
Vue d’ensemble sur l’apprentissage
de réseaux profonds

Hugo Larochelle
University of Toronto

Apprentissage de réseaux profonds:
la procédure

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

o(x)

W 4

h (x)3 b3
j

x

h (x)

h (x)

1

2

W

W

W

1

2

3

b1
j

b2
j

b0
j

b4
j

^

^

^

(a) First hidden layer pre-

training

o(x)

W 4

h (x)3 b3
j

x

h (x)

h (x)

1

2

W

W

W

1

2

3

b1
j

b2
j

b0
j

b4
j

^

^

^

(b) Second hidden layer

pre-training

o(x)

W 4

h (x)3 b3
j

x

h (x)

h (x)

1

2

W

W

W

1

2

3

b1
j

b2
j

b0
j

b4
j

^

^

^

(c) Third hidden layer pre-

training

o(x)

W 4

h (x)3 b3
j

x

h (x)

h (x)

1

2

W

W

W

1

2

3

b1
j

b2
j

b0
j

b4
j

^

^

^

(d) Fine-tuning of whole

network

Figure 2: Unsupervised greedy layer-wise training procedure.

2. In the second and final phase, fine-tune all the parameters ! of the network using backpropa-

gation and gradient descent on a global supervised cost functionC(xt ,yt ,!), with input xt and
label yt , that is, trying to make steps in the direction E

[
!C(xt ,yt ,")

!"

]
.

Regularization is not explicit in this procedure, as it does not come from a weighted term that

depends on the complexity of the network and that is added to the global supervised objective.

Instead, it is implicit, as the first phase that initializes the parameters of the whole network will

ultimately have an impact on the solution found in the second phase (the fine-tuning phase). Indeed,

by using an iterative gradual optimization algorithm such as stochastic gradient descent with early-

stopping (i.e., training until the error on a validation set reaches a clear minimum), the extent to

which the configuration of the network’s parameters can be different from the initial configuration

given by the first phase is limited. Hence, similarly to using a regularization term on the parameters

of the model that constrains them to be close to a particular value (e.g., 0 for weight decay), the first

phase here will ensure that the parameter solution for each layer found by fine-tuning will not be

far from the solution found by the unsupervised learning algorithm. In addition, the non-convexity

of the supervised training criterion means that the choice of initial parameter values can greatly

influence the quality of the solution obtained by gradient descent.

In the next two sections, we present a review of the two training algorithms that fall in paradigm

presented above and which are empirically studied in this paper, in Section 6.

4. Stacked Restricted Boltzmann Machine Network

Intuitively, a successful learning algorithm for deep networks should be one that discovers a mean-

ingful and possibly complex hidden representation of the data at its top hidden layer. However,

learning such non-linear representations is a hard problem. A solution, proposed by Hinton (2006),

is based on the learning algorithm of the restricted Boltzmann machine (RBM) (Smolensky, 1986),

a generative model that uses a layer of binary variables to explain its input data. In an RBM (see

7

Pseudocode:
pré-entraînement

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

Acknowledgments

The author are particularly grateful for the inspiration from and constructive discussions with Dan

Popovici, Aaron Courville, Olivier Delalleau, James Bergstra, and Dumitru Erhan. The authors also

want to thank the editor and reviewers for their helpful comments and suggestions. This research

was performed thanks to funding from NSERC, MITACS, and the Canada Research Chairs.

Appendix A. Pseudocode for Greedy Layer-Wise Training Paradigm

Input: training set D = {(xt ,yt)}Tt=1, pre-training learning rate !pre-train and fine-tuning learning
rate !fine-tune

Initialize weightsWi
jk ∼U(−a−0.5,a−0.5) with a=max(|ĥi−1|, |ĥi|) and set biases bi to 0

% Pre-training phase

for i ∈ {1, . . . , l} do
while Pre-training stopping criterion is not met do

Pick input example xt from training set

ĥ0(xt) ← xt
for j ∈ {1, . . . , i−1} do
a j(xt) = b j +W jĥ j−1(xt)
ĥ j(xt) = sigm

(
a j(xt)

)

end for

Using ĥi−1(xt) as input example, update weightsWi and biases bi−1, bi with learning rate
!pre-train according to a layer-wise unsupervised criterion (see pseudocodes in appendices B

and C)

end while

end for

% Fine-tuning phase

while Fine-tuning stopping criterion is not met do

Pick input example (xt ,yt) from training set

% Forward propagation

ĥ0(xt) ← xt
for i ∈ {1, . . . , l} do
ai(xt) = bi+Wiĥi−1(xt)
ĥi(xt) = sigm

(
ai(xt)

)

end for

al+1(xt) = bl+1+Wl+1ĥl(xt)
o(xt) = ĥl+1(xt) = softmax

(
al+1(xt)

)

% Backward gradient propagation and parameter update
! logoyt (xt)
!al+1j (xt)

← 1yt= j−o j(xt) for j ∈ {1, . . . ,K}

30

Pseudocode:
raffinement supervisé

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

Acknowledgments

The author are particularly grateful for the inspiration from and constructive discussions with Dan

Popovici, Aaron Courville, Olivier Delalleau, James Bergstra, and Dumitru Erhan. The authors also

want to thank the editor and reviewers for their helpful comments and suggestions. This research

was performed thanks to funding from NSERC, MITACS, and the Canada Research Chairs.

Appendix A. Pseudocode for Greedy Layer-Wise Training Paradigm

Input: training set D = {(xt ,yt)}Tt=1, pre-training learning rate !pre-train and fine-tuning learning
rate !fine-tune

Initialize weightsWi
jk ∼U(−a−0.5,a−0.5) with a=max(|ĥi−1|, |ĥi|) and set biases bi to 0

% Pre-training phase

for i ∈ {1, . . . , l} do
while Pre-training stopping criterion is not met do

Pick input example xt from training set

ĥ0(xt) ← xt
for j ∈ {1, . . . , i−1} do
a j(xt) = b j +W jĥ j−1(xt)
ĥ j(xt) = sigm

(
a j(xt)

)

end for

Using ĥi−1(xt) as input example, update weightsWi and biases bi−1, bi with learning rate
!pre-train according to a layer-wise unsupervised criterion (see pseudocodes in appendices B

and C)

end while

end for

% Fine-tuning phase

while Fine-tuning stopping criterion is not met do

Pick input example (xt ,yt) from training set

% Forward propagation

ĥ0(xt) ← xt
for i ∈ {1, . . . , l} do
ai(xt) = bi+Wiĥi−1(xt)
ĥi(xt) = sigm

(
ai(xt)

)

end for

al+1(xt) = bl+1+Wl+1ĥl(xt)
o(xt) = ĥl+1(xt) = softmax

(
al+1(xt)

)

% Backward gradient propagation and parameter update
! logoyt (xt)
!al+1j (xt)

← 1yt= j−o j(xt) for j ∈ {1, . . . ,K}

30

...

Pseudocode:
raffinement supervisé

...

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

Acknowledgments

The author are particularly grateful for the inspiration from and constructive discussions with Dan

Popovici, Aaron Courville, Olivier Delalleau, James Bergstra, and Dumitru Erhan. The authors also

want to thank the editor and reviewers for their helpful comments and suggestions. This research

was performed thanks to funding from NSERC, MITACS, and the Canada Research Chairs.

Appendix A. Pseudocode for Greedy Layer-Wise Training Paradigm

Input: training set D = {(xt ,yt)}Tt=1, pre-training learning rate !pre-train and fine-tuning learning
rate !fine-tune

Initialize weightsWi
jk ∼U(−a−0.5,a−0.5) with a=max(|ĥi−1|, |ĥi|) and set biases bi to 0

% Pre-training phase

for i ∈ {1, . . . , l} do
while Pre-training stopping criterion is not met do

Pick input example xt from training set

ĥ0(xt) ← xt
for j ∈ {1, . . . , i−1} do
a j(xt) = b j +W jĥ j−1(xt)
ĥ j(xt) = sigm

(
a j(xt)

)

end for

Using ĥi−1(xt) as input example, update weightsWi and biases bi−1, bi with learning rate
!pre-train according to a layer-wise unsupervised criterion (see pseudocodes in appendices B

and C)

end while

end for

% Fine-tuning phase

while Fine-tuning stopping criterion is not met do

Pick input example (xt ,yt) from training set

% Forward propagation

ĥ0(xt) ← xt
for i ∈ {1, . . . , l} do
ai(xt) = bi+Wiĥi−1(xt)
ĥi(xt) = sigm

(
ai(xt)

)

end for

al+1(xt) = bl+1+Wl+1ĥl(xt)
o(xt) = ĥl+1(xt) = softmax

(
al+1(xt)

)

% Backward gradient propagation and parameter update
! logoyt (xt)
!al+1j (xt)

← 1yt= j−o j(xt) for j ∈ {1, . . . ,K}

30

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

b
l+1 ← b

l+1+ !fine-tune
! logoyt (xt)
!al+1(xt)

W
l+1 ←W

l+1+ !fine-tune
! logoyt (xt)
!al+1(xt)

ĥ
l(xt)T

for i ∈ {1, . . . , l}, in decreasing order do
! logoyt (xt)
!ĥi(xt)

←
(
W

i+1)T ! logoyt (xt)
!ai+1(xt)

! logoyt (xt)
!aij(xt)

← ! logoyt (xt)
!ĥij(xt)

ĥij(xt)
(
1− ĥij(xt)

)
for j ∈ {1, . . . , |ĥi|}

b
i ← b

i+ !fine-tune
! logoyt (xt)

!ai

W
i ←W

i+ !fine-tune
! logoyt (xt)

!ai
ĥ
i−1(xt)T

end for

end while

In the first step of the gradient computation, one has to be careful to compute the gradient

of the cost with respect to al+1(xt) at once, in order not to lose numerical precision during the
computation. In particular, computing

! logoyt (xt)
!o(xt) first, then

!o(xt)
!al+1(xt)

and applying chain-rule, leads to

numerical instability and sometimes parameter value explosion (NaN).

Appendix B. Restricted Boltzmann Machines and Deep Belief Networks

In this section, we give a brief overview of restricted Boltzmann machines and deep belief networks.

B.1 Restricted Boltzmann Machine

A restricted Boltzmann machine is an energy-based generative model defined over a visible layer

v (sometimes called input) and a hidden layer h (sometimes called hidden factors or representa-

tion). Given an energy function energy(v,h) on the whole set of visible and hidden units, the joint
probability is given by

p(v,h) =
e−energy(v,h)

Z
(6)

where Z ensures that p(v,h) is a valid distribution and sums to one. See Figure 3 for an illustration
of an RBM.

Typically we take hi ∈ {0,1}, but other choices are possible. For now, we consider only binary
units, that is, vi ∈ {0,1} (the continuous case will be discussed in Section 7), where the energy
function has the form

energy(v,h) = −hTWv− cTv−bT
h= −!

k

ckvk−!
j

b jh j−!
jk

Wjkvkh j . (7)

When considering the marginal distribution over v, we obtain a mixture distribution

p(v) =!
h

p(v,h) =!
h

p(v|h)p(h)

with a number of parameters linear in the number of hidden units H, while having a number of

components exponential in H. This is because h can take as many as 2H possible values. The 2H

distributions p(v|h) will in general be different, but they are tied. Though computing exactly the
marginal p(v) for large values of H is impractical, a good estimator of the log-likelihood gradient

31

Restricted Boltzmann Machine

Fonction
d’énergie

unités cachées
(binaires)

unités visibles
(binaires)

Distribution: p(x,h) = exp(−E(x,h))/Z

x

h

W

bj

connexionsbiais

ck

= −
∑

jk

Wjkhjxk −
∑

k

ckxk −
∑

j

bjhj

E(x,h) = −h!Wx− c!x− b!h
:

Inférence

x

h p(h|x) =
∏

j

p(hj |x)

x

h p(x|h) =
∏

k

p(xk|h)

(montrer preuve au tableau)

p(xk = 1|h) =
1

1 + exp(−(ck + h!W·k))

= sigm(ck + h!W·k)

p(hj = 1|x) =
1

1 + exp(−(bj + Wj·x))

= sigm(bj + Wj·x)

Inférence

+ + + + + +

x

h p(x) =
∑

h∈{0,1}H

p(x,h) =
∑

h∈{0,1}H

exp(−E(x,h))/Z

(montrer preuve au tableau)

“free energy”

∑

h∈{0,1}H

exp(−E(x,h))/Z =
∑

h1∈{0,1}

· · ·
∑

hH∈{0,1}

exp(−E(x,h))/Z

= exp




H∑

j=1

log(1 + exp(bj + Wj·x))



 /ZF

= exp(−F (x))/ZF

Classification Restricted
Boltzmann Machine

Fonction
d’énergie

unités cachées
(binaires)

unités visibles
(binaires)

Distribution:

x

h

W

bj

connexions

ck

= −
∑

jk

Wjkhjxk −
∑

k

ckxk −
∑

j

bjhj
:

p(x,h) = exp(−E(x,h))/Z

E(x,h) = −h!Wx− c!x− b!h

Classification Restricted
Boltzmann Machine

Fonction
d’énergie

unités cachées
(binaires)

unités visibles
(binaires)

Distribution:

x

h

W

bj

connexions

ck

= −
∑

jk

Wjkhjxk −
∑

k

ckxk −
∑

j

bjhj
:

= −h!Wx− c!x− b!h

Classification Restricted
Boltzmann Machine

Fonction
d’énergie

unités cachées
(binaires)

unités visibles
(binaires)

Distribution:

x

h

W

bj

connexions

ck

= −
∑

jk

Wjkhjxk −
∑

k

ckxk −
∑

j

bjhj
:

= −h!Wx− c!x− b!h

unités cibles
(multinomiales)

y 0 0 1 0

−
∑

jl

Ujlhjyl −
∑

l

alyl

−h!Uy − a!yE(x,h,y)

p(x,h,y) = exp(−E(x,h,y))/Z

U

Inférence

+ + + + + +

x

h

(montrer preuve au tableau)

y

p(y|x) =
∑

h∈{0,1}H

p(y,h|x) =
∑

h∈{0,1}H

p(y,h,x)
p(x)

=

∑
h∈{0,1}H p(y,h,x)

∑
y∗∈Y

∑
h∗∈{0,1}H p(x,h∗,y∗)

=
exp(−F (x,y))∑

y∗∈Y exp(−F (x,y∗))

Conditional Restricted
Boltzmann Machine

Fonction
d’énergie

unités cachées
(binaires)

unités visibles
(binaires)

Distribution:

x

h

W

bj

connexions

ck

= −
∑

jk

Wjkhjxk −
∑

k

ckxk −
∑

j

bjhj
:

p(x,h) = exp(−E(x,h))/Z

E(x,h) = −h!Wx− c!x− b!h

Conditional Restricted
Boltzmann Machine

Fonction
d’énergie

unités cachées
(binaires)

unités visibles
(binaires)

Distribution:

x

h

W

bj

connexions

ck

= −
∑

jk

Wjkhjxk −
∑

k

ckxk −
∑

j

bjhj
:

= −h!Wx− c!x− b!h

Conditional Restricted
Boltzmann Machine

Fonction
d’énergie

unités cachées
(binaires)

unités visibles
(binaires)

Distribution:

x

h

W

bj

connexions

ck

= −
∑

jk

Wjkhjxk −
∑

k

ckxk −
∑

j

bjhj
:

= −h!Wx− c!x− b!h

unités
conditionnelles

V

z

−
∑

jl

Vjlhjzl

−h!Vz

p(x,h|z) = exp(−E(x,h|z))/Z(z)

E(x,h|z)

Inférence

x

h

(montrer preuve au tableau)

z
p(hj = 1|x, z) =

1
1 + exp(−(bj + Wj·x + Vj·z))

= sigm(bj + Wj·x + Vj·z))

p(h|x, z) =
∏

j

p(hj |x, z)

x

p(x|h, z) = p(x|h) =
∏

k

p(xk|h)

Inférence: règle générale

+ + +

x

h

xcond

hmarg hinc

xinc

{ {

{ {

p(xinc,hinc) =

∑
hmarg

exp(E(xinc,hinc,hmarg|xcond))
∑

xinc

∑
hinc

∑
hmarg

exp(E(xinc,hinc,hmarg|xcond))

 : variables inconnues, dont la
 distribution nous intéresse

 : variables connues, qui
 conditionne la distribution
 de

 : variables inconnues,
 non-intéressante et
 que l’on marginalise

xcond

hmarg

xinc,hinc

Apprentissage
• Afin d’entraîner une RBM, on minimise la
 log-vraisemblance négative (NLL)

• On procède par descente de gradient (stochastique){ {
phase positive phase négative

Lgen(Dtrain) =
1
n

∑

xt∈Dtrain

− log p(xt)

∂ − log p(xt)
∂θ

= Eh

[
∂E(xt,h)

∂θ

∣∣∣xt

]
− Ex,h

[
∂E(x,h)

∂θ

]

Apprentissage

• En général, la phase positive est plutôt simple
 à calculer et ne présente pas de difficultés

• Tous les algorithmes d’apprentissage pour RBMs
 suivent le même principe général, et diffèrent
 seulement dans la façon d’estimer la phase négative

Ex,h

[
∂E(x,h)

∂θ

]

Contrastive Divergence (CD)
(Hinton, Neural Computation, 2002)

• Idée:

1. remplacer l’espérance par l’estimation en
un seul point

2. obtenir en échantillonnant

3. commencer la chaîne à

x̃, h̃

x̃, h̃

... xt

xt

h̃ = h0

x1 xk = x̃

hk = h̃

∼ p(h|x) ∼ p(x|h)

E(x,h)

Ex,h

[
∂E(x,h)

∂θ

]
≈ ∂E(x̃, h̃)

∂θ
Eh

[
∂E(xt,h)

∂θ

∣∣∣xt

]
≈ ∂E(xt, h̃t)

∂θ

(xt, h̃t) (x̃, h̃)

Contrastive Divergence (CD)
(Hinton, Neural Computation, 2002)

Ex,h

[
∂E(x,h)

∂θ

]
≈ ∂E(x̃, h̃)

∂θ
Eh

[
∂E(xt,h)

∂θ

∣∣∣xt

]
≈ ∂E(xt, h̃t)

∂θ

(xt, h̃t) (x̃, h̃)

p(x,h)

Contrastive Divergence (CD)
(Hinton, Neural Computation, 2002)

• CD-k: contrastive divergence avec k
 itérations d’échantillonnage de
 Gibbs

• En général, plus k est grand, moins biaisé
est l’estimation du gradient

• En pratique, k=1 marche assez bien

• Dans le cas d’une RBM, les mises à jour de
paramètres ne dépendront pas de

Contrastive Divergence (CD)
(Hinton, Neural Computation, 2002)

h̃

• Calcul de pour

Dérivation de la règle
d’apprentissage

∂E(x,h)
∂θ

θ = Wjk

∂E(x,h)
∂Wjk

=
∂

∂Wjk



−
∑

jk

Wjkhjxk −
∑

k

ckxk −
∑

j

bjhj





= − ∂

∂Wjk

∑

jk

Wjkhjxk

= −hjxk

∂E(x,h)
∂W

= −h x!

• Calcul de pour Eh

[
∂E(x,h)

∂θ

∣∣∣x
]

θ = Wjk

Eh

[
∂E(x,h)

∂Wjk

∣∣∣x
]

= Eh

[
−hjxk

∣∣∣x
]

=
∑

hj∈{0,1}

−hjxkp(hj |x)

Eh

[
∂E(x,h)

∂W

∣∣∣x
]

= −h(x) x!

Dérivation de la règle
d’apprentissage

h(x)def
=

(
p(h1=1|x)

...
p(hH=1|x)

)

= sigm(b + Wx)

= −xkp(hj = 1|x)

• Ainsi, étant donné et , la règle
d’apprentissage pour devient

Dérivation de la règle
d’apprentissage

xt x̃
θ = W

W←W − ε

(
−∂ log p(xt)

∂W

)

←W + ε
(
h(xt) x!t − h(x̃) x̃!

)

←W − ε

(
Eh

[
∂E(xt,h)

∂W

∣∣∣xt

]
− Eh

[
∂E(x,h)

∂W

∣∣∣x̃
])

←W − ε

(
Eh

[
∂E(xt,h)

∂W

∣∣∣xt

]
− Ex,h

[
∂E(x,h)

∂W

])

Pseudocode CD-k

1. Pour chaque exemple d’entraînement

i. générer un échantillon négatif
à l’aide de k itérations d’échantillonnage
de Gibbs

ii. mettre à jour les paramètres

2. Si n’a pas convergé, revenir à 1

xt

x̃

W←W + ε
(
h(xt) x!t − h(x̃) x̃!

)

b← b + ε (h(xt)− h(x̃))
c← c + ε (xt − x̃)

Autres algorithmes d’apprenttisage:
Mean-Field CD (MF-CD)

(Welling and Hinton, ICANN2002)

• Idée: plutôt qu’échantillonner, utiliser la
 moyenne des éléments d’une couche
 étant donnée l’entre couche

...

xt

h̃ = h0

x1 xk = x̃

hk = h̃

∼ p(h|x) ∼ p(x|h)

Autres algorithmes d’apprenttisage:
Mean-Field CD (MF-CD)

(Welling and Hinton, ICANN2002)

• Idée: plutôt qu’échantillonner, utiliser la
 moyenne des éléments d’une couche
 étant donnée l’entre couche

...

xt

h̃ = h0

x1 xk = x̃

hk = h̃

Autres algorithmes d’apprenttisage:
Mean-Field CD (MF-CD)

(Welling and Hinton, ICANN2002)

• Idée: plutôt qu’échantillonner, utiliser la
 moyenne des éléments d’une couche
 étant donnée l’entre couche

...

xt

h̃ = h0

x1 xk = x̃

hk = h̃

x(h)def
= sigm(c + W!h)h(x)def

= sigm(b + Wx)

h(x) x(h)

Autres algorithmes d’apprenttisage:
Persistent CD (PCD)

(Tieleman, ICML2008)

• Idée: plutôt que d’initialiser la chaîne de
Gibbs à , initialiser à de l’itération
précédente

...

xt

h̃ = h0

x1 xk = x̃

hk = h̃

∼ p(h|x) ∼ p(x|h)

xt x̃

Autres algorithmes d’apprenttisage:
Persistent CD (PCD)

(Tieleman, ICML2008)

• Idée: plutôt que d’initialiser la chaîne de
Gibbs à , initialiser à de l’itération
précédente

...h̃ = h0

x1 xk = x̃

hk = h̃

∼ p(h|x) ∼ p(x|h)

xt x̃

Autres algorithmes d’apprenttisage:
Persistent CD (PCD)

(Tieleman, ICML2008)

• Idée: plutôt que d’initialiser la chaîne de
Gibbs à , initialiser à de l’itération
précédente

...h̃ = h0

x1 xk = x̃

hk = h̃

∼ p(h|x) ∼ p(x|h)

xt x̃

provient de
l’itération précédente

x̃

Exemple de données: MNIST
LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Samples from the MNIST digit recognition data set. Here, a black pixel corresponds to

an input value of 0 and a white pixel corresponds to 1 (the inputs are scaled between 0

and 1).

