

tic approximation procedure is used to approximate the

model’s expected sufficient statistics.

Consider any approximating distributionQ(h|v;µ) for the
posterior P (h|v; θ). The log-likelihood of our DBMmodel

then has the following variational lower bound:

log P (v; θ) ≥
∑

h

Q(h|v;µ) log P (v,h; θ) + H(Q),

where H(·) is the entropy functional. The bound becomes
tight if and only if Q(h|v;µ) = P (h|v; θ). Following a
naive mean-field approach, we choose the following fully

factorized approximating distribution over the three sets of

hidden units:

QMF (h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

q(h1
j)q(h

2
k)q(h3

m), (2)

where µ = {µ1,µ2,µ3} are the mean-field parameters
with q(hl

i = 1) = µl
i for l = 1, 2, 3. In this case the lower

bound on the log-probability of the data takes a particularly

simple form:

log P (v; θ) ≥ v
!W 1

µ
1 + µ

1!W 2
µ

2 + µ
2!W 3

µ
2

− logZ(θ) + H(Q). (3)

Learning proceeds as follows. For each training example,

we find the value of µ that maximizes this lower bound,

for the current value of θ. This optimum must satisfy the

following mean-field fixed-point equations:

µ1
j ← σ

(D
∑

i=1

W 1
ijvi +

F2
∑

k=1

W 2
jkµ2

k

)

, (4)

µ2
k ← σ

(F1
∑

j=1

W 2
jkµ1

j +
F3
∑

m=1

W 3
kmµ3

m

)

, (5)

µ3
m ← σ

(F2
∑

k=1

W 3
kmµ2

k

)

. (6)

To solve these fixed-point equations, we simply cycle

through layers, updating the mean-field parameters within

a single layer in parallel3.

Given the variational parametersµ, the model parameters θ
are then updated to maximize the variational bound using a

stochastic approximation procedure (SAP). Learning with

SAP is straightforward. Let θt and xt = {vt,h
1
t ,h

2
t ,h

3
t}

be the current parameters and the state. Then xt and θt

are updated sequentially as follows. We sample a new state

xt+1 given xt from the transition operator Tθt
(xt+1←xt)

that leaves P (·; θt) invariant. For DBM’s we use Gibbs
sampling. A new parameter θt+1 is then obtained by mak-

ing a gradient step, where the intractable model’s expecta-

tion EPmodel
[·] in the gradient is replaced by a point esti-

mate at sample xt+1. In practice, we typically maintain a

set of M sample particles Xt = {xt,1,,xt,M}, and use
an average over those particles. This MCMC based approx-

imation procedure provides asymptotic convergence guar-

antees and belongs to the general class of Robbins–Monro

approximation algorithms (for details see Younes (1989)).

For approximate maximum likelihood learning of DBM’s,

we could apply the above learning procedure alone, but it

is rather slow. Instead, we also use a greedy layer-wise

pretraining strategy to initialize the model parameters to

good values, which we briefly review next.

2.2 Greedy Pretraining of DBM’s

The greedy layer-by-layer pretraining algorithm relies

on learning a stack of Restricted Boltzmann Machines

(RBM’s) with a small modification. The key intuition is

that for the lower-level RBM to compensate for the lack

of top-down input into h1, the input must be doubled as

shown in Fig. 2 (left panel), with the copies of the visible-

to-hidden connections tied. Conversely, for the top-level

RBM to compensate for the lack of bottom-up input into

h2, the number of hidden units is doubled. For the inter-

mediate layers, the RBM weights are simply doubled. The

stack of RBM’s can then be trained in a greedy layer-by-

layer fashion using the Contrastive Divergence algorithm

(Hinton et al., 2006). When these three modules are com-

posed to form a single model, the layer copies are removed

3Implementing the mean-field requires no extra work beyond
implementing the Gibbs sampler.

• Solution: approche variationnelle

Ruslan Salakhutdinov, Hugo Larochelle

representing the empirical distribution, and EPmodel
[·] is

an expectation with respect to the distribution defined by

the model. The derivatives with respect to parameters W 2

and W 3 take similar forms but instead involve the cross-

products h1h2! and h2h3! respectively.

Exact maximum likelihood learning in this model is in-

tractable. The exact computation of the data-dependent ex-

pectation takes time that is exponential in the number of

hidden units, whereas the exact computation of the model’s

expectation takes time that is exponential in the number of

hidden and visible units.

2.1 Approximate Maximum Likelihood Learning

The original learning algorithm for general Boltzmann ma-

chines used randomly initialized Markov chains in order

to approximate both expectations needed to approximate

gradients of the likelihood function (Hinton & Sejnowski,

1983). However, this learning procedure is too slow to be

practical. To alleviate this problem, (Salakhutdinov (2008);

Salakhutdinov and Hinton (2009)) proposed a variational

approach, where mean-field inference is used to estimate

data-dependent expectations and an MCMC based stochas-

tic approximation procedure is used to approximate the

model’s expected sufficient statistics.

Consider any approximating distributionQ(h|v;µ) for the
posterior P (h|v; θ). The log-likelihood of our DBMmodel

then has the following variational lower bound:

log P (v; θ) ≥
∑

h

Q(h|v;µ) log P (v,h; θ) + H(Q),

where H(·) is the entropy functional. The bound becomes
tight if and only if Q(h|v;µ) = P (h|v; θ). Following a
naive mean-field approach, we choose the following fully

factorized approximating distribution over the three sets of

hidden units:

QMF (h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

q(h1
j)q(h

2
k)q(h3

m), (2)

where µ = {µ1,µ2,µ3} are the mean-field parameters
with q(hl

i = 1) = µl
i for l = 1, 2, 3. In this case the lower

bound on the log-probability of the data takes a particularly

simple form:

log P (v; θ) ≥ v
!W 1

µ
1 + µ

1!W 2
µ

2 + µ
2!W 3

µ
2

− logZ(θ) + H(Q). (3)

Learning proceeds as follows. For each training example,

we find the value of µ that maximizes this lower bound,

for the current value of θ. This optimum must satisfy the

following mean-field fixed-point equations:

µ1
j ← σ

(D
∑

i=1

W 1
ijvi +

F2
∑

k=1

W 2
jkµ2

k

)

, (4)

µ2
k ← σ

(F1
∑

j=1

W 2
jkµ1

j +
F3
∑

m=1

W 3
kmµ3

m

)

, (5)

µ3
m ← σ

(F2
∑

k=1

W 3
kmµ2

k

)

. (6)

To solve these fixed-point equations, we simply cycle

through layers, updating the mean-field parameters within

a single layer in parallel3.

Given the variational parametersµ, the model parameters θ
are then updated to maximize the variational bound using a

stochastic approximation procedure (SAP). Learning with

SAP is straightforward. Let θt and xt = {vt,h
1
t ,h

2
t ,h

3
t}

be the current parameters and the state. Then xt and θt

are updated sequentially as follows. We sample a new state

xt+1 given xt from the transition operator Tθt
(xt+1←xt)

that leaves P (·; θt) invariant. For DBM’s we use Gibbs
sampling. A new parameter θt+1 is then obtained by mak-

ing a gradient step, where the intractable model’s expecta-

tion EPmodel
[·] in the gradient is replaced by a point esti-

mate at sample xt+1. In practice, we typically maintain a

set of M sample particles Xt = {xt,1,,xt,M}, and use
an average over those particles. This MCMC based approx-

imation procedure provides asymptotic convergence guar-

antees and belongs to the general class of Robbins–Monro

approximation algorithms (for details see Younes (1989)).

For approximate maximum likelihood learning of DBM’s,

we could apply the above learning procedure alone, but it

is rather slow. Instead, we also use a greedy layer-wise

pretraining strategy to initialize the model parameters to

good values, which we briefly review next.

2.2 Greedy Pretraining of DBM’s

The greedy layer-by-layer pretraining algorithm relies

on learning a stack of Restricted Boltzmann Machines

(RBM’s) with a small modification. The key intuition is

that for the lower-level RBM to compensate for the lack

of top-down input into h1, the input must be doubled as

shown in Fig. 2 (left panel), with the copies of the visible-

to-hidden connections tied. Conversely, for the top-level

RBM to compensate for the lack of bottom-up input into

h2, the number of hidden units is doubled. For the inter-

mediate layers, the RBM weights are simply doubled. The

stack of RBM’s can then be trained in a greedy layer-by-

layer fashion using the Contrastive Divergence algorithm

(Hinton et al., 2006). When these three modules are com-

posed to form a single model, the layer copies are removed

3Implementing the mean-field requires no extra work beyond
implementing the Gibbs sampler.

Ruslan Salakhutdinov, Hugo Larochelle

representing the empirical distribution, and EPmodel
[·] is

an expectation with respect to the distribution defined by

the model. The derivatives with respect to parameters W 2

and W 3 take similar forms but instead involve the cross-

products h1h2! and h2h3! respectively.

Exact maximum likelihood learning in this model is in-

tractable. The exact computation of the data-dependent ex-

pectation takes time that is exponential in the number of

hidden units, whereas the exact computation of the model’s

expectation takes time that is exponential in the number of

hidden and visible units.

2.1 Approximate Maximum Likelihood Learning

The original learning algorithm for general Boltzmann ma-

chines used randomly initialized Markov chains in order

to approximate both expectations needed to approximate

gradients of the likelihood function (Hinton & Sejnowski,

1983). However, this learning procedure is too slow to be

practical. To alleviate this problem, (Salakhutdinov (2008);

Salakhutdinov and Hinton (2009)) proposed a variational

approach, where mean-field inference is used to estimate

data-dependent expectations and an MCMC based stochas-

tic approximation procedure is used to approximate the

model’s expected sufficient statistics.