1. To what extent does initializing greedily the parameters of the different layers help?

2. How important is unsupervised learning for this procedure?

To address these two questions, we will compare the learning algorithms for deep networks of

Sections 4 and 5 with the following algorithms.

6.1.1 DEEP NETWORK WITHOUT PRE-TRAINING

To address the first question above, we compare the greedy layer-wise algorithm with a more stan-

dard way to train neural networks: using standard backpropagation and stochastic gradient descent,

and starting at a randomly initialized configuration of the parameters. In other words, this variant

simply puts away the pre-training phase of the other deep network learning algorithms.

6.1.2 DEEP NETWORK WITH SUPERVISED PRE-TRAINING

To address the second question, we run an experiment with the following algorithm. We greedily

pre-train the layers using a supervised criterion (instead of the unsupervised one), before performing

as before a final supervised fine-tuning phase. Specifically, when greedily pre-training the param-

eters Wi and bi, we also train another set of weights Vi and biases ci which connect hidden layer

ĥ
i(x) to a temporary output layer as follows:

oi(x) = f
(
c
i+Viĥi(x)

)

12

Comparaison d’algorithmes
(Tieleman, ICML2008)

Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

mate for each of the units. As a result, we found that
using mini-batches of 50 training points instead of 100
took only a little bit more time per training point,
and did allow updating the model parameters almost
twice as often, which is preferable in the mini-batch
optimization procedure.

4.5. Other Technical Details

The learning rates used in the experiments are not
constant. In practice, decaying learning rates often
work better. In these experiments, the learning rate
was linearly decayed from some initial learning rate to
zero, over the duration of the learning. Preliminary
experiments showed that this works better than the
1
t

schedule suggested in theoretical work by (Robbins
& Monro, 1951), which is preferable when infinitely
much time is available for the optimization.

Some experiment parameters, such as the number of
hidden units, and the size of the mini-batches, were
fixed. However, the initial learning rate was chosen
using a validation set, as was weight decay for the
(shorter) experiments on the spam, horses, MNIST
patches, and artificial data sets. For each algorithm,
each task, and each training duration, 30 runs were
performed with evaluation on validation data, trying
to find the settings that worked best. Then a choice of
initial learning rate and, for the shorter experiments,
weight decay, were made, and with those chosen set-
tings, 10 more runs were performed, evaluating on test
data. This provided 10 test performance numbers,
which were summarized by their average and standard
deviation (shown as error bars).

5. Results

5.1. The three MNIST Tasks

The results on the three MNIST tasks are shown in
Figures 1, 2, and 3.

It is clear that PCD outperforms the other algorithms.
PCD, CD-1, and MF CD all take approximately the
same amount of time per gradient estimate, with MF
CD being a little bit faster because it does not have
to create random numbers. CD-10 takes about four
times as long as PCD, CD-1, and MF CD, but it is
indeed better than CD-1.

While CD-1 is good for some purposes, it is substan-
tially different from the true likelihood gradient. This
can be seen by drawing samples from an RBM that
was trained with CD-1. Figure 4 shows those next to
samples drawn from an RBM that was trained using
PCD. It is clear that PCD is a better approximation

128sec 4min 8min 17min 34min 68min 2hr 4hr 9hr 18hr
!170

!165

!160

!155

!150

!145

!140

!135

!130

!125

CD!10

MF CD

CD!1

PCD

te
s
t

d
a

ta
 l
o

g
 l
ik

e
lih

o
o

d
 p

e
r

c
a

s
e

training time (logarithmic)

Figure 1. Modeling MNIST data with 25 hidden units (ex-
act log likelihood)

8min 17min 34min 68min 2hr 4hr 9hr 18hr 36hr 3days
!125

!120

!115

!110

!105

!100

!95

!90

!85

!80

CD!10

MF CD

CD!1

PCD

te
s
t

d
a

ta
 l
o

g
 l
ik

e
lih

o
o

d
 p

e
r

c
a

s
e

training time (logarithmic)

Figure 2. Modeling MNIST data with 500 hidden units
(approximate log likelihood)

Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

Figure 4. Samples from an RBM that was trained using PCD (left) and an RBM that was trained using CD-1 (right).
Clearly, CD-1 did not produce an accurate model of the MNIST digits. Notice, however, that some of the CD-1 samples
vaguely resemble a three.

128sec 4min 8min 17min 34min 68min 2hr 4hr

!350

!300

!250

!200

PCD

MF CD

CD!1

CD!10

te
s
t
d
a

ta
 l
o
g

 l
ik

e
lih

o
o

d
 p

e
r

c
a
s
e

training time (logarithmic)

Figure 7. Modeling horse segmentation data

PCD is a reasonable choice of training algorithm.

5.4. Modeling Horse Contours

In Figure 7 we see a different picture: PCD is not
the best algorithm here. The most plausible explana-
tion is that although the same amount of training time
was used, the data is much bigger: 1024 visible units,
and 500 hidden units. Thus, there were 20 times as
many connections in the RBM to be learned, which
also means processing one mini-batch took more than
10 times as long as for the artificial data. Thus, we

are essentially looking at a short optimization. Above,
we already saw that CD-10 is better than PCD when
little time is available, and that is confirmed here. We
conjecture that, given significantly more training time,
PCD would perform better than the other algorithms.

5.5. PCD on Fully Visible MRFs

To verify that PCD also works well with other mod-
els, we did some experiments with fully visible, fully
connected MRFs. To be able to have exact test data
likelihood evaluation, we made the MRFs small, and
modeled 5 by 5 pixel patches from the MNIST digit
images.

Pseudo-Likelihood (PL) training works reasonably
well on this data set, but it does not produce the best
probability models. Presumably this is simply because
PL optimizes a different objective function. As a re-
sult, PL needed early stopping to prevent diverging
too much from the data likelihood objective function,
and the optimal learning rates are more or less in-
versely proportional to the duration of the optimiza-
tion. Even with only a few seconds training time, the
best test data likelihood is already achieved: −5.35.

PCD training does go more in the direction of the data
likelihood function - asymptotically it gives its exact
gradient. Thus, PCD did profit from having more time
to run. Figure 8 shows the performance. The asymp-
totic value of approximately −5.15 does seem to be
the best possible model: we also used exact gradient

Échantillons générés (RBMs)
(Tieleman, ICML2008)

Filtres
(Larochelle et al., JMLR2009)

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Display of the input weights of a random subset of the hidden units, learned by an RBM

when trained on samples from the MNIST data set. The activation of units of the first

hidden layer is obtained by a dot product of such a weight “image” with the input image.

In these images, a black pixel corresponds to a weight smaller than −3 and a white pixel
to a weight larger than 3, with the different shades of gray corresponding to different

weight values uniformly between −3 and 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: Input weights of a random subset of the hidden units, learned by an autoassociator when

trained on samples from the MNIST data set. The display setting is the same as for

Figure 6.

16

Extension à des unités non-binaires
(Bengio et al., NIPS2007)

• Unités réelles entre 0 et 1

★ Peut utiliser la même fonction d’énergie

★ Obtient des intégrales plutôt que des
sommes sur les valeurs de

• Unités réelles Gaussiennes

★ Ajout d’un terme quadratique à la
fonction d’énergie

• Plusieurs autres possibilités

x

x
x

Filtres (trunc. exp.)
(Larochelle et al., JMLR2009)

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 11: Input weights of a random subset of the hidden units, learned by an RBM with truncated

exponential visible units, when trained on samples from the MNIST data set. The top

and bottom images correspond to the same filters but with different color scale. On the

top, the display setup is the same as for Figures 6 and 7 and, on the bottom, a black and

white pixel correspond to weights smaller than −30 and larger than 30 respectively.

The contrastive divergence updates have the same form as for binary units of Equation 11,

since the updates only depend on the derivative of the energy with respect to the parameters. Only

sampling is changed, according to the unit’s conditional density. Figure 11 shows the filters learned

by an RBM with truncated exponential visible units, when trained on MNIST samples. Note how

these are strikingly different from those obtained with binomial units.

22

Filtres (Gauss.)
(Larochelle et al., JMLR2009)

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12: Input weights of a random subset of the hidden units, learned by an RBM with Gaussian

visible units, when trained on samples from the MNIST data set. The top and bottom

images correspond to the same filters but with different color scale. On top, the display

setup is the same as for Figures 6 and 7 and, on the bottom, a black and white pixel

correspond to weights smaller than −10 and larger than 10 respectively.

24

Comparaison

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 13: Samples from the modified MNIST digit recognition data set with a background con-

taining image patches. Here, a black pixel corresponds to an input value of 0 and a white

pixel corresponds to 1 (the inputs are scaled between 0 and 1).

SRBM input type Train. Valid. Test

Bernoulli 10.50% 18.10% 20.29%

Gaussian 0% 20.50% 21.36%

Truncated exponential 0% 14.30% 14.34%

Table 5: Classification error on MNIST with background containing patches of images (see Fig-

ure 13) on the training, validation, and test sets, for different distributions of the input

layer for the bottom RBM. The best hyperparameters were selected according to the vali-

dation error.

It is not clear which of the two approaches (generating or encoding) is the most appropriate. The

advantage of a generative model is that the assumptions that are made are usually clear. However,

it is possible that the problem it is trying to solve is harder than it needs to be, since ultimately we

are only interested in coming up with good representations or features of the input. For instance, if

one is interested in finding appropriate clusters in a very high dimensional space, using a mixture of

Gaussians with full covariance matrix can quickly become too computationally intensive, whereas

using the simple k-means algorithm might do a good enough job. As for encoding models, they

do not require to be interpretable as a generative model and they can be more flexible because any

parametric or non-parametric form can be chosen for the encoder and decoder, as long as they are

differentiable.

25

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 13: Samples from the modified MNIST digit recognition data set with a background con-

taining image patches. Here, a black pixel corresponds to an input value of 0 and a white

pixel corresponds to 1 (the inputs are scaled between 0 and 1).

SRBM input type Train. Valid. Test

Bernoulli 10.50% 18.10% 20.29%

Gaussian 0% 20.50% 21.36%

Truncated exponential 0% 14.30% 14.34%

Table 5: Classification error on MNIST with background containing patches of images (see Fig-

ure 13) on the training, validation, and test sets, for different distributions of the input

layer for the bottom RBM. The best hyperparameters were selected according to the vali-

dation error.

It is not clear which of the two approaches (generating or encoding) is the most appropriate. The

advantage of a generative model is that the assumptions that are made are usually clear. However,

it is possible that the problem it is trying to solve is harder than it needs to be, since ultimately we

are only interested in coming up with good representations or features of the input. For instance, if

one is interested in finding appropriate clusters in a very high dimensional space, using a mixture of

Gaussians with full covariance matrix can quickly become too computationally intensive, whereas

using the simple k-means algorithm might do a good enough job. As for encoding models, they

do not require to be interpretable as a generative model and they can be more flexible because any

parametric or non-parametric form can be chosen for the encoder and decoder, as long as they are

differentiable.

25

Et si on ne veut pas
utiliser des RBMs?

Autoencodeurs
EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

x

c k

bj

x

W

W*

^

h(x)
^

Figure 4: Illustration of an autoassociator and its parameters. W is the matrix of encoder weights

andW∗ the matrix of decoder weights. ĥ(x) is the code or representation of x.

representation of x is a code ĥ(x) obtained from the encoding function

ĥ j(x) = f (a j) where a j(x) = b j +!
k

Wjkxk . (3)

The input’s reconstruction is obtained from a decoding function, here a linear transformation

of the hidden representation with weight matrix W∗, possibly followed by a non-linear activation
function:

x̂k = g(âk) where âk = ck +!
j

W ∗
jkĥ j(x) .

In this work, we used the sigmoid activation function for both f (·) and g(·). Figure 4 shows an
illustration of this model.

By noticing the similarity between Equations 3 and 1, we are then able to use the training

algorithm for autoassociators as the unsupervised learning algorithm for the greedy layer-wise ini-

tialization phase of deep networks. In this paper, stacked autoassociators (SAA) networks will

refer to deep networks trained using the procedure of Section 3.2 and the learning algorithm of an

autoassociator for each layer, as described in Section 5.1.

Though these neural networks were designed with the goal of dimensionality reduction in mind,

the new representation’s dimensionality does not necessarily need to be lower than the input’s in

practice. However, in that particular case, some care must be taken so that the network does not

learn a trivial identity function, that is, finds weights that simply “copy” the whole input vector in

the hidden layer and then copy it again at the output. For example, a network with small weightsW jk

between the input and hidden layers (maintaining activations in the linear regime of the activation

function f) and large weights W ∗
jk between the hidden and output layers could encode such an

uninteresting identity function. An easy way to avoid such a pathological behavior in the case

of continuous inputs is to set the weight matrices WT and W∗ to be the same. This adjustment
is motivated by its similarity with the parametrization of the RBM model and by an empirical

observation that WT and W∗ tend to be similar up to a multiplicative factor after training. In

9

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

x

c k

bj

x

W

W*

^

h(x)
^

Figure 4: Illustration of an autoassociator and its parameters. W is the matrix of encoder weights

andW∗ the matrix of decoder weights. ĥ(x) is the code or representation of x.

representation of x is a code ĥ(x) obtained from the encoding function

ĥ j(x) = f (a j) where a j(x) = b j +!
k

Wjkxk . (3)

The input’s reconstruction is obtained from a decoding function, here a linear transformation

of the hidden representation with weight matrix W∗, possibly followed by a non-linear activation
function:

x̂k = g(âk) where âk = ck +!
j

W ∗
jkĥ j(x) .

In this work, we used the sigmoid activation function for both f (·) and g(·). Figure 4 shows an
illustration of this model.

By noticing the similarity between Equations 3 and 1, we are then able to use the training

algorithm for autoassociators as the unsupervised learning algorithm for the greedy layer-wise ini-

tialization phase of deep networks. In this paper, stacked autoassociators (SAA) networks will

refer to deep networks trained using the procedure of Section 3.2 and the learning algorithm of an

autoassociator for each layer, as described in Section 5.1.

Though these neural networks were designed with the goal of dimensionality reduction in mind,

the new representation’s dimensionality does not necessarily need to be lower than the input’s in

practice. However, in that particular case, some care must be taken so that the network does not

learn a trivial identity function, that is, finds weights that simply “copy” the whole input vector in

the hidden layer and then copy it again at the output. For example, a network with small weightsW jk

between the input and hidden layers (maintaining activations in the linear regime of the activation

function f) and large weights W ∗
jk between the hidden and output layers could encode such an

uninteresting identity function. An easy way to avoid such a pathological behavior in the case

of continuous inputs is to set the weight matrices WT and W∗ to be the same. This adjustment
is motivated by its similarity with the parametrization of the RBM model and by an empirical

observation that WT and W∗ tend to be similar up to a multiplicative factor after training. In

9

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

x

c k

bj

x

W

W*

^

h(x)
^

Figure 4: Illustration of an autoassociator and its parameters. W is the matrix of encoder weights

andW∗ the matrix of decoder weights. ĥ(x) is the code or representation of x.

representation of x is a code ĥ(x) obtained from the encoding function

ĥ j(x) = f (a j) where a j(x) = b j +!
k

Wjkxk . (3)

The input’s reconstruction is obtained from a decoding function, here a linear transformation

of the hidden representation with weight matrix W∗, possibly followed by a non-linear activation
function:

x̂k = g(âk) where âk = ck +!
j

W ∗
jkĥ j(x) .

In this work, we used the sigmoid activation function for both f (·) and g(·). Figure 4 shows an
illustration of this model.

By noticing the similarity between Equations 3 and 1, we are then able to use the training

algorithm for autoassociators as the unsupervised learning algorithm for the greedy layer-wise ini-

tialization phase of deep networks. In this paper, stacked autoassociators (SAA) networks will

refer to deep networks trained using the procedure of Section 3.2 and the learning algorithm of an

autoassociator for each layer, as described in Section 5.1.

Though these neural networks were designed with the goal of dimensionality reduction in mind,

the new representation’s dimensionality does not necessarily need to be lower than the input’s in

practice. However, in that particular case, some care must be taken so that the network does not

learn a trivial identity function, that is, finds weights that simply “copy” the whole input vector in

the hidden layer and then copy it again at the output. For example, a network with small weightsW jk

between the input and hidden layers (maintaining activations in the linear regime of the activation

function f) and large weights W ∗
jk between the hidden and output layers could encode such an

uninteresting identity function. An easy way to avoid such a pathological behavior in the case

of continuous inputs is to set the weight matrices WT and W∗ to be the same. This adjustment
is motivated by its similarity with the parametrization of the RBM model and by an empirical

observation that WT and W∗ tend to be similar up to a multiplicative factor after training. In

9

Autoencodeurs

• Coût à optimiser

★ Somme des erreurs au carré

★ “Cross-entropy”

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

the case of binary inputs, if the weights are large, the input vector can still be copied (up to a

permutation of the elements) to the hidden units, and in turn these used to perfectly reconstruct the

input. Weight decay can be useful to prevent such a trivial and uninteresting mapping to be learned,

when the inputs are binary. We setWT =W∗ in all of our experiments. Vincent et al. (2008) have
an improved way of training autoassociators in order to produce interesting, non-trivial features in

the hidden layer, by partially corrupting the network’s inputs.

The reconstruction error of an autoassociator can be connected to the log-likelihood of an RBM

in several ways. Ranzato et al. (2008) connect the log of the numerator of the input likelihood with

a form of reconstruction error (where one replaces the sum over hidden unit configurations by a

maximization). The denominator is the normalization constant summing over all input configura-

tions the same expression as in the numerator. So whereas maximizing the numerator is similar to

minimizing reconstruction error for the training examples, minimizing the denominator means that

most input configurations should not be reconstructed well. This can be achieved if the autoassoci-

ator is constrained in such a way that it cannot compute the identity function, but only minimizes

the reconstruction for training examples.

Another connection between reconstruction error and log-likelihood of the RBM was made in

Bengio and Delalleau (2007). They consider a converging series expansion of the log-likelihood

gradient and show that whereas CD-k truncates the series by keeping the first 2k terms and then

approximates expectations by a single sample, reconstruction error is a mean-field approximation

of the first term in that series.

5.1 Learning in an Autoassociator Network

Training an autoassociator network is almost identical to training a standard artificial neural net-

work. Given a cost function, backpropagation is used to compute gradients and perform gradient

descent. However, autoassociators are “self-supervised”, meaning that the target to which the output

of the autoassociator is compared is the input that it was fed.

Previous work on autoassociators minimized the squared reconstruction error:

C(x̂,x) =!
k

(x̂k− xk)2 .

However, with squared reconstruction error and linear decoder, the “optimal codes” (the implicit

target for the encoder, irrespective of the encoder) are in the span of the principal eigenvectors of

the input covariance matrix. When we introduce a saturating non-linearity such as the sigmoid,

and we want to reconstruct values [0,1], the binomial KL divergence (also known as cross-entropy)
seems more appropriate:

C(x̂,x) = −!
k

(xk log(x̂k)+(1− xk) log(1− x̂k)) . (4)

It corresponds to the assumption that x̂ and x can be interpreted as factorized distributions over

binary units. It is well known that the cross-entropy −p log(q)− (1− p) log(1− q) between two
binary distributions parametrized by p and q is minimized when q = p (for a fixed p), making it

an appropriate cost function to evaluate the quality of a reconstruction. We used this cost function

in all the experiments with SAA networks. Appendix C details the corresponding autoassociator

training update.

10

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

the case of binary inputs, if the weights are large, the input vector can still be copied (up to a

permutation of the elements) to the hidden units, and in turn these used to perfectly reconstruct the

input. Weight decay can be useful to prevent such a trivial and uninteresting mapping to be learned,

when the inputs are binary. We setWT =W∗ in all of our experiments. Vincent et al. (2008) have
an improved way of training autoassociators in order to produce interesting, non-trivial features in

the hidden layer, by partially corrupting the network’s inputs.

The reconstruction error of an autoassociator can be connected to the log-likelihood of an RBM

in several ways. Ranzato et al. (2008) connect the log of the numerator of the input likelihood with

a form of reconstruction error (where one replaces the sum over hidden unit configurations by a

maximization). The denominator is the normalization constant summing over all input configura-

tions the same expression as in the numerator. So whereas maximizing the numerator is similar to

minimizing reconstruction error for the training examples, minimizing the denominator means that

most input configurations should not be reconstructed well. This can be achieved if the autoassoci-

ator is constrained in such a way that it cannot compute the identity function, but only minimizes

the reconstruction for training examples.

Another connection between reconstruction error and log-likelihood of the RBM was made in

Bengio and Delalleau (2007). They consider a converging series expansion of the log-likelihood

gradient and show that whereas CD-k truncates the series by keeping the first 2k terms and then

approximates expectations by a single sample, reconstruction error is a mean-field approximation

of the first term in that series.

5.1 Learning in an Autoassociator Network

Training an autoassociator network is almost identical to training a standard artificial neural net-

work. Given a cost function, backpropagation is used to compute gradients and perform gradient

descent. However, autoassociators are “self-supervised”, meaning that the target to which the output

of the autoassociator is compared is the input that it was fed.

Previous work on autoassociators minimized the squared reconstruction error:

C(x̂,x) =!
k

(x̂k− xk)2 .

However, with squared reconstruction error and linear decoder, the “optimal codes” (the implicit

target for the encoder, irrespective of the encoder) are in the span of the principal eigenvectors of

the input covariance matrix. When we introduce a saturating non-linearity such as the sigmoid,

and we want to reconstruct values [0,1], the binomial KL divergence (also known as cross-entropy)
seems more appropriate:

C(x̂,x) = −!
k

(xk log(x̂k)+(1− xk) log(1− x̂k)) . (4)

It corresponds to the assumption that x̂ and x can be interpreted as factorized distributions over

binary units. It is well known that the cross-entropy −p log(q)− (1− p) log(1− q) between two
binary distributions parametrized by p and q is minimized when q = p (for a fixed p), making it

an appropriate cost function to evaluate the quality of a reconstruction. We used this cost function

in all the experiments with SAA networks. Appendix C details the corresponding autoassociator

training update.

10

Même chose
que faire de

la PCA!!

Pseudocode:
autoencodeur

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the

SRBM network. When all layers of a DBN have the same size, it was actually shown that this

initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After

this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm

for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,

Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief

networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network

described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weightsWi and biases bi−1,bi and learning rate !

% Set autoassociator parameters

W←Wi, b← bi, c← bi−1

% Forward propagation

a(x) ← b+Wx
h(x) ← sigm(a(x))
â(x) ← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
!C(x̂,x)
!â(x) ← x̂−x
!C(x̂,x)
!ĥ(x)

←W
!C(x̂,x)
!â(x)

!C(x̂,x)
!a j(x) ← !C(x̂,x)

!ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi ←Wi− !

(
!C(x̂,x)
!a(x) x

T + ĥ(x) !C(x̂,x)
!â(x)

T
)

bi ← bi− !
!C(x̂,x)
!a(x)

bi−1 ← bi−1− !
!C(x̂,x)
!â(x)

References

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima for single

neurons. In M. Mozer, D. S. Touretzky, and M. Perrone, editors, Advances in Neural Information

Processing System 8, pages 315–322. MIT Press, Cambridge, MA, 1996.

35

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the

SRBM network. When all layers of a DBN have the same size, it was actually shown that this

initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After

this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm

for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,

Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief

networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network

described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weightsWi and biases bi−1,bi and learning rate !

% Set autoassociator parameters

W←Wi, b← bi, c← bi−1

% Forward propagation

a(x) ← b+Wx
h(x) ← sigm(a(x))
â(x) ← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
!C(x̂,x)
!â(x) ← x̂−x
!C(x̂,x)
!ĥ(x)

←W
!C(x̂,x)
!â(x)

!C(x̂,x)
!a j(x) ← !C(x̂,x)

!ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi ←Wi− !

(
!C(x̂,x)
!a(x) x

T + ĥ(x) !C(x̂,x)
!â(x)

T
)

bi ← bi− !
!C(x̂,x)
!a(x)

bi−1 ← bi−1− !
!C(x̂,x)
!â(x)

References

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima for single

neurons. In M. Mozer, D. S. Touretzky, and M. Perrone, editors, Advances in Neural Information

Processing System 8, pages 315–322. MIT Press, Cambridge, MA, 1996.

35

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the

SRBM network. When all layers of a DBN have the same size, it was actually shown that this

initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After

this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm

for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,

Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief

networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network

described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weightsWi and biases bi−1,bi and learning rate !

% Set autoassociator parameters

W←Wi, b← bi, c← bi−1

% Forward propagation

a(x) ← b+Wx
h(x) ← sigm(a(x))
â(x) ← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
!C(x̂,x)
!â(x) ← x̂−x
!C(x̂,x)
!ĥ(x)

←W
!C(x̂,x)
!â(x)

!C(x̂,x)
!a j(x) ← !C(x̂,x)

!ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi ←Wi− !

(
!C(x̂,x)
!a(x) x

T + ĥ(x) !C(x̂,x)
!â(x)

T
)

bi ← bi− !
!C(x̂,x)
!a(x)

bi−1 ← bi−1− !
!C(x̂,x)
!â(x)

References

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima for single

neurons. In M. Mozer, D. S. Touretzky, and M. Perrone, editors, Advances in Neural Information

Processing System 8, pages 315–322. MIT Press, Cambridge, MA, 1996.

35

...

...

93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.6 – Display of the input weights of a random subset of the hidden units, learned

by an RBM when trained on samples from the MNIST dataset. The activation of units

of the first hidden layer is obtained by a dot product of such a weight “image” with the

input image. In these images, a black pixel corresponds to a weight smaller than −3 and
a white pixel to a weight larger than 3, with the different shades of gray corresponding

to different weight values uniformly between −3 and 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.7 – Input weights of a random subset of the hidden units, learned by an autoas-

sociator when trained on samples from the MNIST dataset. The display setting is the

same as for Figure 6.6.

93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.6 – Display of the input weights of a random subset of the hidden units, learned

by an RBM when trained on samples from the MNIST dataset. The activation of units

of the first hidden layer is obtained by a dot product of such a weight “image” with the

input image. In these images, a black pixel corresponds to a weight smaller than −3 and
a white pixel to a weight larger than 3, with the different shades of gray corresponding

to different weight values uniformly between −3 and 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.7 – Input weights of a random subset of the hidden units, learned by an autoas-

sociator when trained on samples from the MNIST dataset. The display setting is the

same as for Figure 6.6.

Filtres (autoencodeur)
(Larochelle et al., JMLR2009)

Encoder vs. Générer

• En empilant des RBMs, il est possible que
l’information se perde

• Pourrait combiner les critères de la RBM et
de l’autoencodeur

• Sur MNIST, erreur tombe à 1.1%

“Denoising Autoencoder”
(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

• Idée: représentation
devrait être robuste à
l’absence de certaines
entrées

• Introduit un processus
de corruption
fixant à 0 certaines
entrées avec
probabilité

dec(enc(x̃))

x

WT

x̃

p(x̃|x)

enc(x̃)

C(x,dec(enc(x̃)))

W

1

dec(enc(x̃))

x

WT

x̃

p(x̃|x)

enc(x̃)

C(x,dec(enc(x̃)))

W

1

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction ν of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with ν = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (ν)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels ν. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to differentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish different kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

enc(x̃) = sigm(b + Wx̃)
dec (enc(x̃)) = sigm

(
c + WT enc(x̃)

)

Pseudocode:
“denoising autoencoder”

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the

SRBM network. When all layers of a DBN have the same size, it was actually shown that this

initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After

this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm

for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,

Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief

networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network

described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weightsWi and biases bi−1,bi and learning rate !

% Set autoassociator parameters

W←Wi, b← bi, c← bi−1

% Forward propagation

a(x) ← b+Wx
h(x) ← sigm(a(x))
â(x) ← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
!C(x̂,x)
!â(x) ← x̂−x
!C(x̂,x)
!ĥ(x)

←W
!C(x̂,x)
!â(x)

!C(x̂,x)
!a j(x) ← !C(x̂,x)

!ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi ←Wi− !

(
!C(x̂,x)
!a(x) x

T + ĥ(x) !C(x̂,x)
!â(x)

T
)

bi ← bi− !
!C(x̂,x)
!a(x)

bi−1 ← bi−1− !
!C(x̂,x)
!â(x)

References

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima for single

neurons. In M. Mozer, D. S. Touretzky, and M. Perrone, editors, Advances in Neural Information

Processing System 8, pages 315–322. MIT Press, Cambridge, MA, 1996.

35

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the

SRBM network. When all layers of a DBN have the same size, it was actually shown that this

initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After

this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm

for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,

Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief

networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network

described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weightsWi and biases bi−1,bi and learning rate !

% Set autoassociator parameters

W←Wi, b← bi, c← bi−1

% Forward propagation

a(x) ← b+Wx
h(x) ← sigm(a(x))
â(x) ← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
!C(x̂,x)
!â(x) ← x̂−x
!C(x̂,x)
!ĥ(x)

←W
!C(x̂,x)
!â(x)

!C(x̂,x)
!a j(x) ← !C(x̂,x)

!ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi ←Wi− !

(
!C(x̂,x)
!a(x) x

T + ĥ(x) !C(x̂,x)
!â(x)

T
)

bi ← bi− !
!C(x̂,x)
!a(x)

bi−1 ← bi−1− !
!C(x̂,x)
!â(x)

References

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima for single

neurons. In M. Mozer, D. S. Touretzky, and M. Perrone, editors, Advances in Neural Information

Processing System 8, pages 315–322. MIT Press, Cambridge, MA, 1996.

35

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the

SRBM network. When all layers of a DBN have the same size, it was actually shown that this

initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After

this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm

for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,

Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief

networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network

described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weightsWi and biases bi−1,bi and learning rate !

% Set autoassociator parameters

W←Wi, b← bi, c← bi−1

% Forward propagation

a(x) ← b+Wx
h(x) ← sigm(a(x))
â(x) ← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
!C(x̂,x)
!â(x) ← x̂−x
!C(x̂,x)
!ĥ(x)

←W
!C(x̂,x)
!â(x)

!C(x̂,x)
!a j(x) ← !C(x̂,x)

!ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi ←Wi− !

(
!C(x̂,x)
!a(x) x

T + ĥ(x) !C(x̂,x)
!â(x)

T
)

bi ← bi− !
!C(x̂,x)
!a(x)

bi−1 ← bi−1− !
!C(x̂,x)
!â(x)

References

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima for single

neurons. In M. Mozer, D. S. Touretzky, and M. Perrone, editors, Advances in Neural Information

Processing System 8, pages 315–322. MIT Press, Cambridge, MA, 1996.

35

...

...

Pseudocode:
“denoising autoencoder”

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the

SRBM network. When all layers of a DBN have the same size, it was actually shown that this

initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After

this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm

for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,

Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief

networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network

described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weightsWi and biases bi−1,bi and learning rate !

% Set autoassociator parameters

W←Wi, b← bi, c← bi−1

% Forward propagation

a(x) ← b+Wx
h(x) ← sigm(a(x))
â(x) ← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
!C(x̂,x)
!â(x) ← x̂−x
!C(x̂,x)
!ĥ(x)

←W
!C(x̂,x)
!â(x)

!C(x̂,x)
!a j(x) ← !C(x̂,x)

!ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi ←Wi− !

(
!C(x̂,x)
!a(x) x

T + ĥ(x) !C(x̂,x)
!â(x)

T
)

bi ← bi− !
!C(x̂,x)
!a(x)

bi−1 ← bi−1− !
!C(x̂,x)
!â(x)

References

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima for single

neurons. In M. Mozer, D. S. Touretzky, and M. Perrone, editors, Advances in Neural Information

Processing System 8, pages 315–322. MIT Press, Cambridge, MA, 1996.

35

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the

SRBM network. When all layers of a DBN have the same size, it was actually shown that this

initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After

this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm

for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,

Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief

networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network

described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weightsWi and biases bi−1,bi and learning rate !

% Set autoassociator parameters

W←Wi, b← bi, c← bi−1

% Forward propagation

a(x) ← b+Wx
h(x) ← sigm(a(x))
â(x) ← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
!C(x̂,x)
!â(x) ← x̂−x
!C(x̂,x)
!ĥ(x)

←W
!C(x̂,x)
!â(x)

!C(x̂,x)
!a j(x) ← !C(x̂,x)

!ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi ←Wi− !

(
!C(x̂,x)
!a(x) x

T + ĥ(x) !C(x̂,x)
!â(x)

T
)

bi ← bi− !
!C(x̂,x)
!a(x)

bi−1 ← bi−1− !
!C(x̂,x)
!â(x)

References

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima for single

neurons. In M. Mozer, D. S. Touretzky, and M. Perrone, editors, Advances in Neural Information

Processing System 8, pages 315–322. MIT Press, Cambridge, MA, 1996.

35

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the

SRBM network. When all layers of a DBN have the same size, it was actually shown that this

initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After

this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm

for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,

Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief

networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network

described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weightsWi and biases bi−1,bi and learning rate !

% Set autoassociator parameters

W←Wi, b← bi, c← bi−1

% Forward propagation

a(x) ← b+Wx
h(x) ← sigm(a(x))
â(x) ← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
!C(x̂,x)
!â(x) ← x̂−x
!C(x̂,x)
!ĥ(x)

←W
!C(x̂,x)
!â(x)

!C(x̂,x)
!a j(x) ← !C(x̂,x)

!ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi ←Wi− !

(
!C(x̂,x)
!a(x) x

T + ĥ(x) !C(x̂,x)
!â(x)

T
)

bi ← bi− !
!C(x̂,x)
!a(x)

bi−1 ← bi−1− !
!C(x̂,x)
!â(x)

References

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima for single

neurons. In M. Mozer, D. S. Touretzky, and M. Perrone, editors, Advances in Neural Information

Processing System 8, pages 315–322. MIT Press, Cambridge, MA, 1996.

35

...

...˜

• Sans entrée manquante

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction ν of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with ν = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (ν)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels ν. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to differentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish different kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Filtres (“denoising autoencoder”)
(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

• 25% d’entrées manquantes:

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction ν of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with ν = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (ν)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels ν. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to differentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish different kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction ν of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with ν = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (ν)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels ν. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to differentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish different kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Filtres (“denoising autoencoder”)
(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

• 50% d’entrée manquantes:

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction ν of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with ν = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (ν)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels ν. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to differentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish different kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction ν of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with ν = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (ν)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels ν. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to differentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish different kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Filtres (“denoising autoencoder”)
(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

Comparaisons expérimentales
(Larochelle, et al. ICML 2007)

• Problèmes générés
An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

(a) Reconst. x (b) Reconst. h1 (c) Predict y

Figure 3. Iterative training construction of the Stacked Au-
toassociators model.

of probabilities:

p(x) = sigm(c + W sigm(b + W ′x)).

The training criterion for the layer is the average of
negative log-likelihoods for predicting x from p(x). For
example, if x is interpreted either as a sequence of
bits or a sequence of bit probabilities, we minimize
the reconstruction cross-entropy:

R = −
∑

i

xi log pi(x) + (1− xi) log(1− pi(x)).

See Bengio et al. (2007) for more details. Once an au-
toassociator is trained, its internal “bottleneck” rep-
resentation (here, sigm(b + W ′x)) can be used as the
input for training a second autoassociator etc. Fig-
ure 3 illustrates this iterative training procedure. The
stacked autoassociators can then be fine-tuned with re-
spect to a supervised training criterion (adding a pre-
dictive output layer on top), using back-propagation
to compute gradient on parameters of all layers.

3. Benchmark Tasks

In order to study the capacity of these algorithms to
scale to learning problems with many factors of vari-
ation, we have generated datasets where we can iden-
tify some of these factors of variation explicitly. We
focused on vision problems, mostly because they are
easier to generate and analyze. In all cases, the classi-
fication problem has a balanced class distribution.

3.1. Variations on Digit Recognition

Models with deep architectures have been shown to
perform competitively on the MNIST digit recogni-
tion dataset (Hinton et al., 2006; Bengio et al., 2007;
Salakhutdinov & Hinton, 2007). In this series of ex-
periments, we construct new datasets by adding addi-
tional factors of variation to the MNIST images. The
generative process used to generate the datasets is as
follows:

Figure 4. From top to bottom, samples from mnist-rot,
mnist-back-rand, mnist-back-image, mnist-rot-back-image.

1. Pick sample (x, y) ∈ X from the digit recognition
dataset;

2. Create a perturbed version x̂ of x according to
some factors of variation;

3. Add (x̂, y) to a new dataset X̂ ;

4. Go back to 1 until enough samples are generated.

Introducing multiple factors of variation leads to the
following benchmarks:

mnist-rot: the digits were rotated by an angle gener-
ated uniformly between 0 and 2π radians. Thus
the factors of variation are the rotation angle and
those already contained in MNIST, such as hand
writing style;

mnist-back-rand: a random background was inserted
in the digit image. Each pixel value of the back-
ground was generated uniformly between 0 and
255;

mnist-back-image: a random patch from a black and
white image was used as the background for the
digit image. The patches were extracted ran-
domly from a set of 20 images downloaded from
the internet. Patches which had low pixel vari-
ance (i.e. contained little texture) were ignored;

mnist-rot-back-image: the perturbations used in
mnist-rot and mnist-back-image were combined.

These 4 databases have 10000, 2000 and 50000 samples
in their training, validation and test sets respectively.
Figure 4 shows samples from these datasets.

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

Figure 5. From top to bottom, samples from rectangles and
rectangles-image.

3.2. Discrimination between Tall and Wide
Rectangles

In this task, a learning algorithm needs to recognize
whether a rectangle contained in an image has a larger
width or length. The rectangle can be situated any-
where in the 28 × 28 pixel image. We generated two
datasets for this problem:

rectangles: the pixels corresponding to the border of
the rectangle has a value of 255, 0 otherwise. The
height and width of the rectangles were sampled
uniformly, but when their difference was smaller
than 3 pixels the samples were rejected. The top
left corner of the rectangles was also sampled uni-
formly, constrained so that the whole rectangle
would fit in the image;

rectangles-image: the border and inside of the rectan-
gles corresponds to an image patch and a back-
ground patch is also sampled. The image patches
are extracted from one of the 20 images used for
mnist-back-image. Sampling of the rectangles is
essentially the same as for rectangles, but the area
covered by the rectangles was constrained to be
between 25% and 75% of the total image, the
length and width of the rectangles were forced to
be of at least 10 and their difference was forced to
be of at least 5 pixels.

We generated training sets of size 1000 and 10000 and
validation sets of size 200 and 2000 for rectangles and
rectangles-image respectively. The test sets were of
size 50000 in both cases. Samples for these two tasks
are displayed in figure 5.

3.3. Recognition of Convex Sets

The task of discriminating between tall and wide rect-
angles was designed to exhibit the learning algorithms’
ability to process certain image shapes and learn their
properties. Following the same principle, we designed
another learning problem which consists in indicating
if a set of pixels forms a convex set.

Figure 6. Samples from convex, where the first, fourth, fifth
and last samples correspond to convex white pixel sets.

Like the MNIST dataset, the convex and non-convex
datasets both consist of images of 28× 28 pixels. The
convex sets consist of a single convex region with pixels
of value 255 (white). Candidate convex images were
constructed by taking the intersection of a random
number of half-planes whose location and orientation
were chosen uniformly at random.

Candidate non-convex images were constructed by
taking the union of a random number of convex sets
generated as above. The candidate non-convex im-
ages were then tested by checking a convexity con-
dition for every pair of pixels in the non-convex set.
Those sets that failed the convexity test were added to
the dataset. The parameters for generating the convex
and non-convex sets were balanced to ensure that the
mean number of pixels in the set is the same.

The generated training, validation and test sets are of
size 6000, 2000 and 50000 respectively. Samples for
this tasks are displayed in figure 6.

4. Experiments

We performed experiments on the proposed bench-
marks in order to compare the performance of mod-
els with deep architectures with other popular generic
classification algorithms.

In addition to the Deep Belief Network (denoted
DBN-3) and Stacked Autoassociators (denoted SAA-
3) models, we conducted experiments with a sin-
gle hidden-layer DBN (DBN-1), a single hidden-layer
neural network (NNet), SVM models with Gaussian
(SVMrbf) and polynomial (SVMpoly) kernels.

In all cases, model selection was performed using a val-
idation set. For NNet, the best combination of number
of hidden units (varying from 25 to 700), learning rate
(from 0.0001 to 0.1) and decrease constant (from 0 to
10−6) of stochastic gradient descent and weight decay
penalization (from 0 to 10−5) was selected using a grid
search.

For DBN-3 and SAA-3, both because of the large
number of hyper-parameters and because these mod-
els can necessitate more than a day to train, we
could not perform a full grid search in the space

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

Figure 5. From top to bottom, samples from rectangles and
rectangles-image.

3.2. Discrimination between Tall and Wide
Rectangles

In this task, a learning algorithm needs to recognize
whether a rectangle contained in an image has a larger
width or length. The rectangle can be situated any-
where in the 28 × 28 pixel image. We generated two
datasets for this problem:

rectangles: the pixels corresponding to the border of
the rectangle has a value of 255, 0 otherwise. The
height and width of the rectangles were sampled
uniformly, but when their difference was smaller
than 3 pixels the samples were rejected. The top
left corner of the rectangles was also sampled uni-
formly, constrained so that the whole rectangle
would fit in the image;

rectangles-image: the border and inside of the rectan-
gles corresponds to an image patch and a back-
ground patch is also sampled. The image patches
are extracted from one of the 20 images used for
mnist-back-image. Sampling of the rectangles is
essentially the same as for rectangles, but the area
covered by the rectangles was constrained to be
between 25% and 75% of the total image, the
length and width of the rectangles were forced to
be of at least 10 and their difference was forced to
be of at least 5 pixels.

We generated training sets of size 1000 and 10000 and
validation sets of size 200 and 2000 for rectangles and
rectangles-image respectively. The test sets were of
size 50000 in both cases. Samples for these two tasks
are displayed in figure 5.

3.3. Recognition of Convex Sets

The task of discriminating between tall and wide rect-
angles was designed to exhibit the learning algorithms’
ability to process certain image shapes and learn their
properties. Following the same principle, we designed
another learning problem which consists in indicating
if a set of pixels forms a convex set.

Figure 6. Samples from convex, where the first, fourth, fifth
and last samples correspond to convex white pixel sets.

Like the MNIST dataset, the convex and non-convex
datasets both consist of images of 28× 28 pixels. The
convex sets consist of a single convex region with pixels
of value 255 (white). Candidate convex images were
constructed by taking the intersection of a random
number of half-planes whose location and orientation
were chosen uniformly at random.

Candidate non-convex images were constructed by
taking the union of a random number of convex sets
generated as above. The candidate non-convex im-
ages were then tested by checking a convexity con-
dition for every pair of pixels in the non-convex set.
Those sets that failed the convexity test were added to
the dataset. The parameters for generating the convex
and non-convex sets were balanced to ensure that the
mean number of pixels in the set is the same.

The generated training, validation and test sets are of
size 6000, 2000 and 50000 respectively. Samples for
this tasks are displayed in figure 6.

4. Experiments

We performed experiments on the proposed bench-
marks in order to compare the performance of mod-
els with deep architectures with other popular generic
classification algorithms.

In addition to the Deep Belief Network (denoted
DBN-3) and Stacked Autoassociators (denoted SAA-
3) models, we conducted experiments with a sin-
gle hidden-layer DBN (DBN-1), a single hidden-layer
neural network (NNet), SVM models with Gaussian
(SVMrbf) and polynomial (SVMpoly) kernels.