Consider any approximating distributionQ(h|v;µ) for the
posterior P (h|v; θ). The log-likelihood of our DBMmodel

then has the following variational lower bound:

log P (v; θ) ≥
∑

h

Q(h|v;µ) log P (v,h; θ) + H(Q),

where H(·) is the entropy functional. The bound becomes
tight if and only if Q(h|v;µ) = P (h|v; θ). Following a
naive mean-field approach, we choose the following fully

factorized approximating distribution over the three sets of

hidden units:

QMF (h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

q(h1
j)q(h

2
k)q(h3

m), (2)

where µ = {µ1,µ2,µ3} are the mean-field parameters
with q(hl

i = 1) = µl
i for l = 1, 2, 3. In this case the lower

bound on the log-probability of the data takes a particularly

simple form:

log P (v; θ) ≥ v
!W 1

µ
1 + µ

1!W 2
µ

2 + µ
2!W 3

µ
2

− logZ(θ) + H(Q). (3)

Learning proceeds as follows. For each training example,

we find the value of µ that maximizes this lower bound,

for the current value of θ. This optimum must satisfy the

following mean-field fixed-point equations:

µ1
j ← σ

(D
∑

i=1

W 1
ijvi +

F2
∑

k=1

W 2
jkµ2

k

)

, (4)

µ2
k ← σ

(F1
∑

j=1

W 2
jkµ1

j +
F3
∑

m=1

W 3
kmµ3

m

)

, (5)

µ3
m ← σ

(F2
∑

k=1

W 3
kmµ2

k

)

. (6)

To solve these fixed-point equations, we simply cycle

through layers, updating the mean-field parameters within

a single layer in parallel3.

Given the variational parametersµ, the model parameters θ
are then updated to maximize the variational bound using a

stochastic approximation procedure (SAP). Learning with

SAP is straightforward. Let θt and xt = {vt,h
1
t ,h

2
t ,h

3
t}

be the current parameters and the state. Then xt and θt

are updated sequentially as follows. We sample a new state

xt+1 given xt from the transition operator Tθt
(xt+1←xt)

that leaves P (·; θt) invariant. For DBM’s we use Gibbs
sampling. A new parameter θt+1 is then obtained by mak-

ing a gradient step, where the intractable model’s expecta-

tion EPmodel
[·] in the gradient is replaced by a point esti-

mate at sample xt+1. In practice, we typically maintain a

set of M sample particles Xt = {xt,1,,xt,M}, and use
an average over those particles. This MCMC based approx-

imation procedure provides asymptotic convergence guar-

antees and belongs to the general class of Robbins–Monro

approximation algorithms (for details see Younes (1989)).

For approximate maximum likelihood learning of DBM’s,

we could apply the above learning procedure alone, but it

is rather slow. Instead, we also use a greedy layer-wise

pretraining strategy to initialize the model parameters to

good values, which we briefly review next.

2.2 Greedy Pretraining of DBM’s

The greedy layer-by-layer pretraining algorithm relies

on learning a stack of Restricted Boltzmann Machines

(RBM’s) with a small modification. The key intuition is

that for the lower-level RBM to compensate for the lack

of top-down input into h1, the input must be doubled as

shown in Fig. 2 (left panel), with the copies of the visible-

to-hidden connections tied. Conversely, for the top-level

RBM to compensate for the lack of bottom-up input into

h2, the number of hidden units is doubled. For the inter-

mediate layers, the RBM weights are simply doubled. The

stack of RBM’s can then be trained in a greedy layer-by-

layer fashion using the Contrastive Divergence algorithm

(Hinton et al., 2006). When these three modules are com-

posed to form a single model, the layer copies are removed

3Implementing the mean-field requires no extra work beyond
implementing the Gibbs sampler.

approx.
“mean field”

Ruslan Salakhutdinov, Hugo Larochelle

representing the empirical distribution, and EPmodel
[·] is

an expectation with respect to the distribution defined by

the model. The derivatives with respect to parameters W 2

and W 3 take similar forms but instead involve the cross-

products h1h2! and h2h3! respectively.

Exact maximum likelihood learning in this model is in-

tractable. The exact computation of the data-dependent ex-

pectation takes time that is exponential in the number of

hidden units, whereas the exact computation of the model’s

expectation takes time that is exponential in the number of

hidden and visible units.

2.1 Approximate Maximum Likelihood Learning

The original learning algorithm for general Boltzmann ma-

chines used randomly initialized Markov chains in order

to approximate both expectations needed to approximate

gradients of the likelihood function (Hinton & Sejnowski,

1983). However, this learning procedure is too slow to be

practical. To alleviate this problem, (Salakhutdinov (2008);

Salakhutdinov and Hinton (2009)) proposed a variational

approach, where mean-field inference is used to estimate

data-dependent expectations and an MCMC based stochas-

tic approximation procedure is used to approximate the

model’s expected sufficient statistics.

Consider any approximating distributionQ(h|v;µ) for the
posterior P (h|v; θ). The log-likelihood of our DBMmodel

then has the following variational lower bound:

log P (v; θ) ≥
∑

h

Q(h|v;µ) log P (v,h; θ) + H(Q),

where H(·) is the entropy functional. The bound becomes
tight if and only if Q(h|v;µ) = P (h|v; θ). Following a
naive mean-field approach, we choose the following fully

factorized approximating distribution over the three sets of

hidden units:

QMF (h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

q(h1
j)q(h

2
k)q(h3

m), (2)

where µ = {µ1,µ2,µ3} are the mean-field parameters
with q(hl

i = 1) = µl
i for l = 1, 2, 3. In this case the lower

bound on the log-probability of the data takes a particularly

simple form:

log P (v; θ) ≥ v
!W 1

µ
1 + µ

1!W 2
µ

2 + µ
2!W 3

µ
2

− logZ(θ) + H(Q). (3)

Learning proceeds as follows. For each training example,

we find the value of µ that maximizes this lower bound,

for the current value of θ. This optimum must satisfy the

following mean-field fixed-point equations:

µ1
j ← σ

(D
∑

i=1

W 1
ijvi +

F2
∑

k=1

W 2
jkµ2

k

)

, (4)

µ2
k ← σ

(F1
∑

j=1

W 2
jkµ1

j +
F3
∑

m=1

W 3
kmµ3

m

)

, (5)

µ3
m ← σ

(F2
∑

k=1

W 3
kmµ2

k

)

. (6)

To solve these fixed-point equations, we simply cycle

through layers, updating the mean-field parameters within

a single layer in parallel3.

Given the variational parametersµ, the model parameters θ
are then updated to maximize the variational bound using a

stochastic approximation procedure (SAP). Learning with

SAP is straightforward. Let θt and xt = {vt,h
1
t ,h

2
t ,h

3
t}

be the current parameters and the state. Then xt and θt

are updated sequentially as follows. We sample a new state

xt+1 given xt from the transition operator Tθt
(xt+1←xt)

that leaves P (·; θt) invariant. For DBM’s we use Gibbs
sampling. A new parameter θt+1 is then obtained by mak-

ing a gradient step, where the intractable model’s expecta-

tion EPmodel
[·] in the gradient is replaced by a point esti-

mate at sample xt+1. In practice, we typically maintain a

set of M sample particles Xt = {xt,1,,xt,M}, and use
an average over those particles. This MCMC based approx-

imation procedure provides asymptotic convergence guar-

antees and belongs to the general class of Robbins–Monro

approximation algorithms (for details see Younes (1989)).

For approximate maximum likelihood learning of DBM’s,

we could apply the above learning procedure alone, but it

is rather slow. Instead, we also use a greedy layer-wise

pretraining strategy to initialize the model parameters to

good values, which we briefly review next.

2.2 Greedy Pretraining of DBM’s

The greedy layer-by-layer pretraining algorithm relies

on learning a stack of Restricted Boltzmann Machines

(RBM’s) with a small modification. The key intuition is

that for the lower-level RBM to compensate for the lack

of top-down input into h1, the input must be doubled as

shown in Fig. 2 (left panel), with the copies of the visible-

to-hidden connections tied. Conversely, for the top-level

RBM to compensate for the lack of bottom-up input into

h2, the number of hidden units is doubled. For the inter-

mediate layers, the RBM weights are simply doubled. The

stack of RBM’s can then be trained in a greedy layer-by-

layer fashion using the Contrastive Divergence algorithm

(Hinton et al., 2006). When these three modules are com-

posed to form a single model, the layer copies are removed

3Implementing the mean-field requires no extra work beyond
implementing the Gibbs sampler.

Efficient Learning of
Deep Boltzmann Machines

(Salakhutdinov and Larochelle, AISTATS 2010)

• Calcul de l’approximation “mean-field”

Ruslan Salakhutdinov, Hugo Larochelle

representing the empirical distribution, and EPmodel
[·] is

an expectation with respect to the distribution defined by

the model. The derivatives with respect to parameters W 2

and W 3 take similar forms but instead involve the cross-

products h1h2! and h2h3! respectively.

Exact maximum likelihood learning in this model is in-

tractable. The exact computation of the data-dependent ex-

pectation takes time that is exponential in the number of

hidden units, whereas the exact computation of the model’s

expectation takes time that is exponential in the number of

hidden and visible units.

2.1 Approximate Maximum Likelihood Learning

The original learning algorithm for general Boltzmann ma-

chines used randomly initialized Markov chains in order

to approximate both expectations needed to approximate

gradients of the likelihood function (Hinton & Sejnowski,

1983). However, this learning procedure is too slow to be

practical. To alleviate this problem, (Salakhutdinov (2008);

Salakhutdinov and Hinton (2009)) proposed a variational

approach, where mean-field inference is used to estimate

data-dependent expectations and an MCMC based stochas-

tic approximation procedure is used to approximate the

model’s expected sufficient statistics.