In all cases, model selection was performed using a val-
idation set. For NNet, the best combination of number
of hidden units (varying from 25 to 700), learning rate
(from 0.0001 to 0.1) and decrease constant (from 0 to
10−6) of stochastic gradient descent and weight decay
penalization (from 0 to 10−5) was selected using a grid
search.

For DBN-3 and SAA-3, both because of the large
number of hyper-parameters and because these mod-
els can necessitate more than a day to train, we
could not perform a full grid search in the space

Variations sur MNIST
Large ou mince?

Convexe ou pas?

• Résultats

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction ν of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with ν = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (ν)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels ν. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to differentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish different kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction ν of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with ν = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (ν)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels ν. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to differentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish different kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Résultats
(Vincent, Larochelle, Bengio and Manzagol, ICML 2008)

Coût de l’erreur au carré

• La PCA n’est plus la meilleure solution

Vincent, Larochelle, Lajoie, Bengio, Manzagol

Figure 5: Regular autoencoder trained on natural image patches. Left: some of the 12×12
image patches used for training. Middle: filters learnt by a regular undercomplete
autoencoder (50 hidden units) using tied weights and L2 reconstruction error.
Right: filters learnt by a regular overcomplete autoencoder (200 hidden units).
The undercomplete autoencoder appears to learn local blob detectors. Filters
obtained in the overcomplete case look even less meaningful.

Figure 6: Weight decay v.s. Gaussian noise. Typical filters learnt from natural image
patches in the overcomplete case (200 hidden units). Left: regular autoencoder
with weight decay. We tried a wide range of weight-decay values and learning
rates: filters never appeared to capture a more interesting structure than what is
shown here. Note that some local blob detectors are recovered compared to using
no weight decay (contrast with Figure 5 right). Right: a denoising autoencoder
with additive Gaussian noise (σ = 0.5) learns Gabor-like local oriented edge
detectors. Clearly the filters learnt are qualitatively very different in the two
cases.

20

Vincent, Larochelle, Lajoie, Bengio, Manzagol

Figure 5: Regular autoencoder trained on natural image patches. Left: some of the 12×12
image patches used for training. Middle: filters learnt by a regular undercomplete
autoencoder (50 hidden units) using tied weights and L2 reconstruction error.
Right: filters learnt by a regular overcomplete autoencoder (200 hidden units).
The undercomplete autoencoder appears to learn local blob detectors. Filters
obtained in the overcomplete case look even less meaningful.

Figure 6: Weight decay v.s. Gaussian noise. Typical filters learnt from natural image
patches in the overcomplete case (200 hidden units). Left: regular autoencoder
with weight decay. We tried a wide range of weight-decay values and learning
rates: filters never appeared to capture a more interesting structure than what is
shown here. Note that some local blob detectors are recovered compared to using
no weight decay (contrast with Figure 5 right). Right: a denoising autoencoder
with additive Gaussian noise (σ = 0.5) learns Gabor-like local oriented edge
detectors. Clearly the filters learnt are qualitatively very different in the two
cases.

20

Données Filtres

Coût de l’erreur au carré

• N’est pas équivalent à du “weight decay”

Vincent, Larochelle, Lajoie, Bengio, Manzagol

Figure 5: Regular autoencoder trained on natural image patches. Left: some of the 12×12
image patches used for training. Middle: filters learnt by a regular undercomplete
autoencoder (50 hidden units) using tied weights and L2 reconstruction error.
Right: filters learnt by a regular overcomplete autoencoder (200 hidden units).
The undercomplete autoencoder appears to learn local blob detectors. Filters
obtained in the overcomplete case look even less meaningful.

Figure 6: Weight decay v.s. Gaussian noise. Typical filters learnt from natural image
patches in the overcomplete case (200 hidden units). Left: regular autoencoder
with weight decay. We tried a wide range of weight-decay values and learning
rates: filters never appeared to capture a more interesting structure than what is
shown here. Note that some local blob detectors are recovered compared to using
no weight decay (contrast with Figure 5 right). Right: a denoising autoencoder
with additive Gaussian noise (σ = 0.5) learns Gabor-like local oriented edge
detectors. Clearly the filters learnt are qualitatively very different in the two
cases.

20

Données

Vincent, Larochelle, Lajoie, Bengio, Manzagol

Figure 5: Regular autoencoder trained on natural image patches. Left: some of the 12×12
image patches used for training. Middle: filters learnt by a regular undercomplete
autoencoder (50 hidden units) using tied weights and L2 reconstruction error.
Right: filters learnt by a regular overcomplete autoencoder (200 hidden units).
The undercomplete autoencoder appears to learn local blob detectors. Filters
obtained in the overcomplete case look even less meaningful.

Figure 6: Weight decay v.s. Gaussian noise. Typical filters learnt from natural image
patches in the overcomplete case (200 hidden units). Left: regular autoencoder
with weight decay. We tried a wide range of weight-decay values and learning
rates: filters never appeared to capture a more interesting structure than what is
shown here. Note that some local blob detectors are recovered compared to using
no weight decay (contrast with Figure 5 right). Right: a denoising autoencoder
with additive Gaussian noise (σ = 0.5) learns Gabor-like local oriented edge
detectors. Clearly the filters learnt are qualitatively very different in the two
cases.

20

Filtres

Quelle sorte de bruit utiliser?

• “Enlever” un pourcentage des unités
d’entrées marche bien, mais n’est peut-être
pas optimal

• Est-ce que le bruit Gaussien est le mieux
qu’on puisse faire pour des données
continues?

! Piste de recherche !

• On introduit des connexions
latérales V parmi les éléments
de la couche cachée

• Typiquement, ces connexions
impliquent des interactions
récurrentes entre les neurones
(Shriki, Sompolinsky and Lee, 2001)

Fine−tuning

(2)(1)

Greedy pre−training

(3)

x

W2

W2T

W1

h̃1(x)

h1(x)

dec2
(
enc2

(
h̃1(x)

))

x

W1T

x̃

p(x̃|x)

︸ ︷︷ ︸ ︸ ︷︷ ︸

W1

W2

W3

x

o(x)

!y

h1(x)

h2(x)
enc1(x̃)

dec1(enc1(x̃))

p
(
h̃1(x)|h1(x)

)

enc2
(
h̃1(x)

)

C
(
h1(x),dec2

(
enc2

(
h̃1(x)

)))

C(x,dec1(enc1(x̃))) L(!y,o(x))

W1

Figure 1: Illustration of the greedy layer-wise procedure for training a 2 hidden layer neural network with
denoising autoencoders. To avoid clutter, biases bi and ci are not represented in the figures.

all layers have thus been initialized, the whole net-
work is fine-tuned1 by stochastic gradient descent us-
ing backpropagation and the class assignment nega-
tive log-likelihood cost L(!y,o(x)) = −

∑
k !yk log o(x)k

where !y = (1k=y)m
k=1.

3 Denoising Autoencoder with
Interdependent Codes (DA-IC)

As mentioned earlier, a denoising autoencoder is one
example of a deep network greedy module among oth-
ers in the literature where the elements of the hid-
den representations (or codes) are computed indepen-
dently. By this, we mean that the activation of a hid-
den layer neuron is a simple direct function of its in-
put pattern only, and is not influenced by what other
neurons in its layer do. They are therefore unable to
implement interactions between these codes, such as
inhibitory and excitatory interactions. Lateral con-
nections between elements of hidden representations
have been used successfully to model natural images
in sparse coding (Garrigues and Olshausen, 2008),
ICA (Hyvärinen, Hoyer and Inki, 2001) and energy-
based (Osindero, Welling and Hinton, 2006) models.

In this work, we investigate whether such interactions
can also be useful in learning a deep neural network
classifier. One approach to introduce interactions be-
tween the units of a layer is to express their effect as
a recursive equation, as in (Shriki, Sompolinsky and
Lee, 2001; Osindero and Hinton, 2008):

enc(x̃)j = sigm



bj +
∑

k

Wjkx̃k +
∑

k !=j

Vjkenc(x̃)k





(3)

1without any data corruption

where each Vjk induces an interaction between hidden
neuron j and k, if Vjk "= 0.

To compute an encoding, its elements are updated re-
cursively according to Equation 3 for a number of iter-
ations or until convergence. There are two disadvan-
tages to this approach. First, computing the encod-
ing becomes expensive for large layers or number of
iterations. Second, optimizing this encoding through
gradient descent is also expensive and hard. For these
reasons, we decided to take a different approach which,
while being much simpler conceptually and computa-
tionally, is able to implement the type of lateral inter-
actions that are expected from Equation 3. We simply
view the inhibitory and excitatory lateral connections
as performing an extra non-linear processing step on
the regular output, and model this step by a standard
linear+sigmoid layer. Thus our approach is akin to
simply adding a hidden layer to the encoding func-
tion, which ensures that all computations will be fast.
The presence of simple constraints on the autoencoder,
specifically the encoding and decoding functions share
the same (transposed) weights, ensures that the role
of the additional set of weights V can be interpreted
as that of lateral connections, just like in Equation 3.

We extend the denoising autoencoder model by tak-
ing into account such lateral connections in the en-
coder function only, and propose to study their effect,
and verify that they indeed behave according to what
we expect from lateral connections. Introducing such
richer interactions only in the encoder function can
be motivated by the view of the decoder function as
a generative model for which the encoder performs a
crude variational “inference” (Vincent et al., 2008). It
is well known that even very simple generative models
can yield a complicated posterior over the hidden rep-

C(x,dec(enc(x̃)))

x

x̃

dec(enc(x̃))

W

enc(x̃)

p(x̃|x)

WT
V

Figure 2: Illustration of the denoising autoencoder
with interdependent codes.

resentation, due to “explaining away” effects. From
this perspective, the mapping from visible to hidden
is often more complex than the mapping from hidden
to visible. So it makes sense to have a higher capac-
ity encoder, with the ability to learn a more complex
non-linear mapping, than the decoder.

Formally, the denoising autoencoder is modified
by adding asymmetric lateral connections, whose
strengths are stored in a square matrix V, as follows:
given a pre-encoding of a corrupted input

ênc(x̃) = sigm(b + Wx̃)

a final encoding is computed by using the following
interaction between hidden units:

enc(x̃)j = sigm



dj + Vjj ênc(x̃)j +
∑

k !=j

Vjkênc(x̃)k





where Vjj > 0. The same decoding function of Equa-
tion 2 is used. Though the constraint of a positive
diagonal for V could have required special attention,
using the same weight matrix W in the pre-encoding
and decoding implicitly favors this situation, a fact
that was observed to hold empirically. We also find
the diagonal elements of V to be usually larger than
other elements on the same column or row. This DA-
IC architecture is illustrated in Fig. 2.

To perform deep learning, we use a greedy layer-wise
procedure to pre-train all layers. In this case, each
layer hi(x) also has lateral connections Vi as well as
the additional set of biases di:

hi(x) = sigm
(
di + Visigm(bi + Wix̃)

)

Thus, for each layer, pre-training is using the previous
layer representations hi−1(x) as training samples to a
DA-IC with biases b = bi, c = bi−1, d = di and
weights W = Wi, V = Vi.

4 Related Work

The idea of introducing pairwise connections between
elements in a hidden representation for unsupervised

learning is not new. They have been used in an in-
formation maximization framework to allow overcom-
plete representations (Shriki, Sompolinsky and Lee,
2001). One important difference in our approach is
that the computation of the elements of the represen-
tation requires only one quick pass through the lateral
connections instead of several recursive passes; the lat-
ter would render their use in a deep network much
more computationally expensive.

Lateral connections have also been used previously
in models with several layers of hidden representa-
tion (Hinton, Osindero and Bao, 2005; Osindero and
Hinton, 2008). However, these connections are only
used in the top-down generative process of the model
and approximate bottom-up inference is done indepen-
dently for each element of a hidden layer given the pre-
vious one. Interpreting the decoding function as the
deterministic equivalent of a top-down generative pro-
cess, the DA-IC takes the inverse perspective, where
inference is complicated and generation (or reconstruc-
tion) is simple.

Several models of the primary visual cortex have also
integrated the concept of pairwise interactions, includ-
ing sparse coding (Garrigues and Olshausen, 2008),
ICA (Hyvärinen, Hoyer and Inki, 2001) and energy-
based models (Osindero, Welling and Hinton, 2006).
One motivation often cited for using such connections
is that they permit to better capture higher-order de-
pendencies that would not be modeled otherwise.

Our work is aimed at leveraging the use of lateral
connections in multi-layer neural networks for build-
ing competitive classifiers, in contrast to modeling the
distribution of images. To our knowledge, none of the
previously published approaches on introducing lat-
eral connections in deep networks has studied if they
did indeed yield a performance gain when used to
build a classifier. The discriminative power of sparse
codes (whose inference exhibit inhibitory interactions,
though without explicit lateral connections) has been
investigated previously (Raina et al., 2007), however
they are not applicable directly to deep learning, since
fine-tuning such representations according to a global
task presents a technical challenge. The sparse coding
approach of (Ranzato, Boureau and LeCun, 2008) is
appropriate for deep learning but, as mentioned ear-
lier, their encoding function computes the codes inde-
pendently given an input, a situation we try to im-
prove on here. Our simple approach for introducing
interdependent codes in denoising autoencoders could
however easily be adapted to their framework.

5 Experiments

We performed experiments on two character recogni-
tion problems where the input patterns from different

C(x,dec(enc(x̃)))

x

x̃

dec(enc(x̃))

W

enc(x̃)

p(x̃|x)

WT
V

Figure 2: Illustration of the denoising autoencoder
with interdependent codes.

resentation, due to “explaining away” effects. From
this perspective, the mapping from visible to hidden
is often more complex than the mapping from hidden
to visible. So it makes sense to have a higher capac-
ity encoder, with the ability to learn a more complex
non-linear mapping, than the decoder.

Formally, the denoising autoencoder is modified
by adding asymmetric lateral connections, whose
strengths are stored in a square matrix V, as follows:
given a pre-encoding of a corrupted input

ênc(x̃) = sigm(b + Wx̃)

a final encoding is computed by using the following
interaction between hidden units:

enc(x̃)j = sigm



dj + Vjj ênc(x̃)j +
∑

k !=j

Vjkênc(x̃)k





where Vjj > 0. The same decoding function of Equa-
tion 2 is used. Though the constraint of a positive
diagonal for V could have required special attention,
using the same weight matrix W in the pre-encoding
and decoding implicitly favors this situation, a fact
that was observed to hold empirically. We also find
the diagonal elements of V to be usually larger than
other elements on the same column or row. This DA-
IC architecture is illustrated in Fig. 2.

To perform deep learning, we use a greedy layer-wise
procedure to pre-train all layers. In this case, each
layer hi(x) also has lateral connections Vi as well as
the additional set of biases di:

hi(x) = sigm
(
di + Visigm(bi + Wix̃)

)

Thus, for each layer, pre-training is using the previous
layer representations hi−1(x) as training samples to a
DA-IC with biases b = bi, c = bi−1, d = di and
weights W = Wi, V = Vi.

4 Related Work

The idea of introducing pairwise connections between
elements in a hidden representation for unsupervised

learning is not new. They have been used in an in-
formation maximization framework to allow overcom-
plete representations (Shriki, Sompolinsky and Lee,
2001). One important difference in our approach is
that the computation of the elements of the represen-
tation requires only one quick pass through the lateral
connections instead of several recursive passes; the lat-
ter would render their use in a deep network much
more computationally expensive.

Lateral connections have also been used previously
in models with several layers of hidden representa-
tion (Hinton, Osindero and Bao, 2005; Osindero and
Hinton, 2008). However, these connections are only
used in the top-down generative process of the model
and approximate bottom-up inference is done indepen-
dently for each element of a hidden layer given the pre-
vious one. Interpreting the decoding function as the
deterministic equivalent of a top-down generative pro-
cess, the DA-IC takes the inverse perspective, where
inference is complicated and generation (or reconstruc-
tion) is simple.

Several models of the primary visual cortex have also
integrated the concept of pairwise interactions, includ-
ing sparse coding (Garrigues and Olshausen, 2008),
ICA (Hyvärinen, Hoyer and Inki, 2001) and energy-
based models (Osindero, Welling and Hinton, 2006).
One motivation often cited for using such connections
is that they permit to better capture higher-order de-
pendencies that would not be modeled otherwise.

Our work is aimed at leveraging the use of lateral
connections in multi-layer neural networks for build-
ing competitive classifiers, in contrast to modeling the
distribution of images. To our knowledge, none of the
previously published approaches on introducing lat-
eral connections in deep networks has studied if they
did indeed yield a performance gain when used to
build a classifier. The discriminative power of sparse
codes (whose inference exhibit inhibitory interactions,
though without explicit lateral connections) has been
investigated previously (Raina et al., 2007), however
they are not applicable directly to deep learning, since
fine-tuning such representations according to a global
task presents a technical challenge. The sparse coding
approach of (Ranzato, Boureau and LeCun, 2008) is
appropriate for deep learning but, as mentioned ear-
lier, their encoding function computes the codes inde-
pendently given an input, a situation we try to im-
prove on here. Our simple approach for introducing
interdependent codes in denoising autoencoders could
however easily be adapted to their framework.

5 Experiments

We performed experiments on two character recogni-
tion problems where the input patterns from different

C(x,dec(enc(x̃)))

x

x̃

dec(enc(x̃))

W

enc(x̃)

p(x̃|x)

WT
V

Figure 2: Illustration of the denoising autoencoder
with interdependent codes.

resentation, due to “explaining away” effects. From
this perspective, the mapping from visible to hidden
is often more complex than the mapping from hidden
to visible. So it makes sense to have a higher capac-
ity encoder, with the ability to learn a more complex
non-linear mapping, than the decoder.

Formally, the denoising autoencoder is modified
by adding asymmetric lateral connections, whose
strengths are stored in a square matrix V, as follows:
given a pre-encoding of a corrupted input

ênc(x̃) = sigm(b + Wx̃)

a final encoding is computed by using the following
interaction between hidden units:

enc(x̃)j = sigm



dj + Vjj ênc(x̃)j +
∑

k !=j

Vjkênc(x̃)k





where Vjj > 0. The same decoding function of Equa-
tion 2 is used. Though the constraint of a positive
diagonal for V could have required special attention,
using the same weight matrix W in the pre-encoding
and decoding implicitly favors this situation, a fact
that was observed to hold empirically. We also find
the diagonal elements of V to be usually larger than
other elements on the same column or row. This DA-
IC architecture is illustrated in Fig. 2.

To perform deep learning, we use a greedy layer-wise
procedure to pre-train all layers. In this case, each
layer hi(x) also has lateral connections Vi as well as
the additional set of biases di:

hi(x) = sigm
(
di + Visigm(bi + Wix̃)

)

Thus, for each layer, pre-training is using the previous
layer representations hi−1(x) as training samples to a
DA-IC with biases b = bi, c = bi−1, d = di and
weights W = Wi, V = Vi.

4 Related Work

The idea of introducing pairwise connections between
elements in a hidden representation for unsupervised

learning is not new. They have been used in an in-
formation maximization framework to allow overcom-
plete representations (Shriki, Sompolinsky and Lee,
2001). One important difference in our approach is
that the computation of the elements of the represen-
tation requires only one quick pass through the lateral
connections instead of several recursive passes; the lat-
ter would render their use in a deep network much
more computationally expensive.

Lateral connections have also been used previously
in models with several layers of hidden representa-
tion (Hinton, Osindero and Bao, 2005; Osindero and
Hinton, 2008). However, these connections are only
used in the top-down generative process of the model
and approximate bottom-up inference is done indepen-
dently for each element of a hidden layer given the pre-
vious one. Interpreting the decoding function as the
deterministic equivalent of a top-down generative pro-
cess, the DA-IC takes the inverse perspective, where
inference is complicated and generation (or reconstruc-
tion) is simple.

Several models of the primary visual cortex have also
integrated the concept of pairwise interactions, includ-
ing sparse coding (Garrigues and Olshausen, 2008),
ICA (Hyvärinen, Hoyer and Inki, 2001) and energy-
based models (Osindero, Welling and Hinton, 2006).
One motivation often cited for using such connections
is that they permit to better capture higher-order de-
pendencies that would not be modeled otherwise.

Our work is aimed at leveraging the use of lateral
connections in multi-layer neural networks for build-
ing competitive classifiers, in contrast to modeling the
distribution of images. To our knowledge, none of the
previously published approaches on introducing lat-
eral connections in deep networks has studied if they
did indeed yield a performance gain when used to
build a classifier. The discriminative power of sparse
codes (whose inference exhibit inhibitory interactions,
though without explicit lateral connections) has been
investigated previously (Raina et al., 2007), however
they are not applicable directly to deep learning, since
fine-tuning such representations according to a global
task presents a technical challenge. The sparse coding
approach of (Ranzato, Boureau and LeCun, 2008) is
appropriate for deep learning but, as mentioned ear-
lier, their encoding function computes the codes inde-
pendently given an input, a situation we try to im-
prove on here. Our simple approach for introducing
interdependent codes in denoising autoencoders could
however easily be adapted to their framework.

5 Experiments

We performed experiments on two character recogni-
tion problems where the input patterns from different

Deep Learning using Robust
Interdependent Codes
(Larochelle, Erhan and Vincent, 2009)

• Malheureusement, un tel encodeur nécessite
plusieurs itérations pour converger

• À la place, on insère des connexions non-
récurrentes

C(x,dec(enc(x̃)))

x

x̃

dec(enc(x̃))

W

enc(x̃)

p(x̃|x)

WT
V

Figure 2: Illustration of the denoising autoencoder
with interdependent codes.

resentation, due to “explaining away” effects. From
this perspective, the mapping from visible to hidden
is often more complex than the mapping from hidden
to visible. So it makes sense to have a higher capac-
ity encoder, with the ability to learn a more complex
non-linear mapping, than the decoder.

Formally, the denoising autoencoder is modified
by adding asymmetric lateral connections, whose
strengths are stored in a square matrix V, as follows:
given a pre-encoding of a corrupted input

ênc(x̃) = sigm(b + Wx̃)

a final encoding is computed by using the following
interaction between hidden units:

enc(x̃)j = sigm



dj + Vjj ênc(x̃)j +
∑

k !=j

Vjkênc(x̃)k





where Vjj > 0. The same decoding function of Equa-
tion 2 is used. Though the constraint of a positive
diagonal for V could have required special attention,
using the same weight matrix W in the pre-encoding
and decoding implicitly favors this situation, a fact
that was observed to hold empirically. We also find
the diagonal elements of V to be usually larger than
other elements on the same column or row. This DA-
IC architecture is illustrated in Fig. 2.

To perform deep learning, we use a greedy layer-wise
procedure to pre-train all layers. In this case, each
layer hi(x) also has lateral connections Vi as well as
the additional set of biases di:

hi(x) = sigm
(
di + Visigm(bi + Wix̃)

)

Thus, for each layer, pre-training is using the previous
layer representations hi−1(x) as training samples to a
DA-IC with biases b = bi, c = bi−1, d = di and
weights W = Wi, V = Vi.

4 Related Work

The idea of introducing pairwise connections between
elements in a hidden representation for unsupervised

learning is not new. They have been used in an in-
formation maximization framework to allow overcom-
plete representations (Shriki, Sompolinsky and Lee,
2001). One important difference in our approach is
that the computation of the elements of the represen-
tation requires only one quick pass through the lateral
connections instead of several recursive passes; the lat-
ter would render their use in a deep network much
more computationally expensive.

Lateral connections have also been used previously
in models with several layers of hidden representa-
tion (Hinton, Osindero and Bao, 2005; Osindero and
Hinton, 2008). However, these connections are only
used in the top-down generative process of the model
and approximate bottom-up inference is done indepen-
dently for each element of a hidden layer given the pre-
vious one. Interpreting the decoding function as the
deterministic equivalent of a top-down generative pro-
cess, the DA-IC takes the inverse perspective, where
inference is complicated and generation (or reconstruc-
tion) is simple.

Several models of the primary visual cortex have also
integrated the concept of pairwise interactions, includ-
ing sparse coding (Garrigues and Olshausen, 2008),
ICA (Hyvärinen, Hoyer and Inki, 2001) and energy-
based models (Osindero, Welling and Hinton, 2006).
One motivation often cited for using such connections
is that they permit to better capture higher-order de-
pendencies that would not be modeled otherwise.

Our work is aimed at leveraging the use of lateral
connections in multi-layer neural networks for build-
ing competitive classifiers, in contrast to modeling the
distribution of images. To our knowledge, none of the
previously published approaches on introducing lat-
eral connections in deep networks has studied if they
did indeed yield a performance gain when used to
build a classifier. The discriminative power of sparse
codes (whose inference exhibit inhibitory interactions,
though without explicit lateral connections) has been
investigated previously (Raina et al., 2007), however
they are not applicable directly to deep learning, since
fine-tuning such representations according to a global
task presents a technical challenge. The sparse coding
approach of (Ranzato, Boureau and LeCun, 2008) is
appropriate for deep learning but, as mentioned ear-
lier, their encoding function computes the codes inde-
pendently given an input, a situation we try to im-
prove on here. Our simple approach for introducing
interdependent codes in denoising autoencoders could
however easily be adapted to their framework.

5 Experiments

We performed experiments on two character recogni-
tion problems where the input patterns from different

C(x,dec(enc(x̃)))

x

x̃

dec(enc(x̃))

W

enc(x̃)

p(x̃|x)

WT
V

Figure 2: Illustration of the denoising autoencoder
with interdependent codes.

resentation, due to “explaining away” effects. From
this perspective, the mapping from visible to hidden
is often more complex than the mapping from hidden
to visible. So it makes sense to have a higher capac-
ity encoder, with the ability to learn a more complex
non-linear mapping, than the decoder.

Formally, the denoising autoencoder is modified
by adding asymmetric lateral connections, whose
strengths are stored in a square matrix V, as follows:
given a pre-encoding of a corrupted input

ênc(x̃) = sigm(b + Wx̃)

a final encoding is computed by using the following
interaction between hidden units:

enc(x̃)j = sigm



dj + Vjj ênc(x̃)j +
∑

k !=j

Vjkênc(x̃)k





where Vjj > 0. The same decoding function of Equa-
tion 2 is used. Though the constraint of a positive
diagonal for V could have required special attention,
using the same weight matrix W in the pre-encoding
and decoding implicitly favors this situation, a fact
that was observed to hold empirically. We also find
the diagonal elements of V to be usually larger than
other elements on the same column or row. This DA-
IC architecture is illustrated in Fig. 2.

To perform deep learning, we use a greedy layer-wise
procedure to pre-train all layers. In this case, each
layer hi(x) also has lateral connections Vi as well as
the additional set of biases di:

hi(x) = sigm
(
di + Visigm(bi + Wix̃)

)

Thus, for each layer, pre-training is using the previous
layer representations hi−1(x) as training samples to a
DA-IC with biases b = bi, c = bi−1, d = di and
weights W = Wi, V = Vi.

4 Related Work

The idea of introducing pairwise connections between
elements in a hidden representation for unsupervised

learning is not new. They have been used in an in-
formation maximization framework to allow overcom-
plete representations (Shriki, Sompolinsky and Lee,
2001). One important difference in our approach is
that the computation of the elements of the represen-
tation requires only one quick pass through the lateral
connections instead of several recursive passes; the lat-
ter would render their use in a deep network much
more computationally expensive.

Lateral connections have also been used previously
in models with several layers of hidden representa-
tion (Hinton, Osindero and Bao, 2005; Osindero and
Hinton, 2008). However, these connections are only
used in the top-down generative process of the model
and approximate bottom-up inference is done indepen-
dently for each element of a hidden layer given the pre-
vious one. Interpreting the decoding function as the
deterministic equivalent of a top-down generative pro-
cess, the DA-IC takes the inverse perspective, where
inference is complicated and generation (or reconstruc-
tion) is simple.

Several models of the primary visual cortex have also
integrated the concept of pairwise interactions, includ-
ing sparse coding (Garrigues and Olshausen, 2008),
ICA (Hyvärinen, Hoyer and Inki, 2001) and energy-
based models (Osindero, Welling and Hinton, 2006).
One motivation often cited for using such connections
is that they permit to better capture higher-order de-
pendencies that would not be modeled otherwise.

Our work is aimed at leveraging the use of lateral
connections in multi-layer neural networks for build-
ing competitive classifiers, in contrast to modeling the
distribution of images. To our knowledge, none of the
previously published approaches on introducing lat-
eral connections in deep networks has studied if they
did indeed yield a performance gain when used to
build a classifier. The discriminative power of sparse
codes (whose inference exhibit inhibitory interactions,
though without explicit lateral connections) has been
investigated previously (Raina et al., 2007), however
they are not applicable directly to deep learning, since
fine-tuning such representations according to a global
task presents a technical challenge. The sparse coding
approach of (Ranzato, Boureau and LeCun, 2008) is
appropriate for deep learning but, as mentioned ear-
lier, their encoding function computes the codes inde-
pendently given an input, a situation we try to im-
prove on here. Our simple approach for introducing
interdependent codes in denoising autoencoders could
however easily be adapted to their framework.

5 Experiments

We performed experiments on two character recogni-
tion problems where the input patterns from different

1)

2)

Deep Learning using Robust
Interdependent Codes
(Larochelle, Erhan and Vincent, 2009)

, où Vjj > 0

Weights of neurons in W:

Positively connected neurons by V: Negatively connected neurons by V:

Figure 3: Top: visualization of the input weights of the hidden units, corresponding to the columns of W. A
variety of filters were learned, including small pen strokes and empty background detectors. Bottom: visual-
ization of a subset of excitatory and inhibitory connections in V. Positively connected neurons have overlapping
filters, often shifted by few pixels. Negatively connected neurons detect aspects of the input which are mutually
exclusive, such as empty background vs pen strokes.

classes are likely to be overlapping visually. This is
a setting where lateral connections ought to be use-
ful by using inhibitory connections to discern similar
but mutually exclusive features of the input. The first
problem, noted MNIST-rot and taken from (Larochelle
et al., 2007), consists in classifying images of rotated
digits2. The second classification dataset, noted OCR-
letters 3 corresponds to an English character recogni-
tion problem where 16×8 binary pixel images must
be classified into 26 classes, corresponding to the 26
letters of the English alphabet (see Fig. 4).

Comparison of classification performance
We evaluated the performance of the DA-IC as a
greedy module for deep learning by comparing it with
two other greedy modules: basic denoising autoen-
coders and RBMs. For each type of greedy mod-

2This dataset has been regenerated since its publica-
tion by Larochelle et al. and can be downloaded here:
http://www.iro.umontreal.ca/∼lisa/icml2007. The set of
28×28 pixel images was generated using random rotations
of digit images taken from the MNIST dataset, and was
divided into training, validation and test splits of 10000,
2000 and 50000 examples each.

3This dataset is publicly available at
http://ai.stanford.edu/∼btaskar/ocr/. For our ex-
periments, we took the original dataset and generated 5
folds with mutually exclusive test sets of 10000 examples
each.

Figure 4: Input samples from the OCR-letters dataset
of binary character images.

ule, deep neural network classifiers were initialized by
stacking three such greedy modules before fine-tuning
the whole network by stochastic gradient descent4.
The deep networks initialized with DA-ICs had 1000
hidden units in each layer. For fairness, since RBMs
and basic denoising autoencoders have fewer parame-

4Model selection, based on the classification error ob-
tained on the validation set, was done over the number
of iterations of greedy pre-training as well as the value of
the learning rates for greedy pre-training and fine-tuning.
For denoising autoencoders, the fraction of masked or de-
stroyed inputs α also had to be chosen by model selec-
tion; we compared α = 0.1 and 0.25. Early-stopping based
on the validation set error determined the number of fine-
tuning iterations.

Weights of neurons in W:

Positively connected neurons by V: Negatively connected neurons by V:

Figure 3: Top: visualization of the input weights of the hidden units, corresponding to the columns of W. A
variety of filters were learned, including small pen strokes and empty background detectors. Bottom: visual-
ization of a subset of excitatory and inhibitory connections in V. Positively connected neurons have overlapping
filters, often shifted by few pixels. Negatively connected neurons detect aspects of the input which are mutually
exclusive, such as empty background vs pen strokes.

classes are likely to be overlapping visually. This is
a setting where lateral connections ought to be use-
ful by using inhibitory connections to discern similar
but mutually exclusive features of the input. The first
problem, noted MNIST-rot and taken from (Larochelle
et al., 2007), consists in classifying images of rotated
digits2. The second classification dataset, noted OCR-
letters 3 corresponds to an English character recogni-
tion problem where 16×8 binary pixel images must
be classified into 26 classes, corresponding to the 26
letters of the English alphabet (see Fig. 4).

Comparison of classification performance
We evaluated the performance of the DA-IC as a
greedy module for deep learning by comparing it with
two other greedy modules: basic denoising autoen-
coders and RBMs. For each type of greedy mod-

2This dataset has been regenerated since its publica-
tion by Larochelle et al. and can be downloaded here:
http://www.iro.umontreal.ca/∼lisa/icml2007. The set of
28×28 pixel images was generated using random rotations
of digit images taken from the MNIST dataset, and was
divided into training, validation and test splits of 10000,
2000 and 50000 examples each.

3This dataset is publicly available at
http://ai.stanford.edu/∼btaskar/ocr/. For our ex-
periments, we took the original dataset and generated 5
folds with mutually exclusive test sets of 10000 examples
each.

Figure 4: Input samples from the OCR-letters dataset
of binary character images.

ule, deep neural network classifiers were initialized by
stacking three such greedy modules before fine-tuning
the whole network by stochastic gradient descent4.
The deep networks initialized with DA-ICs had 1000
hidden units in each layer. For fairness, since RBMs
and basic denoising autoencoders have fewer parame-

4Model selection, based on the classification error ob-
tained on the validation set, was done over the number
of iterations of greedy pre-training as well as the value of
the learning rates for greedy pre-training and fine-tuning.
For denoising autoencoders, the fraction of masked or de-
stroyed inputs α also had to be chosen by model selec-
tion; we compared α = 0.1 and 0.25. Early-stopping based
on the validation set error determined the number of fine-
tuning iterations.

Weights of neurons in W:

Positively connected neurons by V: Negatively connected neurons by V:

Figure 3: Top: visualization of the input weights of the hidden units, corresponding to the columns of W. A
variety of filters were learned, including small pen strokes and empty background detectors. Bottom: visual-
ization of a subset of excitatory and inhibitory connections in V. Positively connected neurons have overlapping
filters, often shifted by few pixels. Negatively connected neurons detect aspects of the input which are mutually
exclusive, such as empty background vs pen strokes.

classes are likely to be overlapping visually. This is
a setting where lateral connections ought to be use-
ful by using inhibitory connections to discern similar
but mutually exclusive features of the input. The first
problem, noted MNIST-rot and taken from (Larochelle
et al., 2007), consists in classifying images of rotated
digits2. The second classification dataset, noted OCR-
letters 3 corresponds to an English character recogni-
tion problem where 16×8 binary pixel images must
be classified into 26 classes, corresponding to the 26
letters of the English alphabet (see Fig. 4).

Comparison of classification performance
We evaluated the performance of the DA-IC as a
greedy module for deep learning by comparing it with
two other greedy modules: basic denoising autoen-
coders and RBMs. For each type of greedy mod-

2This dataset has been regenerated since its publica-
tion by Larochelle et al. and can be downloaded here:
http://www.iro.umontreal.ca/∼lisa/icml2007. The set of
28×28 pixel images was generated using random rotations
of digit images taken from the MNIST dataset, and was
divided into training, validation and test splits of 10000,
2000 and 50000 examples each.

3This dataset is publicly available at
http://ai.stanford.edu/∼btaskar/ocr/. For our ex-
periments, we took the original dataset and generated 5
folds with mutually exclusive test sets of 10000 examples
each.

Figure 4: Input samples from the OCR-letters dataset
of binary character images.

ule, deep neural network classifiers were initialized by
stacking three such greedy modules before fine-tuning
the whole network by stochastic gradient descent4.
The deep networks initialized with DA-ICs had 1000
hidden units in each layer. For fairness, since RBMs
and basic denoising autoencoders have fewer parame-

4Model selection, based on the classification error ob-
tained on the validation set, was done over the number
of iterations of greedy pre-training as well as the value of
the learning rates for greedy pre-training and fine-tuning.
For denoising autoencoders, the fraction of masked or de-
stroyed inputs α also had to be chosen by model selec-
tion; we compared α = 0.1 and 0.25. Early-stopping based
on the validation set error determined the number of fine-
tuning iterations.

Deep Learning using Robust
Interdependent Codes
(Larochelle, Erhan and Vincent, 2009)

Weights of neurons in W:

Positively connected neurons by V: Negatively connected neurons by V:

Figure 3: Top: visualization of the input weights of the hidden units, corresponding to the columns of W. A
variety of filters were learned, including small pen strokes and empty background detectors. Bottom: visual-
ization of a subset of excitatory and inhibitory connections in V. Positively connected neurons have overlapping
filters, often shifted by few pixels. Negatively connected neurons detect aspects of the input which are mutually
exclusive, such as empty background vs pen strokes.

classes are likely to be overlapping visually. This is
a setting where lateral connections ought to be use-
ful by using inhibitory connections to discern similar
but mutually exclusive features of the input. The first
problem, noted MNIST-rot and taken from (Larochelle
et al., 2007), consists in classifying images of rotated
digits2. The second classification dataset, noted OCR-
letters 3 corresponds to an English character recogni-
tion problem where 16×8 binary pixel images must
be classified into 26 classes, corresponding to the 26
letters of the English alphabet (see Fig. 4).

Comparison of classification performance
We evaluated the performance of the DA-IC as a
greedy module for deep learning by comparing it with
two other greedy modules: basic denoising autoen-
coders and RBMs. For each type of greedy mod-

2This dataset has been regenerated since its publica-
tion by Larochelle et al. and can be downloaded here:
http://www.iro.umontreal.ca/∼lisa/icml2007. The set of
28×28 pixel images was generated using random rotations
of digit images taken from the MNIST dataset, and was
divided into training, validation and test splits of 10000,
2000 and 50000 examples each.

3This dataset is publicly available at
http://ai.stanford.edu/∼btaskar/ocr/. For our ex-
periments, we took the original dataset and generated 5
folds with mutually exclusive test sets of 10000 examples
each.

Figure 4: Input samples from the OCR-letters dataset
of binary character images.

ule, deep neural network classifiers were initialized by
stacking three such greedy modules before fine-tuning
the whole network by stochastic gradient descent4.
The deep networks initialized with DA-ICs had 1000
hidden units in each layer. For fairness, since RBMs
and basic denoising autoencoders have fewer parame-

4Model selection, based on the classification error ob-
tained on the validation set, was done over the number
of iterations of greedy pre-training as well as the value of
the learning rates for greedy pre-training and fine-tuning.
For denoising autoencoders, the fraction of masked or de-
stroyed inputs α also had to be chosen by model selec-
tion; we compared α = 0.1 and 0.25. Early-stopping based
on the validation set error determined the number of fine-
tuning iterations.

Weights of neurons in W:

Positively connected neurons by V: Negatively connected neurons by V:

Figure 3: Top: visualization of the input weights of the hidden units, corresponding to the columns of W. A
variety of filters were learned, including small pen strokes and empty background detectors. Bottom: visual-
ization of a subset of excitatory and inhibitory connections in V. Positively connected neurons have overlapping
filters, often shifted by few pixels. Negatively connected neurons detect aspects of the input which are mutually
exclusive, such as empty background vs pen strokes.

classes are likely to be overlapping visually. This is
a setting where lateral connections ought to be use-
ful by using inhibitory connections to discern similar
but mutually exclusive features of the input. The first
problem, noted MNIST-rot and taken from (Larochelle
et al., 2007), consists in classifying images of rotated
digits2. The second classification dataset, noted OCR-
letters 3 corresponds to an English character recogni-
tion problem where 16×8 binary pixel images must
be classified into 26 classes, corresponding to the 26
letters of the English alphabet (see Fig. 4).

Comparison of classification performance
We evaluated the performance of the DA-IC as a
greedy module for deep learning by comparing it with
two other greedy modules: basic denoising autoen-
coders and RBMs. For each type of greedy mod-

2This dataset has been regenerated since its publica-
tion by Larochelle et al. and can be downloaded here:
http://www.iro.umontreal.ca/∼lisa/icml2007. The set of
28×28 pixel images was generated using random rotations
of digit images taken from the MNIST dataset, and was
divided into training, validation and test splits of 10000,
2000 and 50000 examples each.

3This dataset is publicly available at
http://ai.stanford.edu/∼btaskar/ocr/. For our ex-
periments, we took the original dataset and generated 5
folds with mutually exclusive test sets of 10000 examples
each.

Figure 4: Input samples from the OCR-letters dataset
of binary character images.

ule, deep neural network classifiers were initialized by
stacking three such greedy modules before fine-tuning
the whole network by stochastic gradient descent4.
The deep networks initialized with DA-ICs had 1000
hidden units in each layer. For fairness, since RBMs
and basic denoising autoencoders have fewer parame-

4Model selection, based on the classification error ob-
tained on the validation set, was done over the number
of iterations of greedy pre-training as well as the value of
the learning rates for greedy pre-training and fine-tuning.
For denoising autoencoders, the fraction of masked or de-
stroyed inputs α also had to be chosen by model selec-
tion; we compared α = 0.1 and 0.25. Early-stopping based
on the validation set error determined the number of fine-
tuning iterations.

Exemple
d’interaction
d’inhibition

Neurones connectés positivement par

Neurones connectés négativement par

Deep Learning using Robust
Interdependent Codes
(Larochelle, Erhan and Vincent, 2009)

Larochelle, Erhan, Vincent

Figure 5: Illustration of inhibitory behaviour. Two ex-
amples are shown: e and o. In each, from left to right:
the input pattern, the filters for two neurons of the first
hidden layer, the values taken by these neurons before
taking into account lateral connection weights V, and
their values after applying V and a sigmoid. As can be
seen, lateral connections allow to disambiguate situa-
tions in which we have equally strong initial responses
from the two neurons.

before applying V. In the e example, the competi-
tion is between detecting a vertical segments on the
left edge, or detecting it one pixel to the right. These
are unlikely to occur together. In the o example, the
choice is between detecting an empty spot in the lower
right corner or seeing a vertical segment on the right
edge that continues nearly to the bottom of the cor-
ner. Again, the two are contradictory. In both cases,
inhibitory connections appear crucial in choosing the
feature that better describes the input pattern. This
disambiguation between two conflicting aspects in the
input would not be possible with a simple layer that
does not correct for interdependencies.

5.3 COMPARISON WITH ALTERNATIVE
TECHNIQUES FOR LEARNING
LATERAL INTERACTIONS

Next, we wanted to see how our simple method for
learning lateral interactions (DA-IC) compared to al-
ternatives based on iterating a recursive equation, as
previously proposed. Due to these alternatives be-
ing very time consuming, we focused on unsupervised
training of a single layer (greedy module) to learn a
representation (code)7. We then measured the classifi-
cation performance obtained by a linear least squares
classifier that uses that learned code as input. We
specifically considered the following greedy modules:

• RBM: Restricted Boltzmann Machine with no
lateral connections.

• DA: Ordinary Denoising Autoencoder, no lateral
connections.

7We tested using both 10 and 30 iterations through
Equation 3. Notice that computing enc(ex) with these al-
ternative models requires 10 and 30 times (respectively)
as many multiply-add operations involving the H2 − H
lateral connections Vjk, where H is the number of hidden
units (the diagonal of V is not used in Equation 3).

15

18

21

24

27

250 500 750 1000

RBM
SRBM
DA
DA-settling
DA-IC

OCR-letters

12

15

18

21

24

27

500 750 1000 1500 2000

RBM
SRBM
DA
DA-settling
DA-IC

MNIST-rot

15

18

21

24

27

250 500 750 1000

RBM
SRBM
DA
DA-settling
DA-IC

OCR-letters

12

15

18

21

24

27

500 750 1000 1500 2000

RBM
SRBM
DA
DA-settling
DA-IC

MNIST-rot

Figure 6: Test classification error (%) of a linear classi-
fier using the codes learned by different types of greedy
modules, for increasing size of hidden layer.