Consider any approximating distributionQ(h|v;µ) for the
posterior P (h|v; θ). The log-likelihood of our DBMmodel

then has the following variational lower bound:

log P (v; θ) ≥
∑

h

Q(h|v;µ) log P (v,h; θ) + H(Q),

where H(·) is the entropy functional. The bound becomes
tight if and only if Q(h|v;µ) = P (h|v; θ). Following a
naive mean-field approach, we choose the following fully

factorized approximating distribution over the three sets of

hidden units:

QMF (h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

q(h1
j)q(h

2
k)q(h3

m), (2)

where µ = {µ1,µ2,µ3} are the mean-field parameters
with q(hl

i = 1) = µl
i for l = 1, 2, 3. In this case the lower

bound on the log-probability of the data takes a particularly

simple form:

log P (v; θ) ≥ v
!W 1

µ
1 + µ

1!W 2
µ

2 + µ
2!W 3

µ
2

− logZ(θ) + H(Q). (3)

Learning proceeds as follows. For each training example,

we find the value of µ that maximizes this lower bound,

for the current value of θ. This optimum must satisfy the

following mean-field fixed-point equations:

µ1
j ← σ

(D
∑

i=1

W 1
ijvi +

F2
∑

k=1

W 2
jkµ2

k

)

, (4)

µ2
k ← σ

(F1
∑

j=1

W 2
jkµ1

j +
F3
∑

m=1

W 3
kmµ3

m

)

, (5)

µ3
m ← σ

(F2
∑

k=1

W 3
kmµ2

k

)

. (6)

To solve these fixed-point equations, we simply cycle

through layers, updating the mean-field parameters within

a single layer in parallel3.

Given the variational parametersµ, the model parameters θ
are then updated to maximize the variational bound using a

stochastic approximation procedure (SAP). Learning with

SAP is straightforward. Let θt and xt = {vt,h
1
t ,h

2
t ,h

3
t}

be the current parameters and the state. Then xt and θt

are updated sequentially as follows. We sample a new state

xt+1 given xt from the transition operator Tθt
(xt+1←xt)

that leaves P (·; θt) invariant. For DBM’s we use Gibbs
sampling. A new parameter θt+1 is then obtained by mak-

ing a gradient step, where the intractable model’s expecta-

tion EPmodel
[·] in the gradient is replaced by a point esti-

mate at sample xt+1. In practice, we typically maintain a

set of M sample particles Xt = {xt,1,,xt,M}, and use
an average over those particles. This MCMC based approx-

imation procedure provides asymptotic convergence guar-

antees and belongs to the general class of Robbins–Monro

approximation algorithms (for details see Younes (1989)).

For approximate maximum likelihood learning of DBM’s,

we could apply the above learning procedure alone, but it

is rather slow. Instead, we also use a greedy layer-wise

pretraining strategy to initialize the model parameters to

good values, which we briefly review next.

2.2 Greedy Pretraining of DBM’s

The greedy layer-by-layer pretraining algorithm relies

on learning a stack of Restricted Boltzmann Machines

(RBM’s) with a small modification. The key intuition is

that for the lower-level RBM to compensate for the lack

of top-down input into h1, the input must be doubled as

shown in Fig. 2 (left panel), with the copies of the visible-

to-hidden connections tied. Conversely, for the top-level

RBM to compensate for the lack of bottom-up input into

h2, the number of hidden units is doubled. For the inter-

mediate layers, the RBM weights are simply doubled. The

stack of RBM’s can then be trained in a greedy layer-by-

layer fashion using the Contrastive Divergence algorithm

(Hinton et al., 2006). When these three modules are com-

posed to form a single model, the layer copies are removed

3Implementing the mean-field requires no extra work beyond
implementing the Gibbs sampler.

Efficient Learning of
Deep Boltzmann Machines

(Salakhutdinov and Larochelle, AISTATS 2010)

• Accélération de l’approximation “mean-field”

Efficient Learning of Deep Boltzmann Machines

RBM

RBM

RBM

v v

W1 W1

h1

h1

h2

h2

h3 h3

2W2

W3 W3

W1

W2

W3

2R1

2R2

R3

Pretraining

Deep Boltzmann Machine

Figure 2: Left: Pretraining a DBMwith three hidden layers con-
sists of learning a stack of RBM’s that are then composed to create
a Deep Boltzmann Machine. Right: Resulting Deep Boltzmann
Machine, where the parameters {R1, R2, R3} define the recogni-
tion model.

and the total inputs coming into the first and second hidden

layers are halved. For the intermediate RBM, the weights

are halved in both directions. The algorithm is summa-

rized in Algorithm 1. Greedily pretraining the weights of

a DBM initializes the weights to reasonable values, which

facilitates the subsequent joint learning of all layers.

3 Accelerating Inference for DBM’s

As previously mentioned, the main issue with the joint

maximum likelihood learning described in Section 2.1 is

that it requires solving the mean-field fixed-point equations

for each update of the DBM parameters. This inference

procedure is very expensive when compared to a single

bottom-up inference used in a DBN4. Accelerating infer-

ence in a DBM is hence crucial for making learning on

large datasets practical.

One view of the problem is that there is a complicated

function f : v !→ µ (the mapping between the input

and the result of mean-field inference) for which we need

a fast and accurate approximation. Following a standard

machine learning approach to function approximation, we

could simply collect examples of pairs {vn,µn} and train a
fast “recognition” model to be good at predicting µn given

the corresponding vn. Unfortunately, this does not quite

solve our problem for two reasons. First, obtaining the

pairs (vn,µn) is an expensive operation in itself, which re-
quires running the costly mean-field procedure we are try-

4In our implementation, each iteration of mean-field requires
going through each hidden-to-hidden connection twice (upward
and downward). Assuming layers with similar sizes, each itera-
tion of mean-field is up to twice as expensive as a single bottom-
up pass. So with about 25 iterations, the mean-field inference is
up to 50 times more expensive than a single bottom-up pass.

Algorithm 1 Greedy Pretraining Algorithm for a Deep

Boltzmann Machine with 3-layers.
1: Make two copies of the visible vector and tie the visible-to-
hidden weightsW1. FitW1 of the 1st layer RBM to data.

2: FreezeW1 that defines the 1st layer of features, and use sam-
ples hl from P (h1|v, 2W1) as the data for training the next
layer RBM with weight vector 2W2.

3: FreezeW
2 that defines the 2nd layer of features and use the

samples h2 from P (h2|h1, 2W2) as the data for training the
3rd layer RBM with weight vector 2W3.

4: When learning the top-level RBM, double the number of hid-
den units and tie the visible-to-hidden weightsW3.

5: Use the weights {W1,W2,W3} to compose a Deep Boltz-
mann Machine.

ing to avoid. Second, as the DBM’s parameters are chang-

ing during learning, so is the result of mean-field inference.

Here, we propose a simple procedure to overcome these

two issues. The procedure requires a separate set of recog-

nition weights, which are initialized to the weights found

by the greedy pretraining procedure. During learning,

given an input vector, the recognition weights are used to

provide an initial guess ν = {ν1,ν2,ν3} of the fully fac-
torized approximating posterior distribution:

Qrec(h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

qrec(h1
j)q

rec(h2
k)qrec(h3

m), (7)

with qrec(hl
i = 1) = νl

i for l = 1, 2, 3, and where each
layer of hidden units is activated in a single deterministic

bottom-up pass:

ν1
j = σ

(D
∑

i=1

2R1
ijvi

)

, (8)

ν2
k = σ

(F1
∑

j=1

2R2
jkν1

j

)

, (9)

ν3
m = σ

(F3
∑

k=1

R3
kmν2

k

)

, (10)

with θrec = {R1, R2, R3} denoting the set of recognition
weights. It is important to note that the weights of the

recognition model are doubled at each layer to compensate

for the lack of top-down feedback, as shown in Fig 2, ex-

cept for the very top layer, which does not have a top-down

input. We then apply K iterations of mean-field, initial-

ized at µ = ν, to obtain the mean-field parameters that

will be used in the training update for DBM’s (K is set to

1 or 5 in our experiments). Finally, the recognition weights

are updated so as to make the initial guess ν (prediction)

closer to the result µ (target) of the K-step mean-field in-

ference. More precisely, we update the recognition weights

to minimize the Kullback–Leibler divergence between the

mean-field posterior QMF (h|v;µ) and the factorial poste-

Efficient Learning of Deep Boltzmann Machines

RBM

RBM

RBM

v v

W1 W1

h1

h1

h2

h2

h3 h3

2W2

W3 W3

W1

W2

W3

2R1

2R2

R3

Pretraining

Deep Boltzmann Machine

Figure 2: Left: Pretraining a DBMwith three hidden layers con-
sists of learning a stack of RBM’s that are then composed to create
a Deep Boltzmann Machine. Right: Resulting Deep Boltzmann
Machine, where the parameters {R1, R2, R3} define the recogni-
tion model.

and the total inputs coming into the first and second hidden

layers are halved. For the intermediate RBM, the weights

are halved in both directions. The algorithm is summa-

rized in Algorithm 1. Greedily pretraining the weights of

a DBM initializes the weights to reasonable values, which

facilitates the subsequent joint learning of all layers.

3 Accelerating Inference for DBM’s

As previously mentioned, the main issue with the joint

maximum likelihood learning described in Section 2.1 is

that it requires solving the mean-field fixed-point equations

for each update of the DBM parameters. This inference

procedure is very expensive when compared to a single

bottom-up inference used in a DBN4. Accelerating infer-

ence in a DBM is hence crucial for making learning on

large datasets practical.

One view of the problem is that there is a complicated

function f : v !→ µ (the mapping between the input

and the result of mean-field inference) for which we need

a fast and accurate approximation. Following a standard

machine learning approach to function approximation, we

could simply collect examples of pairs {vn,µn} and train a
fast “recognition” model to be good at predicting µn given

the corresponding vn. Unfortunately, this does not quite

solve our problem for two reasons. First, obtaining the

pairs (vn,µn) is an expensive operation in itself, which re-
quires running the costly mean-field procedure we are try-

4In our implementation, each iteration of mean-field requires
going through each hidden-to-hidden connection twice (upward
and downward). Assuming layers with similar sizes, each itera-
tion of mean-field is up to twice as expensive as a single bottom-
up pass. So with about 25 iterations, the mean-field inference is
up to 50 times more expensive than a single bottom-up pass.