• SRBM: Semi-Restricted Boltzmann Machines
(Osindero & Hinton, 2008), but with lateral con-
nections between hidden units, instead of visible
units as originally proposed.

• DA-settling: Denoising Autoencoder with “set-
tling” lateral connections in the encoder: i.e. we
iterate several times through Eq. 3.

• DA-IC: Our proposed Denoising Autoencoder
with Interdependent Codes.

Fig. 6 gives the resulting classification performance as
a function of the size of the code (the number of hid-
den units). We emphasize that the codes were learned
in an entirely unsupervised fashion8. We observe that
DA-IC systematically outperforms both RBM and DA
(differences are statistically significant, except for 250
units on OCR-letters). When compared to the alter-
native techniques for introducing lateral interactions,
DA-IC outperforms them on MNIST-rot (differences
are statistically significant), and is also best (statisti-
cally equivalent to SRBM) on OCR-letters. We want
to emphasize here that, contrary to the alternative
techniques involving iterating a recursive equation,
DA-IC is very simple and computationally very cheap
(no iteration involved).

5.4 ANALYSIS OF CORRELATION

Finally, we provide a possible explanation as to why
DA-ICs are better suited for deep learning. The per-
formance of deep networks with 1, 2 and 3 stacked
DA-ICs is 10.33%, 8.91% and 8.07% respectively on
the MNIST-rot dataset, which confirms that the DA-
IC can leverage the addition of layers. Intuitively, a
necessary condition for a greedy module to be appro-
priate for deep learning is that it should compute rep-
resentations which, while being informative of the in-
put, are not too linearly correlated. Otherwise, some
of the coding elements would be easily predictable by

8Only the number of unsupervised training iterations
and the learning rate were selected based on classification
performance on the validation set

Table 1: Classification performance of deep networks and gaussian kernel SVMs for two character recognition
problems. The deep networks with interdependent codes statistically significantly outperform other models on
both problems. We report the results on each fold of the OCR-letters experiment to show that the improvement
in performance of interdependent codes is consistent.

Dataset SVMrbf DBN-3 SDA-3 SDA-6 SDAIC-3
MNIST-rot 11.11 9.01 9.53 9.68 8.07

OCR-letters (fold 1) 9.70 9.68 9.69 10.15 9.60

OCR-letters (fold 2) 9.36 9.68 9.92 9.92 9.31

OCR-letters (fold 3) 9.94 10.07 10.29 10.32 9.46

OCR-letters (fold 4) 10.32 10.46 10.42 10.51 9.92

OCR-letters (fold 5) 10.19 10.58 9.93 10.58 9.50

OCR-letters (all) 9.90 10.09 10.05 10.30 9.56

ters (hence less capacity) for the same size of hidden
layer, we also considered deep networks with larger lay-
ers of up to 2000 hidden units in model selection. We
chose networks with the same number of hidden units
at each layer, as we found this topology to work well.
Another fair comparison with a network with similar
number of parameters, is to stack 6 layers of either
RBMs or denoising autoencoders: both achieved about
the same performance, so we report results on denois-
ing autoencoders only. We denote by DBN-l, SDA-l
and SDAIC-l deep networks initialized by stacking l
modules of RBMs, denoising autoencoders, and DA-
IC, respectively. As a general baseline, we also report
the performance of a kernel SVM with Gaussian kernel
(noted SVMrbf), which often achieves state-of-the-art
performance.

The results, reported in Table 1, confirm that the
interdependent codes are able to improve the
discriminative performance of a deep network
classifier. The addition of lateral connections also en-
ables deep networks to outperform an SVM classifier.
The fact that SDAIC-3 outperforms SDA-6 shows that
it is not simply the additional capacity of SDAIC-3
with respect to SDA-3 and DBN-3 that explains these
performance differences. We also tried to add a phase
of global unsupervised fine-tuning5 before the super-
vised fine-tuning of SDA-6, but it at best improved
only slightly its performance, not reaching the perfor-
mance of SDAIC-3. This confirms the primary impor-
tance of pre-training with a DA-IC greedy module.

Qualitative analysis of learnt parameters
To get a better idea of the type of interactions the
lateral connections are able to capture, we display in
Fig. 3 the values of the weights or filters learned for
each neuron, as well as the weights for pairs of neu-
rons which have strong positive or negative lateral con-

5Global unsupervised fine-tuning consists in optimizing
reconstruction error after a full up and down pass through
all the layers.

nections. Black, mid-gray and white pixels in the fil-
ters correspond to weights of -3, 0, and 3 respectively,
with intermediate values corresponding to intermedi-
ate shades. The DA-IC was trained for 2.5 million up-
dates on samples from the OCR-letters dataset, with a
learning rate of 0.005, α = 0.25 and a small L1 weight
decay of 0.0001. The learned filters detect various as-
pects of the input, such as small pen strokes, which
have localized positive weights and negative biases6
(thus will be active only if a pen stroke is present), and
regions of empty backgrounds, which have localized
negative weights and positive biases (thus will only be
active if no pen stroke is present). There are also filters
that can determine whether the width and height of
a character is smaller than a certain number of pixels
(see filters with wide horizontal or vertical bars).

The lateral connections also model interesting interac-
tions between these filters. Pairs of neurons that are
positively connected often have visually similar filters.
Also, pairs of neurons that are negatively connected
are sensitive to mutually exclusive patterns in the in-
put. For instance, pairs of pen-stroke and empty back-
ground detectors in the same region of the image usu-
ally inhibit each other. Another example is two filters
that detect whether the sides or the top and bottom
of the image are empty (see the first negatively con-
nected pair in Fig. 3), two events that cannot be true
simultaneously since all characters touch at least one
border of the image.

Next we wanted to examine more closely the effect of
V. We presented a number of input patterns to an
SDAIC trained on OCR-letters and considered pairs
of neurons in the hidden layer with inhibitory lateral
connections between them (corresponding to a nega-
tive weight in V). We measured the activity of these
neurons before applying V and after. Fig. 5 shows two

6To simplify the visualization, the value of the biases
are not shown in Fig. 3

Résultats de classification

Deep Learning using Robust
Interdependent Codes
(Larochelle, Erhan and Vincent, 2009)

Résultats extraction de caractéristiques (features)

Deep Learning using Robust
Interdependent Codes
(Larochelle, Erhan and Vincent, 2009)

Larochelle, Erhan, Vincent

Figure 5: Illustration of inhibitory behaviour. Two ex-
amples are shown: e and o. In each, from left to right:
the input pattern, the filters for two neurons of the first
hidden layer, the values taken by these neurons before
taking into account lateral connection weights V, and
their values after applying V and a sigmoid. As can be
seen, lateral connections allow to disambiguate situa-
tions in which we have equally strong initial responses
from the two neurons.

before applying V. In the e example, the competi-
tion is between detecting a vertical segments on the
left edge, or detecting it one pixel to the right. These
are unlikely to occur together. In the o example, the
choice is between detecting an empty spot in the lower
right corner or seeing a vertical segment on the right
edge that continues nearly to the bottom of the cor-
ner. Again, the two are contradictory. In both cases,
inhibitory connections appear crucial in choosing the
feature that better describes the input pattern. This
disambiguation between two conflicting aspects in the
input would not be possible with a simple layer that
does not correct for interdependencies.

5.3 COMPARISON WITH ALTERNATIVE
TECHNIQUES FOR LEARNING
LATERAL INTERACTIONS

Next, we wanted to see how our simple method for
learning lateral interactions (DA-IC) compared to al-
ternatives based on iterating a recursive equation, as
previously proposed. Due to these alternatives be-
ing very time consuming, we focused on unsupervised
training of a single layer (greedy module) to learn a
representation (code)7. We then measured the classifi-
cation performance obtained by a linear least squares
classifier that uses that learned code as input. We
specifically considered the following greedy modules:

• RBM: Restricted Boltzmann Machine with no
lateral connections.

• DA: Ordinary Denoising Autoencoder, no lateral
connections.

7We tested using both 10 and 30 iterations through
Equation 3. Notice that computing enc(ex) with these al-
ternative models requires 10 and 30 times (respectively)
as many multiply-add operations involving the H2 − H
lateral connections Vjk, where H is the number of hidden
units (the diagonal of V is not used in Equation 3).

15

18

21

24

27

250 500 750 1000

RBM
SRBM
DA
DA-settling
DA-IC

OCR-letters

12

15

18

21

24

27

500 750 1000 1500 2000

RBM
SRBM
DA
DA-settling
DA-IC

MNIST-rot

15

18

21

24

27

250 500 750 1000

RBM
SRBM
DA
DA-settling
DA-IC

OCR-letters

12

15

18

21

24

27

500 750 1000 1500 2000

RBM
SRBM
DA
DA-settling
DA-IC

MNIST-rot

Figure 6: Test classification error (%) of a linear classi-
fier using the codes learned by different types of greedy
modules, for increasing size of hidden layer.

• SRBM: Semi-Restricted Boltzmann Machines
(Osindero & Hinton, 2008), but with lateral con-
nections between hidden units, instead of visible
units as originally proposed.

• DA-settling: Denoising Autoencoder with “set-
tling” lateral connections in the encoder: i.e. we
iterate several times through Eq. 3.

• DA-IC: Our proposed Denoising Autoencoder
with Interdependent Codes.

Fig. 6 gives the resulting classification performance as
a function of the size of the code (the number of hid-
den units). We emphasize that the codes were learned
in an entirely unsupervised fashion8. We observe that
DA-IC systematically outperforms both RBM and DA
(differences are statistically significant, except for 250
units on OCR-letters). When compared to the alter-
native techniques for introducing lateral interactions,
DA-IC outperforms them on MNIST-rot (differences
are statistically significant), and is also best (statisti-
cally equivalent to SRBM) on OCR-letters. We want
to emphasize here that, contrary to the alternative
techniques involving iterating a recursive equation,
DA-IC is very simple and computationally very cheap
(no iteration involved).

5.4 ANALYSIS OF CORRELATION

Finally, we provide a possible explanation as to why
DA-ICs are better suited for deep learning. The per-
formance of deep networks with 1, 2 and 3 stacked
DA-ICs is 10.33%, 8.91% and 8.07% respectively on
the MNIST-rot dataset, which confirms that the DA-
IC can leverage the addition of layers. Intuitively, a
necessary condition for a greedy module to be appro-
priate for deep learning is that it should compute rep-
resentations which, while being informative of the in-
put, are not too linearly correlated. Otherwise, some
of the coding elements would be easily predictable by

8Only the number of unsupervised training iterations
and the learning rate were selected based on classification
performance on the validation set

Résultats extraction de caractéristiques (features)

Deep Learning using Robust
Interdependent Codes
(Larochelle, Erhan and Vincent, 2009)Deep Learning using Robust Interdependent Codes

0,0200

0,0275

0,0350

0,0425

0,0500

500 750 1000 1500 2000

MNIST-basic

0,0200

0,0275

0,0350

0,0425

0,0500

500 750 1000 1500 2000

MNIST-rot

0,0150

0,0225

0,0300

0,0375

0,0450

250 500 750 1000

OCR-letters

0,0200

0,0275

0,0350

0,0425

0,0500

500 750 1000 1500 2000

MNIST-basic

0,0200

0,0275

0,0350

0,0425

0,0500

500 750 1000 1500 2000

MNIST-rot

0,0150

0,0225

0,0300

0,0375

0,0450

250 500 750 1000

OCR-letters

Figure 7: Mean pairwise absolute correlation between
the coding elements of a basic denoising autoencoder
(squares) and a denoising autoencoder with interde-
pendent codes (circles), for different layer sizes.

others and therefore essentially useless. Since denois-
ing autoencoders use a log-linear decoder function,
training implicitly discourages highly correlated hid-
den units, which would waste some of the capacity of
the encoder. However, as the size of the hidden layer
grows, it is likely that adding uncorrelated units re-
quires more non-linear computations from the encoder.
So, by adding lateral connections to the encoder func-
tion, we would expect the encoder to be better able
to reduce the correlation in its code units. To verify
this claim, we computed the mean of pairwise abso-
lute correlations between the activities of the hidden
units of a denoising autoencoder and of a DA-IC for
several large sizes of hidden layers, on the MNIST-rot
dataset. Model selection was performed based on the
mean absolute correlations obtained on the validation
set. The result, reported in Fig. 7, confirms that inter-
dependent codes exhibit less correlation between their
elements.

6 CONCLUSION

We presented a simple extension of denoising autoen-
coders which allows learning inhibitory and excitatory
interactions between the hidden code units and demon-
strated their usefulness as greedy modules for deep
learning. Experiments on two character recognition
problems showed that using Denoising Autoencoder
with Interdependent Codes (DA-IC) outperforms
state-of-the-art learning algorithms for deep
networks classifiers and kernel SVMs. While
the technique we use for taking into account lateral
interactions is both simpler and computationally
much more efficient than previously proposed
alternative techniques (based on a recursive update
equation) we showed it does learn codes that yield
equivalent or better classification performance
than these more cumbersome alternatives.

Acknowledgements
The authors thank Yoshua Bengio for constructive dis-
cussions. This research was supported by MITACS.

References
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H.

(2007). Greedy layer-wise training of deep networks. Ad-
vances in NIPS 19.

Bengio, Y., & LeCun, Y. (2007). Scaling learning algo-
rithms towards AI. In L. Bottou, O. Chapelle, D. De-
Coste and J. Weston (Eds.), Large scale kernel machines.
MIT Press.

Garrigues, P., & Olshausen, B. (2008). Learning horizontal
connections in a sparse coding model of natural images.
In Nips’20.

Hinton, G., Osindero, S., & Bao, K. (2005). Learning
causally linked markov random fields. AISTATS’05.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural Compu-
tation, 18, 1527–1554.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks. Sci-
ence, 313, 504–507.

Hyvärinen, A., Hoyer, P. O., & Inki, M. O. (2001). Topo-
graphic independent component analysis. Neural Com-
putation, 13, 1527–1558.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., &
Bengio, Y. (2007). An empirical evaluation of deep ar-
chitectures on problems with many factors of variation.
ICML.

Osindero, S., & Hinton, G. (2008). Modeling image patches
with a directed hierarchy of markov random field. NIPS
20.

Osindero, S., Welling, M., & Hinton, G. E. (2006). Topo-
graphic product models applied to natural scene statis-
tics. Neural Computation, 18, 381–414.

Raina, R., Battle, A., Lee, H., Packer, B., & Ng, A. Y.
(2007). Self-taught learning: transfer learning from un-
labeled data. ICML 2007.

Ranzato, M., Boureau, Y., & LeCun, Y. (2008). Sparse
feature learning for deep belief networks. In Nips 20.

Ranzato, M., Huang, F., Boureau, Y., & LeCun, Y. (2007).
Unsupervised learning of invariant feature hierarchies
with applications to object recognition. CVPR’07.

Salakhutdinov, R., & Hinton, G. E. (2007). Semantic hash-
ing. SIGIR.

Salakhutdinov, R., & Hinton, G. E. (2008). Using deep
belief nets to learn covariance kernels for gaussian pro-
cesses. In Nips 20.

Shriki, O., Sompolinsky, H., & Lee, D. D. (2001). An
information maximization approach to overcomplete and
recurrent representations. NIPS 13.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A.
(2008). Extracting and composing robust features with
denoising autoencoders. Proceedings of ICML’2008 (pp.
1096–1103).

Weston, J., Ratle, F., & Collobert, R. (2008). Deep learn-
ing via semi-supervised embedding. ICML 2008.

Quelle sorte d’encodeur utiliser?

• Plusieurs autres choix d’encodeur
pourraient sont possibles

• L’encodeur “optimal” dépend peut-être de
la tâche (image vs. signal sonore vs. texte)

! Piste de recherche !

Deep Learning via Semi-Supervised Embedding
(Weston, Ratle and Collobert, ICML 2008)

• Pourquoi ne pas s’inspirer de la littérature
sur l’apprentissage semi-supervisé

Deep Learning via Semi-Supervised Embedding

Laplacian Eigenmaps (Belkin & Niyogi, 2003)
learn manifold structure by emphasizing the preserva-
tion of local distances. One defines the distance metric
between the examples by encoding them in the Lapla-
cian L = W − D, where Dii =

∑
j Wij is diagonal.

Then, the following optimization is used:
∑

ij

L(fi, fj ,Wij) =
∑

ij

Wij ||fi − fj ||2 = f!Lf (1)

subject to the balancing constraint:

f!Df = I and f!D1 = 0. (2)

Siamese Networks (Bromley et al., 1993) are also
a classical method for nonlinear embedding. Neural
networks researchers think of such models as a network
with two identical copies of the same function, with the
same weights, fed into a “distance measuring” layer to
compute whether the two examples are similar or not,
given labeled data. In fact, this is exactly the same as
the formulation given at the beginning of this Section.

Several loss functions have been proposed for siamese
networks, here we describe a margin-based loss pro-
posed by the authors of (Hadsell et al., 2006):

L(fi, fj ,Wij) =

{
||fi − fj ||2 if Wij = 1,
max(0,m− ||fi − fj ||2) if Wij = 0

(3)
which encourages similar examples to be close, and dis-
similar ones to have a distance of at least m from each
other. Note that no balancing constraint is needed
with such a choice of loss as the margin constraint
inhibits a trivial solution. Compared to using con-
straints like (2) this is much easier to optimize by gra-
dient descent.

2.2. Semi-Supervised Algorithms

Several semi-supervised classification algorithms have
been proposed which take advantage of the algorithms
described in the last section. Here we assume the set-
ting where one is given L + U examples xi, but only
the first L have a known label yi.

Label Propagation (Zhu & Ghahramani, 2002)
adds a Laplacian Eigenmap type regularization to a
nearest-neighbor type classifier:

min
f

L∑

i=1

||fi − yi||2 + λ
L+U∑

i,j=1

Wij ||fi − fj ||2 (4)

The algorithm tries to give two examples with large
weighted edge Wij the same label. The neighbors of
neighbors tend to also get the same label as each other
by transitivity, hence the name label propagation.

LapSVM (Belkin et al., 2006) uses the Laplacian
Eigenmaps type regularizer with an SVM: minimize

||w||2 + γ
L∑

i=1

H(yif(xi)) + λ
L+U∑

i,j=1

Wij ||f(xi)− f(xj)||2

(5)
where H(x) = max(0, 1− x) is the hinge loss.

Other Methods In (Chapelle & Zien, 2005) a
method called graph is suggested which combines a
modified version of ISOMAP with an SVM. The au-
thors also suggest to combine modified ISOMAP with
TSVMs rather than SVMs, and call it Low Density
Separation (LDS).

3. Semi-supervised Embedding for
Deep Learning

We would like to use the ideas developed in semi-
supervised learning for deep learning. Deep learning
consists of learning a model with several layers of non-
linear mapping. In this article we will consider multi-
layer networks with M layers of hidden units that give
a C-dimensional output vector:

fi(x) =
d∑

j=1

wO,i
j hM

j (x) + bO,i, i = 1, . . . , C (6)

where wO are the weights for the output layer, and
typically the kth layer is defined as

hk
i (x) = S

(∑

j

wk,i
j hk−1

j (x) + bk,i
)
, k > 1 (7)

h1
i (x) = S

(∑

j

w1,i
j xj + b1,i

)
(8)

and S is a non-linear squashing function such as tanh.
Here, we describe a standard fully connected multi-
layer network but prior knowledge about a particular
problem could lead one to other network designs. For
example in sequence and image recognition time delay
and convolutional networks (TDNNs and CNNs) (Le-
Cun et al., 1998) have been very successful. In those
approaches one introduces layers that apply convolu-
tions on their input which take into account locality
information in the data, i.e. they learn features from
image patches or windows within a sequence.

The general method we propose for semi-supervised
deep learning is to add a semi-supervised regularizer
in deep architectures in one of three different modes,
as shown in Figure 1:

Des entrées devraient avoir des
sorties similaires si elles sont voisines

xi, xj
fi, fj

Deep Learning via Semi-Supervised Embedding
(Weston, Ratle and Collobert, ICML 2008)Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

coût supervisé

coût non-supervisé

Deep Learning via Semi-Supervised Embedding
(Weston, Ratle and Collobert, ICML 2008)

Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

coût supervisé

coût non-supervisé

Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

couche cachéeke

Deep Learning via Semi-Supervised Embedding
(Weston, Ratle and Collobert, ICML 2008)

Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

coût supervisé

coût non-supervisé

Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

 g g

Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

Deep Learning via Semi-Supervised Embedding
(Weston, Ratle and Collobert, ICML 2008)Deep Learning via Semi-Supervised Embedding

OUTPUTOUTPUT

INPUTINPUT

Embedding
Space

LAYER 1

LAYER 2

LAYER 3

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3

Embedding
Space

(a) Output (b) Internal

OUTPUTOUTPUT

INPUTINPUT

LAYER 1

LAYER 2

LAYER 3
Embedding

Layer

(c) Auxiliary

Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

!(f(xi), yi) + λ
L+U∑

i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

!(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize !(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary

Deep Learning via Semi-Supervised Embedding
(Weston, Ratle and Collobert, ICML 2008)

• Résultats

Deep Learning via Semi-Supervised Embedding

Table 1. Datasets used in our experiments. The first three
are small scale datasets used in the same experimental
setup as found in (Chapelle & Zien, 2005; Sindhwani et al.,
2005; Collobert et al., 2006). The following six datasets
are large scale. The Mnist 1h,6h,1k,3k and 60k variants
are MNIST with a labeled subset of data, following the
experimental setup in (Collobert et al., 2006). SRL is a
Semantic Role Labeling task (Pradhan et al., 2004) with
one million labeled training examples and 631 million un-
labeled examples.

data set classes dims points labeled
g50c 2 50 500 50
Text 2 7511 1946 50
Uspst 10 256 2007 50
Mnist1h 10 784 70k 100
Mnist6h 10 784 70k 600
Mnist1k 10 784 70k 1000
Mnist3k 10 784 70k 3000
Mnist60k 10 784 70k 60000
SRL 16 - 631M 1M

learning experiments (Chapelle & Zien, 2005; Sind-
hwani et al., 2005; Collobert et al., 2006). We fol-
lowed the same experimental setup, averaging results
of ten splits of 50 labeled examples where the rest of
the data is unlabeled. In these experiments we test the
embedding regularizer on the output of a neural net-
work (see equation (9) and Figure 1(a)). We define a
two-layer neural network (NN) with hu hidden units.
We define W so that the 10 nearest neighbors of i
have Wij = 1, and Wij = 0 otherwise. We train for 50
epochs of stochastic gradient descent and fixed λ = 1,
but for the first 5 we optimized the supervised tar-
get alone (without the embedding regularizer). This
gives two free hyperparameters: the number of hidden
units hu = {0, 5, 10, 20, 30, 40, 50} and the learning
rate lr = {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.

We report the optimum choices of these values opti-
mized by 5-fold cross validation and by optimizing on
the test set in Table 2. Note the datasets are very
small, so cross validation is unreliable. Several meth-
ods from the literature optimized their hyperparam-
eters using the test set (those that are not marked
with (cv)). Our EmbedNN is competitive with state-
of-the-art semi-supervised methods based on SVMs,
even outperforming them in some cases.

MNIST experiments We compare our method in
all three different modes (Figure 1) with conventional
semi-supervised learning (TSVM) using the same data
split and validation set as in (Collobert et al., 2006).
We also compare to several deep learning methods:
RBMs, SESM and DBN-NCA and DBN-rNCA (how-
ever, they are trained on a different data split). In

Table 2. Results on Small-Scale Datasets. We report the
best test error over the hyperparameters of our method,
EmbedNN, as in the methodology of (Chapelle & Zien,
2005) as well as the error when optimizing the param-
eters by cross-validation, EmbedNN(cv). LDS(cv) and
LapSVM(cv) also use cross-validation.

g50c Text Uspst
SVM 8.32 18.86 23.18
TSVM 5.80 5.71 17.61
LapSVM(cv) 5.4 10.4 12.7
LDS(cv) 5.4 5.1 15.8
Label propagation 17.30 11.71 21.30
Graph SVM 8.32 10.48 16.92
NN 10.62 15.74 25.13
EmbedNN 5.66 5.82 15.49
EmbedNN(cv) 6.78 6.19 15.84

Table 3. Results on MNIST with 100, 600, 1000 and 3000
labels. A two-layer Neural Network (NN) is compared to an
NN with Embedding regularizer (EmbedNN) on the output
(O), ith layer (Ii) or auxiliary embedding from the ith layer
(Ai) (see Figure 1). A convolutional network (CNN) is also
tested in the same way. We compare to SVMs and TSVMs.
RBM, SESM, DBN-NCA and DBN-rNCA (marked with
(∗)) taken from (Ranzato et al., 2007; Salakhutdinov &
Hinton, 2007) are trained on a different data split.

Mnst1h Mnst6h Mnst1k Mnst3k
SVM 23.44 8.85 7.77 4.21
TSVM 16.81 6.16 5.38 3.45
RBM(∗) 21.5 - 8.8 -
SESM(∗) 20.6 - 9.6 -
DBN-NCA(∗) - 10.0 - 3.8
DBN-rNCA(∗) - 8.7 - 3.3

NN 25.81 11.44 10.70 6.04
EmbedONN 17.05 5.97 5.73 3.59
EmbedI1NN 16.86 9.44 8.52 6.02
EmbedA1NN 17.17 7.56 7.89 4.93

CNN 22.98 7.68 6.45 3.35
EmbedOCNN 11.73 3.42 3.34 2.28
EmbedI5CNN 7.75 3.82 2.73 1.83
EmbedA5CNN 7.87 3.82 2.76 2.07

Table 4. Mnist1h dataset with deep networks of 2, 6, 8, 10
and 15 layers; each hidden layer has 50 hidden units. We
compare classical NN training with EmbedNN where we
either learn an embedding at the output layer (O) or an
auxiliary embedding on all layers at the same time (ALL).
.

2 4 6 8 10 15
NN 26.0 26.1 27.2 28.3 34.2 47.7
EmbedONN 19.7 15.1 15.1 15.0 13.7 11.8
EmbedALLNN 18.2 12.6 7.9 8.5 6.3 9.3

Deep Learning via Semi-Supervised Embedding
(Weston, Ratle and Collobert, ICML 2008)

• Résultats

Deep Learning via Semi-Supervised Embedding

Table 1. Datasets used in our experiments. The first three
are small scale datasets used in the same experimental
setup as found in (Chapelle & Zien, 2005; Sindhwani et al.,
2005; Collobert et al., 2006). The following six datasets
are large scale. The Mnist 1h,6h,1k,3k and 60k variants
are MNIST with a labeled subset of data, following the
experimental setup in (Collobert et al., 2006). SRL is a
Semantic Role Labeling task (Pradhan et al., 2004) with
one million labeled training examples and 631 million un-
labeled examples.

data set classes dims points labeled
g50c 2 50 500 50
Text 2 7511 1946 50
Uspst 10 256 2007 50
Mnist1h 10 784 70k 100
Mnist6h 10 784 70k 600
Mnist1k 10 784 70k 1000
Mnist3k 10 784 70k 3000
Mnist60k 10 784 70k 60000
SRL 16 - 631M 1M

learning experiments (Chapelle & Zien, 2005; Sind-
hwani et al., 2005; Collobert et al., 2006). We fol-
lowed the same experimental setup, averaging results
of ten splits of 50 labeled examples where the rest of
the data is unlabeled. In these experiments we test the
embedding regularizer on the output of a neural net-
work (see equation (9) and Figure 1(a)). We define a
two-layer neural network (NN) with hu hidden units.
We define W so that the 10 nearest neighbors of i
have Wij = 1, and Wij = 0 otherwise. We train for 50
epochs of stochastic gradient descent and fixed λ = 1,
but for the first 5 we optimized the supervised tar-
get alone (without the embedding regularizer). This
gives two free hyperparameters: the number of hidden
units hu = {0, 5, 10, 20, 30, 40, 50} and the learning
rate lr = {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.

We report the optimum choices of these values opti-
mized by 5-fold cross validation and by optimizing on
the test set in Table 2. Note the datasets are very
small, so cross validation is unreliable. Several meth-
ods from the literature optimized their hyperparam-
eters using the test set (those that are not marked
with (cv)). Our EmbedNN is competitive with state-
of-the-art semi-supervised methods based on SVMs,
even outperforming them in some cases.

MNIST experiments We compare our method in
all three different modes (Figure 1) with conventional
semi-supervised learning (TSVM) using the same data
split and validation set as in (Collobert et al., 2006).
We also compare to several deep learning methods:
RBMs, SESM and DBN-NCA and DBN-rNCA (how-
ever, they are trained on a different data split). In

Table 2. Results on Small-Scale Datasets. We report the
best test error over the hyperparameters of our method,
EmbedNN, as in the methodology of (Chapelle & Zien,
2005) as well as the error when optimizing the param-
eters by cross-validation, EmbedNN(cv). LDS(cv) and
LapSVM(cv) also use cross-validation.

g50c Text Uspst
SVM 8.32 18.86 23.18
TSVM 5.80 5.71 17.61
LapSVM(cv) 5.4 10.4 12.7
LDS(cv) 5.4 5.1 15.8
Label propagation 17.30 11.71 21.30
Graph SVM 8.32 10.48 16.92
NN 10.62 15.74 25.13
EmbedNN 5.66 5.82 15.49
EmbedNN(cv) 6.78 6.19 15.84

Table 3. Results on MNIST with 100, 600, 1000 and 3000
labels. A two-layer Neural Network (NN) is compared to an
NN with Embedding regularizer (EmbedNN) on the output
(O), ith layer (Ii) or auxiliary embedding from the ith layer
(Ai) (see Figure 1). A convolutional network (CNN) is also
tested in the same way. We compare to SVMs and TSVMs.
RBM, SESM, DBN-NCA and DBN-rNCA (marked with
(∗)) taken from (Ranzato et al., 2007; Salakhutdinov &
Hinton, 2007) are trained on a different data split.

Mnst1h Mnst6h Mnst1k Mnst3k
SVM 23.44 8.85 7.77 4.21
TSVM 16.81 6.16 5.38 3.45
RBM(∗) 21.5 - 8.8 -
SESM(∗) 20.6 - 9.6 -
DBN-NCA(∗) - 10.0 - 3.8
DBN-rNCA(∗) - 8.7 - 3.3

NN 25.81 11.44 10.70 6.04
EmbedONN 17.05 5.97 5.73 3.59
EmbedI1NN 16.86 9.44 8.52 6.02
EmbedA1NN 17.17 7.56 7.89 4.93

CNN 22.98 7.68 6.45 3.35
EmbedOCNN 11.73 3.42 3.34 2.28
EmbedI5CNN 7.75 3.82 2.73 1.83
EmbedA5CNN 7.87 3.82 2.76 2.07

Table 4. Mnist1h dataset with deep networks of 2, 6, 8, 10
and 15 layers; each hidden layer has 50 hidden units. We
compare classical NN training with EmbedNN where we
either learn an embedding at the output layer (O) or an
auxiliary embedding on all layers at the same time (ALL).
.

2 4 6 8 10 15
NN 26.0 26.1 27.2 28.3 34.2 47.7
EmbedONN 19.7 15.1 15.1 15.0 13.7 11.8
EmbedALLNN 18.2 12.6 7.9 8.5 6.3 9.3

Deep Learning via Semi-Supervised Embedding
(Weston, Ratle and Collobert, ICML 2008)

• Résultats
Deep Learning via Semi-Supervised Embedding

Table 5. Full Mnist60k dataset with deep networks of 2, 6,
8, 10 and 15 layers, using either 50 or 100 hidden units. We
compare classical NN training with EmbedALLNN where
we learn an auxiliary embedding on all layers at the same
time.

2 4 6 8 10 15
NN (HUs=50) 2.9 2.6 2.8 3.1 3.1 4.2
EmbedALLNN 2.8 1.9 2.0 2.2 2.4 2.6

NN (HUs=100) 2.0 1.9 2.0 2.2 2.3 3.0
EmbedALLNN 1.9 1.5 1.6 1.7 1.8 2.4

these experiments we consider 2-layer networks (NN)
and 6-layer convolutional neural nets (CNN) for em-
bedding. We optimize the parameters of NN (hu =
{50, 100, 150, 200, 400} hidden units and learning rates
as before) on the validation set. The CNN architecture
is fixed: 5 layers of image patch-type convolutions, fol-
lowed by a linear layer of 50 hidden units, similar to
(LeCun et al., 1998). The results given in Table 3 show
the effectiveness of embedding in all three modes, with
both NNs and CNNs.

Deeper MNIST experiments We then conducted
a similar set of experiments but with very deep archi-
tectures – up to 15 layers, where each hidden layer
has 50 hidden units. Using Mnist1h, we first compare
conventional NNs to EmbedALLNN where we learn an
auxiliary nonlinear embedding (50 hidden units and
a 10 dimensional embedding space) on each layer, as
well as EmbedONN where we only embed the outputs.
Results are given in Table 4. When we increase the
number of layers, NNs trained with conventional back-
propagation overfit and yield steadily worse test er-
ror (although they are easily capable of achieving zero
training error). In contrast, EmbedALLNN improves
with increasing depth due to the semi-supervised “reg-
ularization”. Embedding on all layers of the network
has made deep learning possible. EmbedONN (embed-
ding on the outputs) also helps, but not as much.

We also conducted some experiments using the full
MNIST dataset, Mnist60k. Again using deep networks
of up to 15 layers using either 50 or 100 hidden units
EmbedALLNN outperforms standard NN. Results are
given in Table 5. Increasing the number of hidden
units is likely to improve these results further, e.g. us-
ing 4 layers and 500 hidden units on each layer, one
obtains 1.27% using EmbedALLNN.

Semantic Role Labeling The goal of semantic role
labeling (SRL) is, given a sentence and a relation of
interest, to label each word with one of 16 tags that
indicate that word’s semantic role with respect to the

Table 6. A deep architecture for Semantic Role Labeling
with no prior knowledge outperforms state-of-the-art sys-
tems ASSERT and SENNA that incorporate knowledge
about parts-of-speech and parse trees. A convolutional
network (CNN) is improved by learning an auxiliary em-
bedding (EmbedA1CNN) for words represented as 100-
dimensional vectors using the entire Wikipedia website as
unlabeled data.

Method Test Error
ASSERT (Pradhan et al., 2004) 16.54%
SENNA (Collobert & Weston, 2007) 16.36%
CNN [no prior knowledge] 18.40%
EmbedA1CNN [no prior knowledge] 14.55%

action of the relation. For example the sentence ”The
cat eats the fish in the pond” is labeled in the following
way: ”TheARG0 catARG0 eatsREL theARG1 fishARG1

inARGM−LOC theARGM−LOC pondARGM−LOC” where
ARG0 and ARG1 effectively indicate the subject and
object of the relation “eats” and ARGM-LOC indi-
cates a locational modifier. The PropBank dataset
includes around 1 million labeled words from the Wall
Street Journal. We follow the experimental setup of
(Collobert & Weston, 2007) and train a 5-layer con-
volutional neural network for this task, where the
first layer represents the input sentence words as 50-
dimensional vectors. Unlike (Collobert & Weston,
2007), we do not give any prior knowledge to our classi-
fier. In that work words were stemmed and clustered
using their parts-of-speech. Our classifier is trained
using only the original input words.

We attempt to improve this system by, as before,
learning an auxiliary embedding task. Our embedding
is learnt using unlabeled sentences from the Wikipedia
web site, consisting of 631 million words in total using
the scheme described in Section 3. The same lookup
table of word vectors as in the supervised task is used
as input to an 11 word window around a given word,
yielding 550 features. Then a linear layer projects
these features into a 100 dimensional embedding space.
All windows of text from Wikipedia are considered
neighbors, and non-neighbors are constructed by re-
placing the middle word in a sentence window with
a random word. Our lookup table indexes the most
frequently used 30,000 words, and all other words are
assigned index 30,001.

The results in Table 6 indicate a clear improvement
when learning an auxiliary embedding. ASSERT
(Pradhan et al., 2004) is an SVM parser-based sys-
tem with many hand-coded features, and SENNA is a
NN which uses part-of-speech information to build its
word vectors. In contrast, our system is the only state-

Deep Learning via Semi-Supervised Embedding
(Weston, Ratle and Collobert, ICML 2008)

• Avantages

★ n’a pas de décodeur, pratique en haute
dimension

• Désavantages

★ doit définir quelles paires d’entrées sont
voisines

! Piste de recherche !

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

• Est-il possible d’avoir une machine à noyau
profond?

• Est-il possible d’avoir une couche cachée
infinie?

f
2

f
3

fi

x
1

x
2

xj

. . .

. . .

f
1

fm

xd

W

. . .

. . .

!1 0 1

0

0.5

1

Step (n=0)

!1 0 1

0

0.5

1

Ramp (n=1)

!1 0 1

0

0.5

1

Quarter!pipe (n=2)

Figure 1: Single layer network and activation functions

For n=0, the activation function is a step function, and the network is an array of perceptrons. For
n=1, the activation function is a ramp function (or rectification nonlinearity [9]), and the mapping
f(x) is piecewise linear. More generally, the nonlinear (non-polynomial) behavior of these networks
is induced by thresholding on weighted sums. We refer to networks with these activation functions
as single-layer threshold networks of degree n.

Computation in these networks is closely connected to computation with the arc-cosine kernel func-
tion in eq. (1). To see the connection, consider how inner products are transformed by the mapping
in single-layer threshold networks. As notation, let the vector wi denote ith row of the weight
matrix W. Then we can express the inner product between different outputs of the network as:

f(x) · f(y) =
m∑

i=1

Θ(wi · x)Θ(wi · y)(wi · x)n(wi · y)n, (8)

where m is the number of output units. The connection with the arc-cosine kernel function emerges
in the limit of very large networks [10, 8]. Imagine that the network has an infinite number of
output units, and that the weights Wij are Gaussian distributed with zero mean and unit vari-
ance. In this limit, we see that eq. (8) reduces to eq. (1) up to a trivial multiplicative factor:
limm→∞

2
m f(x) · f(y) = kn(x,y). Thus the arc-cosine kernel function in eq. (1) can be viewed

as the inner product between feature vectors derived from the mapping of an infinite single-layer
threshold network [8].

Many researchers have noted the general connection between kernel machines and neural networks
with one layer of hidden units [1]. The n = 0 arc-cosine kernel in eq. (1) can also be derived from
an earlier result obtained in the context of Gaussian processes [8]. However, we are unaware of any
previous theoretical or empirical work on the general family of these kernels for degrees n≥0.

Arc-cosine kernels differ from polynomial and RBF kernels in one especially interesting respect.
As highlighted by the integral representation in eq. (1), arc-cosine kernels induce feature spaces
that mimic the sparse, nonnegative, distributed representations of single-layer threshold networks.
Polynomial and RBF kernels do not encode their inputs in this way. In particular, the feature vector
induced by polynomial kernels is neither sparse nor nonnegative, while the feature vector induced
by RBF kernels resembles the localized output of a soft vector quantizer. Further implications of
this difference are explored in the next section.

2.3 Computation in multilayer threshold networks

A kernel function can be viewed as inducing a nonlinear mapping from inputs x to fea-
ture vectors Φ(x). The kernel computes the inner product in the induced feature space:
k(x,y) = Φ(x)·Φ(y). In this section, we consider how to compose the nonlinear mappings in-
duced by kernel functions. Specifically, we show how to derive new kernel functions

k(!)(x,y) = Φ(Φ(...Φ︸ ︷︷ ︸
! times

(x))) · Φ(Φ(...Φ︸ ︷︷ ︸
! times

(y))) (9)

which compute the inner product after ! successive applications of the nonlinear mapping Φ(·). Our
motivation is the following: intuitively, if the base kernel function k(x,y) = Φ(x) · Φ(y) mimics
the computation in a single-layer network, then the iterated mapping in eq. (9) should mimic the
computation in a multilayer network.

3

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

• Dans une machine à noyau, on s’intéresse
aux produits scalaires entre vecteurs

f
2

f
3

fi

x
1

x
2

xj

. . .

. . .

f
1

fm

xd

W

. . .

. . .

!1 0 1

0

0.5

1

Step (n=0)

!1 0 1

0

0.5

1

Ramp (n=1)

!1 0 1

0

0.5

1

Quarter!pipe (n=2)

Figure 1: Single layer network and activation functions

For n=0, the activation function is a step function, and the network is an array of perceptrons. For
n=1, the activation function is a ramp function (or rectification nonlinearity [9]), and the mapping
f(x) is piecewise linear. More generally, the nonlinear (non-polynomial) behavior of these networks
is induced by thresholding on weighted sums. We refer to networks with these activation functions
as single-layer threshold networks of degree n.

Computation in these networks is closely connected to computation with the arc-cosine kernel func-
tion in eq. (1). To see the connection, consider how inner products are transformed by the mapping
in single-layer threshold networks. As notation, let the vector wi denote ith row of the weight
matrix W. Then we can express the inner product between different outputs of the network as:

f(x) · f(y) =
m∑

i=1

Θ(wi · x)Θ(wi · y)(wi · x)n(wi · y)n, (8)

where m is the number of output units. The connection with the arc-cosine kernel function emerges
in the limit of very large networks [10, 8]. Imagine that the network has an infinite number of
output units, and that the weights Wij are Gaussian distributed with zero mean and unit vari-
ance. In this limit, we see that eq. (8) reduces to eq. (1) up to a trivial multiplicative factor:
limm→∞

2
m f(x) · f(y) = kn(x,y). Thus the arc-cosine kernel function in eq. (1) can be viewed

as the inner product between feature vectors derived from the mapping of an infinite single-layer
threshold network [8].

Many researchers have noted the general connection between kernel machines and neural networks
with one layer of hidden units [1]. The n = 0 arc-cosine kernel in eq. (1) can also be derived from
an earlier result obtained in the context of Gaussian processes [8]. However, we are unaware of any
previous theoretical or empirical work on the general family of these kernels for degrees n≥0.

Arc-cosine kernels differ from polynomial and RBF kernels in one especially interesting respect.
As highlighted by the integral representation in eq. (1), arc-cosine kernels induce feature spaces
that mimic the sparse, nonnegative, distributed representations of single-layer threshold networks.
Polynomial and RBF kernels do not encode their inputs in this way. In particular, the feature vector
induced by polynomial kernels is neither sparse nor nonnegative, while the feature vector induced
by RBF kernels resembles the localized output of a soft vector quantizer. Further implications of
this difference are explored in the next section.

2.3 Computation in multilayer threshold networks

A kernel function can be viewed as inducing a nonlinear mapping from inputs x to fea-
ture vectors Φ(x). The kernel computes the inner product in the induced feature space:
k(x,y) = Φ(x)·Φ(y). In this section, we consider how to compose the nonlinear mappings in-
duced by kernel functions. Specifically, we show how to derive new kernel functions

k(!)(x,y) = Φ(Φ(...Φ︸ ︷︷ ︸
! times

(x))) · Φ(Φ(...Φ︸ ︷︷ ︸
! times

(y))) (9)

which compute the inner product after ! successive applications of the nonlinear mapping Φ(·). Our
motivation is the following: intuitively, if the base kernel function k(x,y) = Φ(x) · Φ(y) mimics
the computation in a single-layer network, then the iterated mapping in eq. (9) should mimic the
computation in a multilayer network.

3

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2

f
2

f
3

fi

x
1

x
2

xj

. . .

. . .

f
1

fm

xd

W

. . .

. . .

!1 0 1

0

0.5

1

Step (n=0)

!1 0 1

0

0.5

1

Ramp (n=1)

!1 0 1

0

0.5

1

Quarter!pipe (n=2)

Figure 1: Single layer network and activation functions

For n=0, the activation function is a step function, and the network is an array of perceptrons. For
n=1, the activation function is a ramp function (or rectification nonlinearity [9]), and the mapping
f(x) is piecewise linear. More generally, the nonlinear (non-polynomial) behavior of these networks
is induced by thresholding on weighted sums. We refer to networks with these activation functions
as single-layer threshold networks of degree n.