Algorithm 1 Greedy Pretraining Algorithm for a Deep

Boltzmann Machine with 3-layers.
1: Make two copies of the visible vector and tie the visible-to-
hidden weightsW1. FitW1 of the 1st layer RBM to data.

2: FreezeW1 that defines the 1st layer of features, and use sam-
ples hl from P (h1|v, 2W1) as the data for training the next
layer RBM with weight vector 2W2.

3: FreezeW
2 that defines the 2nd layer of features and use the

samples h2 from P (h2|h1, 2W2) as the data for training the
3rd layer RBM with weight vector 2W3.

4: When learning the top-level RBM, double the number of hid-
den units and tie the visible-to-hidden weightsW3.

5: Use the weights {W1,W2,W3} to compose a Deep Boltz-
mann Machine.

ing to avoid. Second, as the DBM’s parameters are chang-

ing during learning, so is the result of mean-field inference.

Here, we propose a simple procedure to overcome these

two issues. The procedure requires a separate set of recog-

nition weights, which are initialized to the weights found

by the greedy pretraining procedure. During learning,

given an input vector, the recognition weights are used to

provide an initial guess ν = {ν1,ν2,ν3} of the fully fac-
torized approximating posterior distribution:

Qrec(h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

qrec(h1
j)q

rec(h2
k)qrec(h3

m), (7)

with qrec(hl
i = 1) = νl

i for l = 1, 2, 3, and where each
layer of hidden units is activated in a single deterministic

bottom-up pass:

ν1
j = σ

(D
∑

i=1

2R1
ijvi

)

, (8)

ν2
k = σ

(F1
∑

j=1

2R2
jkν1

j

)

, (9)

ν3
m = σ

(F3
∑

k=1

R3
kmν2

k

)

, (10)

with θrec = {R1, R2, R3} denoting the set of recognition
weights. It is important to note that the weights of the

recognition model are doubled at each layer to compensate

for the lack of top-down feedback, as shown in Fig 2, ex-

cept for the very top layer, which does not have a top-down

input. We then apply K iterations of mean-field, initial-

ized at µ = ν, to obtain the mean-field parameters that

will be used in the training update for DBM’s (K is set to

1 or 5 in our experiments). Finally, the recognition weights

are updated so as to make the initial guess ν (prediction)

closer to the result µ (target) of the K-step mean-field in-

ference. More precisely, we update the recognition weights

to minimize the Kullback–Leibler divergence between the

mean-field posterior QMF (h|v;µ) and the factorial poste-

Efficient Learning of Deep Boltzmann Machines

RBM

RBM

RBM

v v

W1 W1

h1

h1

h2

h2

h3 h3

2W2

W3 W3

W1

W2

W3

2R1

2R2

R3

Pretraining

Deep Boltzmann Machine

Figure 2: Left: Pretraining a DBMwith three hidden layers con-
sists of learning a stack of RBM’s that are then composed to create
a Deep Boltzmann Machine. Right: Resulting Deep Boltzmann
Machine, where the parameters {R1, R2, R3} define the recogni-
tion model.

and the total inputs coming into the first and second hidden

layers are halved. For the intermediate RBM, the weights

are halved in both directions. The algorithm is summa-

rized in Algorithm 1. Greedily pretraining the weights of

a DBM initializes the weights to reasonable values, which

facilitates the subsequent joint learning of all layers.

3 Accelerating Inference for DBM’s

As previously mentioned, the main issue with the joint

maximum likelihood learning described in Section 2.1 is

that it requires solving the mean-field fixed-point equations

for each update of the DBM parameters. This inference

procedure is very expensive when compared to a single

bottom-up inference used in a DBN4. Accelerating infer-

ence in a DBM is hence crucial for making learning on

large datasets practical.

One view of the problem is that there is a complicated

function f : v !→ µ (the mapping between the input

and the result of mean-field inference) for which we need

a fast and accurate approximation. Following a standard

machine learning approach to function approximation, we

could simply collect examples of pairs {vn,µn} and train a
fast “recognition” model to be good at predicting µn given

the corresponding vn. Unfortunately, this does not quite

solve our problem for two reasons. First, obtaining the

pairs (vn,µn) is an expensive operation in itself, which re-
quires running the costly mean-field procedure we are try-

4In our implementation, each iteration of mean-field requires
going through each hidden-to-hidden connection twice (upward
and downward). Assuming layers with similar sizes, each itera-
tion of mean-field is up to twice as expensive as a single bottom-
up pass. So with about 25 iterations, the mean-field inference is
up to 50 times more expensive than a single bottom-up pass.

Algorithm 1 Greedy Pretraining Algorithm for a Deep

Boltzmann Machine with 3-layers.
1: Make two copies of the visible vector and tie the visible-to-
hidden weightsW1. FitW1 of the 1st layer RBM to data.

2: FreezeW1 that defines the 1st layer of features, and use sam-
ples hl from P (h1|v, 2W1) as the data for training the next
layer RBM with weight vector 2W2.

3: FreezeW
2 that defines the 2nd layer of features and use the

samples h2 from P (h2|h1, 2W2) as the data for training the
3rd layer RBM with weight vector 2W3.

4: When learning the top-level RBM, double the number of hid-
den units and tie the visible-to-hidden weightsW3.

5: Use the weights {W1,W2,W3} to compose a Deep Boltz-
mann Machine.

ing to avoid. Second, as the DBM’s parameters are chang-

ing during learning, so is the result of mean-field inference.

Here, we propose a simple procedure to overcome these

two issues. The procedure requires a separate set of recog-

nition weights, which are initialized to the weights found

by the greedy pretraining procedure. During learning,

given an input vector, the recognition weights are used to

provide an initial guess ν = {ν1,ν2,ν3} of the fully fac-
torized approximating posterior distribution:

Qrec(h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

qrec(h1
j)q

rec(h2
k)qrec(h3

m), (7)

with qrec(hl
i = 1) = νl

i for l = 1, 2, 3, and where each
layer of hidden units is activated in a single deterministic

bottom-up pass:

ν1
j = σ

(D
∑

i=1

2R1
ijvi

)

, (8)

ν2
k = σ

(F1
∑

j=1

2R2
jkν1

j

)

, (9)

ν3
m = σ

(F3
∑

k=1

R3
kmν2

k

)

, (10)

with θrec = {R1, R2, R3} denoting the set of recognition
weights. It is important to note that the weights of the

recognition model are doubled at each layer to compensate

for the lack of top-down feedback, as shown in Fig 2, ex-

cept for the very top layer, which does not have a top-down

input. We then apply K iterations of mean-field, initial-

ized at µ = ν, to obtain the mean-field parameters that

will be used in the training update for DBM’s (K is set to

1 or 5 in our experiments). Finally, the recognition weights

are updated so as to make the initial guess ν (prediction)

closer to the result µ (target) of the K-step mean-field in-

ference. More precisely, we update the recognition weights

to minimize the Kullback–Leibler divergence between the

mean-field posterior QMF (h|v;µ) and the factorial poste-

Efficient Learning of Deep Boltzmann Machines

RBM

RBM

RBM

v v

W1 W1

h1

h1

h2

h2

h3 h3

2W2

W3 W3

W1

W2

W3

2R1

2R2

R3

Pretraining

Deep Boltzmann Machine

Figure 2: Left: Pretraining a DBMwith three hidden layers con-
sists of learning a stack of RBM’s that are then composed to create
a Deep Boltzmann Machine. Right: Resulting Deep Boltzmann
Machine, where the parameters {R1, R2, R3} define the recogni-
tion model.

and the total inputs coming into the first and second hidden

layers are halved. For the intermediate RBM, the weights

are halved in both directions. The algorithm is summa-

rized in Algorithm 1. Greedily pretraining the weights of

a DBM initializes the weights to reasonable values, which

facilitates the subsequent joint learning of all layers.

3 Accelerating Inference for DBM’s

As previously mentioned, the main issue with the joint

maximum likelihood learning described in Section 2.1 is

that it requires solving the mean-field fixed-point equations

for each update of the DBM parameters. This inference

procedure is very expensive when compared to a single

bottom-up inference used in a DBN4. Accelerating infer-

ence in a DBM is hence crucial for making learning on

large datasets practical.

One view of the problem is that there is a complicated

function f : v !→ µ (the mapping between the input

and the result of mean-field inference) for which we need

a fast and accurate approximation. Following a standard

machine learning approach to function approximation, we

could simply collect examples of pairs {vn,µn} and train a
fast “recognition” model to be good at predicting µn given

the corresponding vn. Unfortunately, this does not quite

solve our problem for two reasons. First, obtaining the

pairs (vn,µn) is an expensive operation in itself, which re-
quires running the costly mean-field procedure we are try-

4In our implementation, each iteration of mean-field requires
going through each hidden-to-hidden connection twice (upward
and downward). Assuming layers with similar sizes, each itera-
tion of mean-field is up to twice as expensive as a single bottom-
up pass. So with about 25 iterations, the mean-field inference is
up to 50 times more expensive than a single bottom-up pass.

Algorithm 1 Greedy Pretraining Algorithm for a Deep

Boltzmann Machine with 3-layers.
1: Make two copies of the visible vector and tie the visible-to-
hidden weightsW1. FitW1 of the 1st layer RBM to data.

2: FreezeW1 that defines the 1st layer of features, and use sam-
ples hl from P (h1|v, 2W1) as the data for training the next
layer RBM with weight vector 2W2.

3: FreezeW
2 that defines the 2nd layer of features and use the

samples h2 from P (h2|h1, 2W2) as the data for training the
3rd layer RBM with weight vector 2W3.

4: When learning the top-level RBM, double the number of hid-
den units and tie the visible-to-hidden weightsW3.

5: Use the weights {W1,W2,W3} to compose a Deep Boltz-
mann Machine.

ing to avoid. Second, as the DBM’s parameters are chang-

ing during learning, so is the result of mean-field inference.

Here, we propose a simple procedure to overcome these

two issues. The procedure requires a separate set of recog-

nition weights, which are initialized to the weights found

by the greedy pretraining procedure. During learning,

given an input vector, the recognition weights are used to

provide an initial guess ν = {ν1,ν2,ν3} of the fully fac-
torized approximating posterior distribution:

Qrec(h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

qrec(h1
j)q

rec(h2
k)qrec(h3

m), (7)

with qrec(hl
i = 1) = νl

i for l = 1, 2, 3, and where each
layer of hidden units is activated in a single deterministic

bottom-up pass:

ν1
j = σ

(D
∑

i=1

2R1
ijvi

)

, (8)

ν2
k = σ

(F1
∑

j=1

2R2
jkν1

j

)

, (9)

ν3
m = σ

(F3
∑

k=1

R3
kmν2

k

)

, (10)

with θrec = {R1, R2, R3} denoting the set of recognition
weights. It is important to note that the weights of the

recognition model are doubled at each layer to compensate

for the lack of top-down feedback, as shown in Fig 2, ex-

cept for the very top layer, which does not have a top-down

input. We then apply K iterations of mean-field, initial-

ized at µ = ν, to obtain the mean-field parameters that

will be used in the training update for DBM’s (K is set to

1 or 5 in our experiments). Finally, the recognition weights

are updated so as to make the initial guess ν (prediction)

closer to the result µ (target) of the K-step mean-field in-

ference. More precisely, we update the recognition weights

to minimize the Kullback–Leibler divergence between the

mean-field posterior QMF (h|v;µ) and the factorial poste-

Efficient Learning of
Deep Boltzmann Machines

(Salakhutdinov and Larochelle, AISTATS 2010)

• Pré-entraînement Efficient Learning of Deep Boltzmann Machines

RBM

RBM

RBM

v v

W1 W1

h1

h1

h2

h2

h3 h3

2W2

W3 W3

W1

W2

W3

2R1

2R2

R3

Pretraining

Deep Boltzmann Machine

Figure 2: Left: Pretraining a DBMwith three hidden layers con-
sists of learning a stack of RBM’s that are then composed to create
a Deep Boltzmann Machine. Right: Resulting Deep Boltzmann
Machine, where the parameters {R1, R2, R3} define the recogni-
tion model.

and the total inputs coming into the first and second hidden

layers are halved. For the intermediate RBM, the weights

are halved in both directions. The algorithm is summa-

rized in Algorithm 1. Greedily pretraining the weights of

a DBM initializes the weights to reasonable values, which

facilitates the subsequent joint learning of all layers.

3 Accelerating Inference for DBM’s

As previously mentioned, the main issue with the joint

maximum likelihood learning described in Section 2.1 is

that it requires solving the mean-field fixed-point equations

for each update of the DBM parameters. This inference

procedure is very expensive when compared to a single

bottom-up inference used in a DBN4. Accelerating infer-

ence in a DBM is hence crucial for making learning on

large datasets practical.

One view of the problem is that there is a complicated

function f : v !→ µ (the mapping between the input

and the result of mean-field inference) for which we need

a fast and accurate approximation. Following a standard

machine learning approach to function approximation, we

could simply collect examples of pairs {vn,µn} and train a
fast “recognition” model to be good at predicting µn given

the corresponding vn. Unfortunately, this does not quite

solve our problem for two reasons. First, obtaining the

pairs (vn,µn) is an expensive operation in itself, which re-
quires running the costly mean-field procedure we are try-

4In our implementation, each iteration of mean-field requires
going through each hidden-to-hidden connection twice (upward
and downward). Assuming layers with similar sizes, each itera-
tion of mean-field is up to twice as expensive as a single bottom-
up pass. So with about 25 iterations, the mean-field inference is
up to 50 times more expensive than a single bottom-up pass.

Algorithm 1 Greedy Pretraining Algorithm for a Deep

Boltzmann Machine with 3-layers.
1: Make two copies of the visible vector and tie the visible-to-
hidden weightsW1. FitW1 of the 1st layer RBM to data.

2: FreezeW1 that defines the 1st layer of features, and use sam-
ples hl from P (h1|v, 2W1) as the data for training the next
layer RBM with weight vector 2W2.

3: FreezeW
2 that defines the 2nd layer of features and use the

samples h2 from P (h2|h1, 2W2) as the data for training the
3rd layer RBM with weight vector 2W3.

4: When learning the top-level RBM, double the number of hid-
den units and tie the visible-to-hidden weightsW3.

5: Use the weights {W1,W2,W3} to compose a Deep Boltz-
mann Machine.

ing to avoid. Second, as the DBM’s parameters are chang-

ing during learning, so is the result of mean-field inference.

Here, we propose a simple procedure to overcome these

two issues. The procedure requires a separate set of recog-

nition weights, which are initialized to the weights found

by the greedy pretraining procedure. During learning,

given an input vector, the recognition weights are used to

provide an initial guess ν = {ν1,ν2,ν3} of the fully fac-
torized approximating posterior distribution:

Qrec(h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

qrec(h1
j)q

rec(h2
k)qrec(h3

m), (7)

with qrec(hl
i = 1) = νl

i for l = 1, 2, 3, and where each
layer of hidden units is activated in a single deterministic

bottom-up pass:

ν1
j = σ

(D
∑

i=1

2R1
ijvi

)

, (8)

ν2
k = σ

(F1
∑

j=1

2R2
jkν1

j

)

, (9)

ν3
m = σ

(F3
∑

k=1

R3
kmν2

k

)

, (10)

with θrec = {R1, R2, R3} denoting the set of recognition
weights. It is important to note that the weights of the

recognition model are doubled at each layer to compensate

for the lack of top-down feedback, as shown in Fig 2, ex-

cept for the very top layer, which does not have a top-down

input. We then apply K iterations of mean-field, initial-

ized at µ = ν, to obtain the mean-field parameters that

will be used in the training update for DBM’s (K is set to

1 or 5 in our experiments). Finally, the recognition weights

are updated so as to make the initial guess ν (prediction)

closer to the result µ (target) of the K-step mean-field in-

ference. More precisely, we update the recognition weights

to minimize the Kullback–Leibler divergence between the

mean-field posterior QMF (h|v;µ) and the factorial poste-

Efficient Learning of Deep Boltzmann Machines

RBM

RBM

RBM

v v

W1 W1

h1

h1

h2

h2

h3 h3

2W2

W3 W3

W1

W2

W3

2R1

2R2

R3

Pretraining

Deep Boltzmann Machine

Figure 2: Left: Pretraining a DBMwith three hidden layers con-
sists of learning a stack of RBM’s that are then composed to create
a Deep Boltzmann Machine. Right: Resulting Deep Boltzmann
Machine, where the parameters {R1, R2, R3} define the recogni-
tion model.

and the total inputs coming into the first and second hidden

layers are halved. For the intermediate RBM, the weights

are halved in both directions. The algorithm is summa-

rized in Algorithm 1. Greedily pretraining the weights of

a DBM initializes the weights to reasonable values, which

facilitates the subsequent joint learning of all layers.

3 Accelerating Inference for DBM’s

As previously mentioned, the main issue with the joint

maximum likelihood learning described in Section 2.1 is

that it requires solving the mean-field fixed-point equations

for each update of the DBM parameters. This inference

procedure is very expensive when compared to a single

bottom-up inference used in a DBN4. Accelerating infer-

ence in a DBM is hence crucial for making learning on

large datasets practical.

One view of the problem is that there is a complicated

function f : v !→ µ (the mapping between the input

and the result of mean-field inference) for which we need

a fast and accurate approximation. Following a standard

machine learning approach to function approximation, we

could simply collect examples of pairs {vn,µn} and train a
fast “recognition” model to be good at predicting µn given

the corresponding vn. Unfortunately, this does not quite

solve our problem for two reasons. First, obtaining the

pairs (vn,µn) is an expensive operation in itself, which re-
quires running the costly mean-field procedure we are try-

4In our implementation, each iteration of mean-field requires
going through each hidden-to-hidden connection twice (upward
and downward). Assuming layers with similar sizes, each itera-
tion of mean-field is up to twice as expensive as a single bottom-
up pass. So with about 25 iterations, the mean-field inference is
up to 50 times more expensive than a single bottom-up pass.

Algorithm 1 Greedy Pretraining Algorithm for a Deep

Boltzmann Machine with 3-layers.
1: Make two copies of the visible vector and tie the visible-to-
hidden weightsW1. FitW1 of the 1st layer RBM to data.

2: FreezeW1 that defines the 1st layer of features, and use sam-
ples hl from P (h1|v, 2W1) as the data for training the next
layer RBM with weight vector 2W2.

3: FreezeW
2 that defines the 2nd layer of features and use the

samples h2 from P (h2|h1, 2W2) as the data for training the
3rd layer RBM with weight vector 2W3.

4: When learning the top-level RBM, double the number of hid-
den units and tie the visible-to-hidden weightsW3.

5: Use the weights {W1,W2,W3} to compose a Deep Boltz-
mann Machine.

ing to avoid. Second, as the DBM’s parameters are chang-

ing during learning, so is the result of mean-field inference.

Here, we propose a simple procedure to overcome these

two issues. The procedure requires a separate set of recog-

nition weights, which are initialized to the weights found

by the greedy pretraining procedure. During learning,

given an input vector, the recognition weights are used to

provide an initial guess ν = {ν1,ν2,ν3} of the fully fac-
torized approximating posterior distribution:

Qrec(h|v;µ) =
F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

qrec(h1
j)q

rec(h2
k)qrec(h3

m), (7)

with qrec(hl
i = 1) = νl

i for l = 1, 2, 3, and where each
layer of hidden units is activated in a single deterministic

bottom-up pass:

ν1
j = σ

(D
∑

i=1

2R1
ijvi

)

, (8)

ν2
k = σ

(F1
∑

j=1

2R2
jkν1

j

)

, (9)

ν3
m = σ

(F3
∑

k=1

R3
kmν2

k

)

, (10)

with θrec = {R1, R2, R3} denoting the set of recognition
weights. It is important to note that the weights of the

recognition model are doubled at each layer to compensate

for the lack of top-down feedback, as shown in Fig 2, ex-

cept for the very top layer, which does not have a top-down

input. We then apply K iterations of mean-field, initial-

ized at µ = ν, to obtain the mean-field parameters that

will be used in the training update for DBM’s (K is set to

1 or 5 in our experiments). Finally, the recognition weights

are updated so as to make the initial guess ν (prediction)

closer to the result µ (target) of the K-step mean-field in-

ference. More precisely, we update the recognition weights

to minimize the Kullback–Leibler divergence between the

mean-field posterior QMF (h|v;µ) and the factorial poste-

Efficient Learning of
Deep Boltzmann Machines

(Salakhutdinov and Larochelle, AISTATS 2010)

• Entraînement du réseau de reconnaissance

Ruslan Salakhutdinov, Hugo Larochelle

Algorithm 2 Learning a Deep Boltzmann Machine.

1: Given: a training set of N binary data vectors {v}N
n=1, M

(the number of Markov chains), andK (the number of mean-
field steps).

2: // Pretraining:
3: Use Algorithm 1 to pretrain parameters

θ0 = {W 1
0 , W 2

0 , W 3
0 } of a DBM.

4: Initialize the recognition model θrec
0 = {R1

0, R
2
0, R

3
0} to the

values of θ0.
5: Randomly initializeM sample particles:

{ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}, where h̃ = {h̃1, h̃2, h̃3}.

6: for t = 0 to T (number of iterations) do

7: // Variational Inference:
8: for each training example vn, n = 1 to N do
9: In a single deterministic bottom-up pass, use the recog-

nition model (Eqs. 8, 9, 10) to obtain a parameter vector
ν of the approximate factorial posterior Qrec.

10: Set µ = ν and run the mean-field updates (Eqs. 4, 5, 6)
forK steps to obtain the mean-field approximate poste-
rior QMF .

11: Adjust the recognition parameters by taking a single gra-
dient step in Eq. 11:

θrec
t+1 = θrec

t + αt
∂KL(QMF ||Qrec)

∂θrec

12: Set µn = µ.
13: end for

14: // Stochastic Approximation:
15: for each samplem = 1 toM do

16: Sample (ṽt+1,m, h̃t+1,m) given (ṽt,m, h̃t,m) by run-
ning a Gibbs sampler.

17: end for

18: // Parameter Update:

19: W 1
t+1 = W 1

t + αt

„

1

N

PN
n=1

vn(µ1
n)!−

1

M

PM
m=1

ṽt+1,m(h̃1
t+1,m)!

«

20: W 2
t+1 = W 2

t + αt

„

1

N

PN
n=1

µ
1
n(µ2

n)!−

1

M

PM
m=1

h̃
1
t+1,m(h̃2

t+1,m)!
«

21: W 3
t+1 = W 3

t + αt

„

1

N

PN
n=1

µ
2
n(µ3

n)!−

1

M

PM
m=1

h̃
2
t+1,m(h̃3

t+1,m)!
«

22: Decrease αt.

23: end for

rior defined by the recognition model Qrec(h|v;ν):

KL(QMF (h|v;µ)||Qrec(h|v;ν)) =

−
∑

i

µi log νi −
∑

i

(1 − µi) log(1 − νi) + Const, (11)

The gradient of this KL with respect to the recognition pa-

rameters θrec can be efficiently computed using the back-

propagation algorithm. In brief, we see that learning pro-

ceeds by jointly optimizing both the recognition model and

the model parameters of the DBM in an online fashion. The

full learning procedure is summarized in Algorithm 2.

This procedure exploits three properties of DBM’s. First,

because we do not expect the mean-field mapping to

change drastically after one update of the DBM parameters,

the procedure can update the current recognition weights

using only a few (possibly just one) {vn,µn} pairs. Sec-
ond, since the variational lower bound of Eq. 3 applies for

any value of the mean-field parameters µ, it is not neces-

sarily crucial that the value of µ satisfies the fixed-point

equations (i.e. correspond to the tightest possible lower

bound), at least at the beginning of learning. Finally, since

one mean-field iteration is guaranteed to yield parameters

closer to a solution satisfying the mean-field fixed-point

equations, we may hope that the predictions made by the

recognition model become increasingly close to a fixed-

point solution.

The idea of using a separate set of recognition weights, or

learning to do inference, dates back to the wake-sleep al-

gorithm (Hinton et al., 1995), which was used to learn a

multilayer sigmoid belief network. A variant of the wake-

sleep algorithm was also used to learn parameters of a Deep

Belief Network. However, it is important to note that our

recognition model is only used to initialize the parameters

of the variational inference algorithm, which differs signif-

icantly from the approach taken by the wake-sleep algo-

rithm. Indeed, the wake-sleep algorithm solely relies on

the recognition weights to perform approximate inference,

and having inaccurate recognition weights can greatly af-

fect learning. During the “wake” phase, the algorithm uses

only its recognition weights to stochastically activate the

states of all the hidden units in a single bottom-up pass.

By treating the model as fully observed, learning the gen-

erative weights on the directed connections then becomes

easy. Hence, the quality of model parameters found during

learning relies heavily on how good the recognition model

is. In particular, if we were to set the recognition weights

to zero, adjusting the generative weights on the directed

connections of the Deep Belief Network would be mean-

ingless. In our case, having recognition weights set to zero

would only amount to initializing the K-step mean-field
inference to µi = 0.5 for all hidden units, which is much
less dramatic. In principle, if we were to run the mean-field

fixed-point equations until convergence, the quality of the

learned DBM would not be very affected by the recogni-

tion model5. In this respect, the proposed procedure yields

a learning algorithm that should be much more robust.

Finally, we also mention the work of Ranzato et al. (2007)

where, in the context of single-layer sparse autoencoders,

a similar procedure is proposed for jointly training recog-

nition (encoder) and generative (decoder) weights. In con-

5The recognition model would only affect which local opti-
mum the mean-field converges to.

Efficient Learning of
Deep Boltzmann Machines

(Salakhutdinov and Larochelle, AISTATS 2010)

• Mise à jour des paramètres

• Utilise la “Persistent CD”

Ruslan Salakhutdinov, Hugo Larochelle

Algorithm 2 Learning a Deep Boltzmann Machine.

1: Given: a training set of N binary data vectors {v}N
n=1, M

(the number of Markov chains), andK (the number of mean-
field steps).

2: // Pretraining:
3: Use Algorithm 1 to pretrain parameters

θ0 = {W 1
0 , W 2

0 , W 3
0 } of a DBM.

4: Initialize the recognition model θrec
0 = {R1

0, R
2
0, R

3
0} to the

values of θ0.
5: Randomly initializeM sample particles:

{ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}, where h̃ = {h̃1, h̃2, h̃3}.

6: for t = 0 to T (number of iterations) do

7: // Variational Inference:
8: for each training example vn, n = 1 to N do
9: In a single deterministic bottom-up pass, use the recog-

nition model (Eqs. 8, 9, 10) to obtain a parameter vector
ν of the approximate factorial posterior Qrec.

10: Set µ = ν and run the mean-field updates (Eqs. 4, 5, 6)
forK steps to obtain the mean-field approximate poste-
rior QMF .

11: Adjust the recognition parameters by taking a single gra-
dient step in Eq. 11:

θrec
t+1 = θrec

t + αt
∂KL(QMF ||Qrec)

∂θrec

12: Set µn = µ.
13: end for

14: // Stochastic Approximation:
15: for each samplem = 1 toM do

16: Sample (ṽt+1,m, h̃t+1,m) given (ṽt,m, h̃t,m) by run-
ning a Gibbs sampler.

17: end for

18: // Parameter Update:

19: W 1
t+1 = W 1

t + αt

„

1

N

PN
n=1

vn(µ1
n)!−

1

M

PM
m=1

ṽt+1,m(h̃1
t+1,m)!

«

20: W 2
t+1 = W 2

t + αt

„

1

N

PN
n=1

µ
1
n(µ2

n)!−

1

M

PM
m=1

h̃
1
t+1,m(h̃2

t+1,m)!
«

21: W 3
t+1 = W 3

t + αt

„

1

N

PN
n=1

µ
2
n(µ3

n)!−

1

M

PM
m=1

h̃
2
t+1,m(h̃3

t+1,m)!
«

22: Decrease αt.

23: end for

rior defined by the recognition model Qrec(h|v;ν):

KL(QMF (h|v;µ)||Qrec(h|v;ν)) =

−
∑

i

µi log νi −
∑

i

(1 − µi) log(1 − νi) + Const, (11)

The gradient of this KL with respect to the recognition pa-

rameters θrec can be efficiently computed using the back-

propagation algorithm. In brief, we see that learning pro-

ceeds by jointly optimizing both the recognition model and

the model parameters of the DBM in an online fashion. The

full learning procedure is summarized in Algorithm 2.

This procedure exploits three properties of DBM’s. First,

because we do not expect the mean-field mapping to

change drastically after one update of the DBM parameters,

the procedure can update the current recognition weights

using only a few (possibly just one) {vn,µn} pairs. Sec-
ond, since the variational lower bound of Eq. 3 applies for

any value of the mean-field parameters µ, it is not neces-

sarily crucial that the value of µ satisfies the fixed-point

equations (i.e. correspond to the tightest possible lower

bound), at least at the beginning of learning. Finally, since

one mean-field iteration is guaranteed to yield parameters

closer to a solution satisfying the mean-field fixed-point

equations, we may hope that the predictions made by the

recognition model become increasingly close to a fixed-

point solution.

The idea of using a separate set of recognition weights, or

learning to do inference, dates back to the wake-sleep al-

gorithm (Hinton et al., 1995), which was used to learn a

multilayer sigmoid belief network. A variant of the wake-

sleep algorithm was also used to learn parameters of a Deep

Belief Network. However, it is important to note that our

recognition model is only used to initialize the parameters

of the variational inference algorithm, which differs signif-

icantly from the approach taken by the wake-sleep algo-

rithm. Indeed, the wake-sleep algorithm solely relies on

the recognition weights to perform approximate inference,

and having inaccurate recognition weights can greatly af-

fect learning. During the “wake” phase, the algorithm uses

only its recognition weights to stochastically activate the

states of all the hidden units in a single bottom-up pass.

By treating the model as fully observed, learning the gen-

erative weights on the directed connections then becomes

easy. Hence, the quality of model parameters found during

learning relies heavily on how good the recognition model

is. In particular, if we were to set the recognition weights

to zero, adjusting the generative weights on the directed

connections of the Deep Belief Network would be mean-

ingless. In our case, having recognition weights set to zero

would only amount to initializing the K-step mean-field
inference to µi = 0.5 for all hidden units, which is much
less dramatic. In principle, if we were to run the mean-field

fixed-point equations until convergence, the quality of the

learned DBM would not be very affected by the recogni-

tion model5. In this respect, the proposed procedure yields

a learning algorithm that should be much more robust.

Finally, we also mention the work of Ranzato et al. (2007)

where, in the context of single-layer sparse autoencoders,

a similar procedure is proposed for jointly training recog-

nition (encoder) and generative (decoder) weights. In con-

5The recognition model would only affect which local opti-
mum the mean-field converges to.

Efficient Learning of
Deep Boltzmann Machines

(Salakhutdinov and Larochelle, AISTATS 2010)

• Classification et raffinement supervisé

Deep Boltzmann Machines

500 units

1000 units

500 units

500 units

1000 units

28 x 28
pixel
image

28 x 28
pixel
image

2-layer BM 3-layer BM Training Samples

Figure 4: Left: Two deep Boltzmann machines used in experiments. Right: Random samples from the training set, and samples gen-
erated from the two deep Boltzmann machines by running the Gibbs sampler for 100,000 steps. The images shown are the probabilities
of the binary visible units given the binary states of the hidden units.

h

output

h

W W

vq(h |v)

W

1

2

2

2

2 1T T

Figure 3: After learning, DBM is used to initialize a multilayer
neural network. The marginals of approximate posterior q(h2

j =
1|v) are used as additional inputs. The network is fine-tuned by
backpropagation.

3.3 Discriminative Fine-tuning of DBM’s

After learning, the stochastic activities of the binary fea-

tures in each layer can be replaced by deterministic, real-

valued probabilities, and a deep Boltzmann machine can be

used to initialize a deterministic multilayer neural network

in the following way. For each input vector v, the mean-

field inference is used to obtain an approximate posterior

distribution q(h|v). The marginals q(h2
j = 1|v) of this

approximate posterior, together with the data, are used to

create an “augmented” input for this deep multilayer neu-

ral network as shown in Fig. 3. Standard backpropagation

can then be used to discriminatively fine-tune the model.

The unusual representation of the input is a by-product of

converting a DBM into a deterministic neural network. In

general, the gradient-based fine-tuning may choose to ig-

nore q(h2|v), i.e. drive the first-layer connections W2 to

zero, which will result in a standard neural network net.

Conversely, the network may choose to ignore the input by

driving the first-layer W1 to zero. In all of our experi-

ments, however, the network uses the entire augmented in-

put for making predictions.

4 Experimental Results

In our experiments we used the MNIST and NORB

datasets. To speed-up learning, we subdivided datasets into

mini-batches, each containing 100 cases, and updated the

weights after each mini-batch. The number of fantasy par-

ticles used for tracking the model’s statistics was also set to

1002. For the stochastic approximation algorithm, we al-

ways used 5 Gibbs updates of the fantasy particles. The ini-

tial learning rate was set 0.005 and was gradually decreased

to 0. For discriminative fine-tuning of DBM’s we used

the method of conjugate gradients on larger mini-batches

of 5000 with three line searches performed for each mini-

batch in each epoch.

4.1 MNIST

The MNIST digit dataset contains 60,000 training and

10,000 test images of ten handwritten digits (0 to 9), with

28×28 pixels. In our first experiment, we trained two deep
Boltzmann machines: one with two hidden layers (500 and

1000 hidden units), and the other with three hidden lay-

ers (500, 500, and 1000 hidden units), as shown in Fig. 4.

To estimate the model’s partition function we used 20,000

βk spaced uniformly from 0 to 1.0. Table 1 shows that

the estimates of the lower bound on the average test log-

probability were−84.62 and−85.18 for the 2- and 3-layer
BM’s respectively. This result is slightly better compared

to the lower bound of−85.97, achieved by a two-layer deep
belief network (Salakhutdinov and Murray, 2008).

Observe that the two DBM’s, that contain over 0.9 and

1.15 million parameters, do not appear to suffer much from

overfitting. The difference between the estimates of the

training and test log-probabilities was about 1 nat. Fig. 4

shows samples generated from the two DBM’s by ran-

domly initializing all binary states and running the Gibbs

sampler for 100,000 steps. Certainly, all samples look

like the real handwritten digits. We also note that without

greedy pretraining, we could not successfully learn good

DBM models of MNIST digits.

2It may seem that 100 particles is not nearly enough to rep-
resent the model’s distribution which may be highly multimodal.
However, experience has shown that the fantasy particles move
around rapidly because the learning algorithm increases the en-
ergy at the location of each fantasy particle.

Efficient Learning of
Deep Boltzmann Machines

(Salakhutdinov and Larochelle, AISTATS 2010)
Efficient Learning of Deep Boltzmann Machines

Table 2: Classification performance on the test set for different inference strategies. The results in bold correspond to the lowest error
rates along with the error rates that are statistically indistinguishable from the best (the difference is not statistically significant).

Dataset
DBM inference procedures

DBN SVM K-NN
MF-0 MF-1 MFRec-1 MF-5 MFRec-5 MF-Full

MNIST 1.38% 1.15% 1.00% 1.01% 0.96% 0.95% 1.17% 1.40% 3.09%
OCR letters 8.68% 8.44% 8.40% 8.50% 8.48% 8.58% 9.68% 9.70% 18.92%
NORB 9.32% 7.96% 7.62% 7.67% 7.46% 7.23% 8.31% 11.60% 18.40%

ference. This observation again confirms the important role

that a top-downmechanism can play in improving the inter-

pretation and classification of sensory inputs, even with just

a single downward pass. Finally, comparisons with SVM

and K-NN confirm that DBM’s that use the proposed recog-

nition model can be competitive classifiers in general.

6 Conclusion

We presented a new approximate inference algorithm for

Deep Boltzmann Machines that uses a separate recognition

model to quickly initialize the values of the latent vari-

ables in all hidden layers. Learning a good recognition

model averts the need to solve the expensive mean-field

fixed-point equations for each update of the DBM param-

eters. This approach substantially speeds up the inference

step, allowing for learning DBM’s on larger scales (i.e. for

larger DBM’s and/or on larger datasets). As our experi-

mental results demonstrate, using the recognition model,

followed by only a single step of mean-field inference, is

sufficient for learning good generative and discriminative

models. However, this single step of mean-field is crucial

for obtaining competitive performances, which highlights

the important role that a top-down feedback plays in pro-

cessing high-dimensional sensory input.

The recognition model considered in this paper was di-

rectly inspired by the architecture of the DBM, but it

need not be. Indeed, any function (parametric or non-

parametric) that can be adapted given some error signal

could have been used instead. This perspective opens up

the space of recognition models and could allow us to de-

rive faster and/or more accurate inference procedures. We

believe that this avenue of research is promising and de-

serves more investigation.

Acknowledgments

We acknowledge the financial support from NSERC, Shell,

and NTT Communication Sciences Laboratory.

References

Bengio, Y. (2009). Learning deep architectures for AI. Founda-
tions and Trends in Machine Learning.

Bengio, Y., & LeCun, Y. (2007). Scaling learning algorithms to-
wards AI. Large-Scale Kernel Machines. MIT Press.

Decoste, D., & Schölkopf, B. (2002). Training invariant support
vector machines. Machine Learning, 46, 161.

Hinton, G., Dayan, P., Frey, B., & Neal, R. (1995). The” wake-
sleep” algorithm for unsupervised neural networks. Science,
268, 1158–1161.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning
algorithm for deep belief nets. Neural Computation, 18, 1527–
1554.

Hinton, G. E., & Sejnowski, T. (1983). Optimal perceptual infer-
ence. IEEE conference on Computer Vision and Pattern Recog-
nition.

Larochelle, H., Erhan, D., & Vincent, P. (2009). Deep learning
using robust interdependent codes. Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics.

LeCun, Y., Huang, F. J., & Bottou, L. (2004). Learning meth-
ods for generic object recognition with invariance to pose and
lighting. CVPR (2) (pp. 97–104).

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolu-
tional deep belief networks for scalable unsupervised learning
of hierarchical representations. ICML. ACM.

Lee, T. S., Mumford, D., Romero, R., & Lamme, V. (1998). The
role of the primary visual cortex in higher level vision. Vision
research, 38, 2429–2454.

Nair, V., & Hinton, G. (2010). 3D object recognition with deep
belief nets. Advances in Neural Information Processing Sys-
tems. Cambridge, MA: MIT Press.

Neal, R. M. (2001). Annealed importance sampling. Statistics
and Computing, 11, 125–139.

Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Ef-
ficient learning of sparse representations with an energy-based
model. In NIPS 19, 1137–1144. Cambridge, MA: MIT Press.

Salakhutdinov, R. R. (2008). Learning and evaluating Boltzmann
machines (Technical Report UTML TR 2008-002). Depart-
ment of Computer Science, University of Toronto.

Salakhutdinov, R. R., & Hinton, G. E. (2009). Deep Boltzmann
machines. Proceedings of the International Conference on Ar-
tificial Intelligence and Statistics.

Salakhutdinov, R. R., & Murray, I. (2008). On the quantitative
analysis of deep belief networks. Proceedings of the Interna-
tional Conference on Machine Learning (pp. 872 – 879).

Torralba, A., Fergus, R., & Weiss, Y. (2008). Small codes and
large image databases for recognition. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

Younes, L. (1989). Parameter inference for imperfectly observed
Gibbsian fields. Probability Theory Rel. Fields, 82, 625–645.

Ruslan Salakhutdinov, Hugo Larochelle

Table 1: The estimates of the variational lower bound on the aver-
age test log-probabilities per image for different inference strate-
gies.

Models
Datasets

MNIST OCR Letters NORB

MF-0 -96.75 -43.40 -624.75
MF-1 -89.97 -37.21 -612.08
MFRec-1 -86.47 -35.29 -598.34
MF-5 -86.21 -34.87 -596.92
MFRec-5 -85.36 -34.73 -595.98
MF-Full -84.97 -34.24 -593.58

on larger mini-batches of 10 000 data vectors, with three

line searches performed for each mini-batch in each epoch.

The code that can be used for pretraining, learning and fine-

tuning DBM’s is available at http://www.cs.toronto.

edu/˜larocheh/code/dbm_recnet.tar.gz.

5.2 Approximate Inference

To compare the different approximate inference strategies,

we trained several DBM’s using various approximate in-

ference procedures. Our first two DBM’s used recogni-

tion weights, as described in Algorithm 2, with the number

of mean-field steps set to 1 and 5. We call these models

MFRec-1 and MFRec-5. Our second two DBM’s did not

use a separate recognition model. Instead, each layer of

hidden units was activated in a single deterministic bottom-

up pass using the DBM’s current set of weights, followed

by 1 or 5 steps of mean-field. We call these modelsMF-1

andMF-5. For comparison, we also trained two additional

DBM’s. In the first DBM, called MF-Full, the mean-field

updates were run until convergence, which typically re-

quired about 25 iterations through the entire network. In

the second DBM, calledMF-0, approximate inference did

not use the mean-field at all. The values of the latent vari-

ables were inferred using a single bottom-up pass.

5.3 Generative Performance

For each of the three datasets and for each Deep Boltzmann

Machine, we estimated the variational lower bound on the

average test log-probability using Eq. 12. The global parti-

tion function of each model was estimated using AIS with

20,000 inverse temperatures spaced uniformly between 0

and 1.0. The estimates were averaged over 100 AIS runs.

Table 1 shows that for all three datasets, both DBM’s that

use recognition weights, MFRec-1 and MFRec-5, consis-

tently outperform their equivalent DBM’s that do not use

the recognition model. For the MNIST dataset, MFRec-1

achieves a lower bound of -86.47, improving upon MF-1

by at least 3 nats. We also note that the MF-Full model

achieves only a slightly better lower bound of -84.97. How-

ever, performing inference (and hence learning) in this

model was computationally considerably more demanding.

To estimate how loose the variational bound is, we ran-

domly sampled 100 test cases, 10 of each class, and ran

AIS for each test case to estimate the true test log probabil-

ity. Computationally, this is equivalent to estimating 100

additional partition functions. Our estimate of the true test

log probability was -84.28 per test case. The estimate of

the variational bound was -84.76, showing that the bound

is actually rather tight.

For the OCR letters and NORB dataset, results were very

similar to the MNIST dataset, showing that the recognition

model helps learning better generative models. The differ-

ence in performance between MFRec-1 and MF-1 is partic-

ularly large for the NORB dataset, reaching over 10 nats.

Finally, the very weak performance of MF-0 highlights the

importance of incorporating top-down information in the

inference procedure to obtain a good generative model.

5.4 Discriminative Performance

Finally, we evaluated the discriminative performance of

the DBM’s on the handwritten digit, OCR letters, and

NORB object recognition tasks. Table 2 shows results.

For the MNIST dataset, MFRec-1 achieves a test error of

1.00% compared to 0.95% achieved by MF-Full (Salakhut-

dinov & Hinton, 2009), 1.2% achieved by DBN (Hinton

et al., 2006), and 1.4% achieved by SVM’s (Decoste &

Schölkopf, 2002). For the OCR letters dataset, various

DBM’s perform about the same, the difference between

performances not being statistically significant. However,

for this dataset, all DBM’s significantly outperform Deep

Belief Networks and SVM’s (Larochelle et al., 2009).

Finally, for the NORB dataset, MFRec-1 achieves a test er-

ror of 7.6%, which is considerably lower compared to 8.3%

achieved by DBN’s, 11.6% achieved by SVM’s (Bengio

& LeCun, 2007), and 18.4% achieved by K-nearest neigh-

bours (LeCun et al., 2004). We also mention the very recent

work of Nair and Hinton (2010) who showed that by learn-

ing an implicit mixture of DBN’s, a result of 5.2% could be

achieved. We emphasize that an equivalent extension could

be applied here, yielding implicit mixtures of DBM’s.

Overall, we observe that the simple MFRec-1 model per-

forms just as well as the slow MF-Full model. In fact,

MFRec-1 appears to strike a good balance between effi-

ciency and accuracy. It allows for inference that is as fast as

in MF-1, while yielding accuracy that is statistically equiv-

alent to MF-5 or MF-Full. Indeed, for the NORB dataset,

MFRec-1 reduces training time from 5 days down to 1,

whereas training DBM’s using the original learning algo-

rithm (MF-full) takes about 3 weeks. More importantly,

during the test phase, inference on 100 test images takes

only 0.69 sec. using MF-Rec1, compared to 3.2 and 16.5

sec. using MF-5 and MF-full.

Results in table 2 also reveal that across all three datasets,

MFRec-1 significantly outperforms traditional Deep Belief

Networks, that only use a single bottom up pass to do in-

Résultats: classification

Résultats: estimation de densité

Deep Boltzmann Machines
(Salakhutdinov and Hinton, AISTATS 2009)

R. Salakhutdinov and G. Hinton

4000 units

4000 units

4000 units

Preprocessed
transformation

Stereo pair

Gaussian visible units
(raw pixel data)

Deep Boltzmann Machine Training Samples Generated Samples

Figure 5: Left: The architecture of deep Boltzmann machine used for NORB. Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

Table 1: Results of estimating partition functions of BMmodels,
along with the estimates of lower bound on the average training
and test log-probabilities. For all BM’s we used 20,000 interme-
diate distributions. Results were averaged over 100 AIS runs.

Estimates Avg. log-prob.

ln Ẑ ln (Ẑ ± σ̂) Test Train

2-layer BM 356.18 356.06, 356.29 −84.62 −83.61
3-layer BM 456.57 456.34, 456.75 −85.10 −84.49

To estimate how loose the variational bound is, we ran-

domly sampled 100 test cases, 10 of each class, and ran

AIS to estimate the true test log-probability3 for the 2-layer

Boltzmann machine. The estimate of the variational bound

was -83.35 per test case, whereas the estimate of the true

test log-probability was -82.86. The difference of about

0.5 nats shows that the bound is rather tight.

For a simple comparison we also trained several mix-

ture of Bernoullis models with 10, 100, and 500 compo-

nents. The corresponding average test log-probabilities

were −168.95, −142.63, and −137.64. Compared to

DBM’s, a mixture of Bernoullis performs very badly. The

difference of over 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the 2-layer BM

achieves an error rate of 0.95% on the full MNIST test

set. This is, to our knowledge, the best published result

on the permutation-invariant version of the MNIST task.

The 3-layer BM gives a slightly worse error rate of 1.01%.

This is compared to 1.4% achieved by SVM’s (Decoste and

Schölkopf, 2002), 1.6% achieved by randomly initialized

backprop, and 1.2% achieved by the deep belief network,

described in Hinton et al. (2006).

3Note that computationally, this is equivalent to estimating
100 partition functions.

4.2 NORB

Results on MNIST show that DBM’s can significantly out-

perform many other models on the well-studied but rela-

tively simple task of handwritten digit recognition. In this

section we present results on NORB, which is consider-

ably more difficult dataset than MNIST. NORB (LeCun

et al., 2004) contains images of 50 different 3D toy ob-

jects with 10 objects in each of five generic classes: cars,

trucks, planes, animals, and humans. Each object is cap-

tured from different viewpoints and under various lighting

conditions. The training set contains 24,300 stereo image

pairs of 25 objects, 5 per class, while the test set contains

24,300 stereo pairs of the remaining, different 25 objects.

The goal is to classify each previously unseen object into

its generic class. From the training data, 4,300 were set

aside for validation.

Each image has 96×96 pixels with integer greyscale values
in the range [0,255]. To speed-up experiments, we reduced

the dimensionality of each image from 9216 down to 4488

by using larger pixels around the edge of the image4. A ran-

dom sample from the training data used in our experiments

is shown in Fig. 5.

To model raw pixel data, we use an RBM with Gaussian

visible and binary hidden units. Gaussian-binary RBM’s

have been previously successfully applied for modeling

greyscale images, such as images of faces (Hinton and

Salakhutdinov, 2006). However, learning an RBM with

Gaussian units can be slow, particularly when the input di-

mensionality is quite large. In this paper we follow the

approach of (Nair and Hinton, 2008) by first learning a

Gaussian-binary RBM and then treating the the activities

of its hidden layer as “preprocessed” data. Effectively, the

learned low-level RBM acts as a preprocessor that converts

4The resulting dimensionality of each training vector, repre-
senting a stereo pair, was 2×4488 = 8976.

Entraînement non-supervisé global

• Serait-il avantageux d’entraîner des
autoencodeurs globalement de façon non-
supervisée?

• Serait-il possible d’entraîner des réseaux à
convolution (probabiliste ou pas)
globalement de façon non-supervisée?

! Pistes de recherche !

Processus “bottom-up” et “top-down”

• Serait-il possible d’introduire des
processus “bottom-up” et “top-down”
dans les réseaux autoencodeurs?

! Piste de recherche !

Ressources sur le “deep learning”

• Pour en savoir plus et suivre les
développement les plus récents:

• Vous y trouverez:
★ listes de lectures
★ logiciels
★ jeux de données
★ tutoriels (vidéo) et démos

http://deeplearning.net/

http://deeplearning.net
http://deeplearning.net