Computation in these networks is closely connected to computation with the arc-cosine kernel func-
tion in eq. (1). To see the connection, consider how inner products are transformed by the mapping
in single-layer threshold networks. As notation, let the vector wi denote ith row of the weight
matrix W. Then we can express the inner product between different outputs of the network as:

f(x) · f(y) =
m∑

i=1

Θ(wi · x)Θ(wi · y)(wi · x)n(wi · y)n, (8)

where m is the number of output units. The connection with the arc-cosine kernel function emerges
in the limit of very large networks [10, 8]. Imagine that the network has an infinite number of
output units, and that the weights Wij are Gaussian distributed with zero mean and unit vari-
ance. In this limit, we see that eq. (8) reduces to eq. (1) up to a trivial multiplicative factor:
limm→∞

2
m f(x) · f(y) = kn(x,y). Thus the arc-cosine kernel function in eq. (1) can be viewed

as the inner product between feature vectors derived from the mapping of an infinite single-layer
threshold network [8].

Many researchers have noted the general connection between kernel machines and neural networks
with one layer of hidden units [1]. The n = 0 arc-cosine kernel in eq. (1) can also be derived from
an earlier result obtained in the context of Gaussian processes [8]. However, we are unaware of any
previous theoretical or empirical work on the general family of these kernels for degrees n≥0.

Arc-cosine kernels differ from polynomial and RBF kernels in one especially interesting respect.
As highlighted by the integral representation in eq. (1), arc-cosine kernels induce feature spaces
that mimic the sparse, nonnegative, distributed representations of single-layer threshold networks.
Polynomial and RBF kernels do not encode their inputs in this way. In particular, the feature vector
induced by polynomial kernels is neither sparse nor nonnegative, while the feature vector induced
by RBF kernels resembles the localized output of a soft vector quantizer. Further implications of
this difference are explored in the next section.

2.3 Computation in multilayer threshold networks

A kernel function can be viewed as inducing a nonlinear mapping from inputs x to fea-
ture vectors Φ(x). The kernel computes the inner product in the induced feature space:
k(x,y) = Φ(x)·Φ(y). In this section, we consider how to compose the nonlinear mappings in-
duced by kernel functions. Specifically, we show how to derive new kernel functions

k(!)(x,y) = Φ(Φ(...Φ︸ ︷︷ ︸
! times

(x))) · Φ(Φ(...Φ︸ ︷︷ ︸
! times

(y))) (9)

which compute the inner product after ! successive applications of the nonlinear mapping Φ(·). Our
motivation is the following: intuitively, if the base kernel function k(x,y) = Φ(x) · Φ(y) mimics
the computation in a single-layer network, then the iterated mapping in eq. (9) should mimic the
computation in a multilayer network.

3

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2
fonction d’activation

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

• Nb. d’unités infini: somme devient intégrale

f
2

f
3

fi

x
1

x
2

xj

. . .

. . .

f
1

fm

xd

W

. . .

. . .

!1 0 1

0

0.5

1

Step (n=0)

!1 0 1

0

0.5

1

Ramp (n=1)

!1 0 1

0

0.5

1

Quarter!pipe (n=2)

Figure 1: Single layer network and activation functions

For n=0, the activation function is a step function, and the network is an array of perceptrons. For
n=1, the activation function is a ramp function (or rectification nonlinearity [9]), and the mapping
f(x) is piecewise linear. More generally, the nonlinear (non-polynomial) behavior of these networks
is induced by thresholding on weighted sums. We refer to networks with these activation functions
as single-layer threshold networks of degree n.

Computation in these networks is closely connected to computation with the arc-cosine kernel func-
tion in eq. (1). To see the connection, consider how inner products are transformed by the mapping
in single-layer threshold networks. As notation, let the vector wi denote ith row of the weight
matrix W. Then we can express the inner product between different outputs of the network as:

f(x) · f(y) =
m∑

i=1

Θ(wi · x)Θ(wi · y)(wi · x)n(wi · y)n, (8)

where m is the number of output units. The connection with the arc-cosine kernel function emerges
in the limit of very large networks [10, 8]. Imagine that the network has an infinite number of
output units, and that the weights Wij are Gaussian distributed with zero mean and unit vari-
ance. In this limit, we see that eq. (8) reduces to eq. (1) up to a trivial multiplicative factor:
limm→∞

2
m f(x) · f(y) = kn(x,y). Thus the arc-cosine kernel function in eq. (1) can be viewed

as the inner product between feature vectors derived from the mapping of an infinite single-layer
threshold network [8].

Many researchers have noted the general connection between kernel machines and neural networks
with one layer of hidden units [1]. The n = 0 arc-cosine kernel in eq. (1) can also be derived from
an earlier result obtained in the context of Gaussian processes [8]. However, we are unaware of any
previous theoretical or empirical work on the general family of these kernels for degrees n≥0.

Arc-cosine kernels differ from polynomial and RBF kernels in one especially interesting respect.
As highlighted by the integral representation in eq. (1), arc-cosine kernels induce feature spaces
that mimic the sparse, nonnegative, distributed representations of single-layer threshold networks.
Polynomial and RBF kernels do not encode their inputs in this way. In particular, the feature vector
induced by polynomial kernels is neither sparse nor nonnegative, while the feature vector induced
by RBF kernels resembles the localized output of a soft vector quantizer. Further implications of
this difference are explored in the next section.

2.3 Computation in multilayer threshold networks

A kernel function can be viewed as inducing a nonlinear mapping from inputs x to fea-
ture vectors Φ(x). The kernel computes the inner product in the induced feature space:
k(x,y) = Φ(x)·Φ(y). In this section, we consider how to compose the nonlinear mappings in-
duced by kernel functions. Specifically, we show how to derive new kernel functions

k(!)(x,y) = Φ(Φ(...Φ︸ ︷︷ ︸
! times

(x))) · Φ(Φ(...Φ︸ ︷︷ ︸
! times

(y))) (9)

which compute the inner product after ! successive applications of the nonlinear mapping Φ(·). Our
motivation is the following: intuitively, if the base kernel function k(x,y) = Φ(x) · Φ(y) mimics
the computation in a single-layer network, then the iterated mapping in eq. (9) should mimic the
computation in a multilayer network.

3

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2

on suppose que les poids sont générés
selon des Gaussiennes N(0,1)

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

• Ce noyau peut être calculé analytiquement
2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

• Ce noyau peut être calculé analytiquement

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2

2 Arc-cosine kernels

In this section, we develop a new family of kernel functions for computing the similarity of vector
inputs x,y ∈ "d. As shorthand, let Θ(z) = 1

2 (1 + sign(z)) denote the Heaviside step function. We
define the nth order arc-cosine kernel function via the integral representation:

kn(x,y) = 2
∫

dw
e−

‖w‖2
2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (1)

The integral representation makes it straightforward to show that these kernel functions are positive-
semidefinite. The kernel function in eq. (1) has interesting connections to neural computation [8]
that we explore further in sections 2.2–2.3. However, we begin by elucidating its basic properties.

2.1 Basic properties

We show how to evaluate the integral in eq. (1) analytically in the appendix. The final result is most
easily expressed in terms of the angle θ between the inputs:

θ = cos−1

(
x · y
‖x‖‖y‖

)
. (2)

The integral in eq. (1) has a simple, trivial dependence on the magnitudes of the inputs x and y, but
a complex, interesting dependence on the angle between them. In particular, we can write:

kn(x,y) =
1
π
‖x‖n‖y‖nJn(θ) (3)

where all the angular dependence is captured by the family of functions Jn(θ). Evaluating the
integral in the appendix, we show that this angular dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (
π − θ

sin θ

)
. (4)

For n=0, this expression reduces to the supplement of the angle between the inputs. However, for
n>0, the angular dependence is more complicated. The first few expressions are:

J0(θ) = π − θ (5)
J1(θ) = sin θ + (π − θ) cos θ (6)
J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (7)

We describe eq. (3) as an arc-cosine kernel because for n = 0, it takes the simple form
k0(x,y) = 1− 1

π cos−1 x·y
‖x‖‖y‖ . In fact, the zeroth and first order kernels in this family are strongly

motivated by previous work in neural computation. We explore these connections in the next section.

Arc-cosine kernels have other intriguing properties. From the magnitude dependence in eq. (3),
we observe the following: (i) the n = 0 arc-cosine kernel maps inputs x to the unit hypersphere
in feature space, with k0(x,x) = 1; (ii) the n = 1 arc-cosine kernel preserves the norm of inputs,
with k1(x,x) = ‖x‖2; (iii) higher order (n>1) arc-cosine kernels expand the dynamic range of the
inputs, with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis function
(RBF), linear, and polynomial kernels. Interestingly, though, the n = 1 arc-cosine kernel is highly
nonlinear, also satisfying k1(x,−x) = 0 for all inputs x. As a practical matter, we note that arc-
cosine kernels do not have any continuous tuning parameters (such as the kernel width in RBF
kernels), which can be laborious to set by cross-validation.

2.2 Computation in single-layer threshold networks

Consider the single-layer network shown in Fig. 1 (left) whose weights Wij connect the jth input
unit to the ith output unit. The network maps inputs x to outputs f(x) by applying an elementwise
nonlinearity to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx). The
nonlinearity is described by the network’s so-called activation function. Here we consider the family
of one-sided polynomial activation functions gn(z) = Θ(z)zn illustrated in the right panel of Fig. 1.

2

Pour n ∈ {0, 1, 2}

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

• Il est même possible d’empiler des couches!

f
2

f
3

fi

x
1

x
2

xj

. . .

. . .

f
1

fm

xd

W

. . .

. . .

!1 0 1

0

0.5

1

Step (n=0)

!1 0 1

0

0.5

1

Ramp (n=1)

!1 0 1

0

0.5

1

Quarter!pipe (n=2)

Figure 1: Single layer network and activation functions

For n=0, the activation function is a step function, and the network is an array of perceptrons. For
n=1, the activation function is a ramp function (or rectification nonlinearity [9]), and the mapping
f(x) is piecewise linear. More generally, the nonlinear (non-polynomial) behavior of these networks
is induced by thresholding on weighted sums. We refer to networks with these activation functions
as single-layer threshold networks of degree n.

Computation in these networks is closely connected to computation with the arc-cosine kernel func-
tion in eq. (1). To see the connection, consider how inner products are transformed by the mapping
in single-layer threshold networks. As notation, let the vector wi denote ith row of the weight
matrix W. Then we can express the inner product between different outputs of the network as:

f(x) · f(y) =
m∑

i=1

Θ(wi · x)Θ(wi · y)(wi · x)n(wi · y)n, (8)

where m is the number of output units. The connection with the arc-cosine kernel function emerges
in the limit of very large networks [10, 8]. Imagine that the network has an infinite number of
output units, and that the weights Wij are Gaussian distributed with zero mean and unit vari-
ance. In this limit, we see that eq. (8) reduces to eq. (1) up to a trivial multiplicative factor:
limm→∞

2
m f(x) · f(y) = kn(x,y). Thus the arc-cosine kernel function in eq. (1) can be viewed

as the inner product between feature vectors derived from the mapping of an infinite single-layer
threshold network [8].

Many researchers have noted the general connection between kernel machines and neural networks
with one layer of hidden units [1]. The n = 0 arc-cosine kernel in eq. (1) can also be derived from
an earlier result obtained in the context of Gaussian processes [8]. However, we are unaware of any
previous theoretical or empirical work on the general family of these kernels for degrees n≥0.

Arc-cosine kernels differ from polynomial and RBF kernels in one especially interesting respect.
As highlighted by the integral representation in eq. (1), arc-cosine kernels induce feature spaces
that mimic the sparse, nonnegative, distributed representations of single-layer threshold networks.
Polynomial and RBF kernels do not encode their inputs in this way. In particular, the feature vector
induced by polynomial kernels is neither sparse nor nonnegative, while the feature vector induced
by RBF kernels resembles the localized output of a soft vector quantizer. Further implications of
this difference are explored in the next section.

2.3 Computation in multilayer threshold networks

A kernel function can be viewed as inducing a nonlinear mapping from inputs x to fea-
ture vectors Φ(x). The kernel computes the inner product in the induced feature space:
k(x,y) = Φ(x)·Φ(y). In this section, we consider how to compose the nonlinear mappings in-
duced by kernel functions. Specifically, we show how to derive new kernel functions

k(!)(x,y) = Φ(Φ(...Φ︸ ︷︷ ︸
! times

(x))) · Φ(Φ(...Φ︸ ︷︷ ︸
! times

(y))) (9)

which compute the inner product after ! successive applications of the nonlinear mapping Φ(·). Our
motivation is the following: intuitively, if the base kernel function k(x,y) = Φ(x) · Φ(y) mimics
the computation in a single-layer network, then the iterated mapping in eq. (9) should mimic the
computation in a multilayer network.

3

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [2]. See text for details.

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 3: Left: examples from the convex data set. Right: classification error rates on the test set.
SVMs with arc cosine kernels have error rates from 17.15–20.51%. Results are shown for kernels
of varying degree (n) and levels of recursion (!). The best previous results are 19.13% for SVMs
with RBF kernels and 18.63% for deep belief nets [2]. See text for details.

2000 training examples as a validation set to choose the margin penalty parameter; after choosing
this parameter by cross-validation, we then retrained each SVM using all the training examples. For
reference, we also report the best results obtained previously from three layer deep belief nets (DBN-
3) and SVMs with RBF kernels (SVM-RBF). These references are representative of the current
state-of-the-art for deep and shallow architectures on these data sets.

The right panels of figures 2 and 3 show the test set error rates from arc cosine kernels of varying
degree (n) and levels of recursion (!). We experimented with kernels of degree n = 0, 1 and 2,
corresponding to single layer threshold networks with “step”, “ramp”, and “quarter-pipe” activation
functions. We also experimented with the multilayer kernels described in section 2.3, composed
from one to six levels of recursion. Overall, the figures show that on these two data sets, many
different arc cosine kernels outperform the best results previously reported for SVMs with RBF
kernels and deep belief nets. We give more details on these experiments below. At a high level,
though, we note that SVMs with arc cosine kernels are very straightforward to train; unlike SVMs
with RBF kernels, they do not require tuning a kernel width parameter, and unlike deep belief nets,
they do not require solving a difficult nonlinear optimization or searching over possible architectures.

In our experiments, we quickly discovered that the multilayer kernels only performed well when
n=1 kernels were used at higher (!> 1) levels in the recursion. Figs. 2 and 3 therefore show only
these sets of results; in particular, each group of bars shows the test error rates when a particular
kernel (of degree n = 0, 1, 2) was used at the first layer of nonlinearity, while the n = 1 kernel was
used at successive layers. We do not have a formal explanation for this effect. However, recall that
only the n = 1 arc cosine kernel preserves the norm of its inputs: the n = 0 kernel maps all inputs
onto a unit hypersphere in feature space, while higher-order (n > 1) kernels may induce feature
spaces with severely distorted dynamic ranges. Therefore, we hypothesize that only n=1 arc cosine
kernels preserve sufficient information about the magnitude of their inputs to work effectively in
composition with other kernels.

Finally, the results on both data sets reveal an interesting trend: the multilayer arc cosine kernels
often perform better than their single layer counterparts. Though SVMs are shallow architectures,

5

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc-cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [11]. See text for details.

We first examine the results of this procedure for widely used kernels. Here we find that the iterated
mapping in eq. (9) does not yield particularly interesting results. Consider the two-fold composition
that maps x to Φ(Φ(x)). For linear kernels k(x,y) = x · y, the composition is trivial: we obtain
the identity map Φ(Φ(x)) = Φ(x) = x. For homogeneous polynomial kernels k(x,y) = (x · y)d,
the composition yields:

Φ(Φ(x)) · Φ(Φ(y)) = (Φ(x) · Φ(y))d = ((x · y)d)d = (x · y)d2
. (10)

The above result is not especially interesting: the kernel implied by this composition is also polyno-
mial, just of higher degree (d2 versus d) than the one from which it was constructed. Likewise, for
RBF kernels k(x,y) = e−λ‖x−y‖2 , the composition yields:

Φ(Φ(x)) · Φ(Φ(y)) = e−λ‖Φ(x)−Φ(y)‖2 = e−2λ(1−k(x,y)). (11)

Though non-trivial, eq. (11) does not represent a particularly interesting computation. Recall that
RBF kernels mimic the computation of soft vector quantizers, with k(x,y) ! 1 when ‖x−y‖ is
large compared to the kernel width. It is hard to see how the iterated mapping Φ(Φ(x)) would
generate a qualitatively different representation than the original mapping Φ(x).

Next we consider the !-fold composition in eq. (9) for arc-cosine kernel functions. We state the
result in the form of a recursion. The base case is given by eq. (3) for kernels of depth ! = 1 and
degree n. The inductive step is given by:

k(l+1)
n (x,y) =

1
π

[
k(l)

n (x,x) k(l)
n (y,y)

]n/2
Jn

(
θ(")

n

)
, (12)

where θ(")
n is the angle between the images of x and y in the feature space induced by the !-fold

composition. In particular, we can write:

θ(")
n = cos−1

(
k(")

n (x,y)
[
k(")

n (x,x) k(")
n (y,y)

]−1/2
)

. (13)

The recursion in eq. (12) is simple to compute in practice. The resulting kernels mimic the com-
putations in large multilayer threshold networks. Above, for simplicity, we have assumed that the
arc-cosine kernels have the same degree n at every level (or layer) ! of the recursion. We can also
use kernels of different degrees at different layers. In the next section, we experiment with SVMs
whose kernel functions are constructed in this way.

2.4 Experiments on binary classification

We evaluated SVMs with arc-cosine kernels on two challenging data sets of 28× 28 grayscale pixel
images. These data sets were specifically constructed to compare deep architectures and kernel
machines [11]. In the first data set, known as rectangles-image, each image contains an occluding
rectangle, and the task is to determine whether the width of the rectangle exceeds its height; ex-
amples are shown in Fig. 2 (left). In the second data set, known as convex, each image contains a
white region, and the task is to determine whether the white region is convex; examples are shown

4

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [2]. See text for details.

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 3: Left: examples from the convex data set. Right: classification error rates on the test set.
SVMs with arc cosine kernels have error rates from 17.15–20.51%. Results are shown for kernels
of varying degree (n) and levels of recursion (!). The best previous results are 19.13% for SVMs
with RBF kernels and 18.63% for deep belief nets [2]. See text for details.

2000 training examples as a validation set to choose the margin penalty parameter; after choosing
this parameter by cross-validation, we then retrained each SVM using all the training examples. For
reference, we also report the best results obtained previously from three layer deep belief nets (DBN-
3) and SVMs with RBF kernels (SVM-RBF). These references are representative of the current
state-of-the-art for deep and shallow architectures on these data sets.

The right panels of figures 2 and 3 show the test set error rates from arc cosine kernels of varying
degree (n) and levels of recursion (!). We experimented with kernels of degree n = 0, 1 and 2,
corresponding to single layer threshold networks with “step”, “ramp”, and “quarter-pipe” activation
functions. We also experimented with the multilayer kernels described in section 2.3, composed
from one to six levels of recursion. Overall, the figures show that on these two data sets, many
different arc cosine kernels outperform the best results previously reported for SVMs with RBF
kernels and deep belief nets. We give more details on these experiments below. At a high level,
though, we note that SVMs with arc cosine kernels are very straightforward to train; unlike SVMs
with RBF kernels, they do not require tuning a kernel width parameter, and unlike deep belief nets,
they do not require solving a difficult nonlinear optimization or searching over possible architectures.

In our experiments, we quickly discovered that the multilayer kernels only performed well when
n=1 kernels were used at higher (!> 1) levels in the recursion. Figs. 2 and 3 therefore show only
these sets of results; in particular, each group of bars shows the test error rates when a particular
kernel (of degree n = 0, 1, 2) was used at the first layer of nonlinearity, while the n = 1 kernel was
used at successive layers. We do not have a formal explanation for this effect. However, recall that
only the n = 1 arc cosine kernel preserves the norm of its inputs: the n = 0 kernel maps all inputs
onto a unit hypersphere in feature space, while higher-order (n > 1) kernels may induce feature
spaces with severely distorted dynamic ranges. Therefore, we hypothesize that only n=1 arc cosine
kernels preserve sufficient information about the magnitude of their inputs to work effectively in
composition with other kernels.

Finally, the results on both data sets reveal an interesting trend: the multilayer arc cosine kernels
often perform better than their single layer counterparts. Though SVMs are shallow architectures,

5

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc-cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [11]. See text for details.

We first examine the results of this procedure for widely used kernels. Here we find that the iterated
mapping in eq. (9) does not yield particularly interesting results. Consider the two-fold composition
that maps x to Φ(Φ(x)). For linear kernels k(x,y) = x · y, the composition is trivial: we obtain
the identity map Φ(Φ(x)) = Φ(x) = x. For homogeneous polynomial kernels k(x,y) = (x · y)d,
the composition yields:

Φ(Φ(x)) · Φ(Φ(y)) = (Φ(x) · Φ(y))d = ((x · y)d)d = (x · y)d2
. (10)

The above result is not especially interesting: the kernel implied by this composition is also polyno-
mial, just of higher degree (d2 versus d) than the one from which it was constructed. Likewise, for
RBF kernels k(x,y) = e−λ‖x−y‖2 , the composition yields:

Φ(Φ(x)) · Φ(Φ(y)) = e−λ‖Φ(x)−Φ(y)‖2 = e−2λ(1−k(x,y)). (11)

Though non-trivial, eq. (11) does not represent a particularly interesting computation. Recall that
RBF kernels mimic the computation of soft vector quantizers, with k(x,y) ! 1 when ‖x−y‖ is
large compared to the kernel width. It is hard to see how the iterated mapping Φ(Φ(x)) would
generate a qualitatively different representation than the original mapping Φ(x).

Next we consider the !-fold composition in eq. (9) for arc-cosine kernel functions. We state the
result in the form of a recursion. The base case is given by eq. (3) for kernels of depth ! = 1 and
degree n. The inductive step is given by:

k(l+1)
n (x,y) =

1
π

[
k(l)

n (x,x) k(l)
n (y,y)

]n/2
Jn

(
θ(")

n

)
, (12)

where θ(")
n is the angle between the images of x and y in the feature space induced by the !-fold

composition. In particular, we can write:

θ(")
n = cos−1

(
k(")

n (x,y)
[
k(")

n (x,x) k(")
n (y,y)

]−1/2
)

. (13)

The recursion in eq. (12) is simple to compute in practice. The resulting kernels mimic the com-
putations in large multilayer threshold networks. Above, for simplicity, we have assumed that the
arc-cosine kernels have the same degree n at every level (or layer) ! of the recursion. We can also
use kernels of different degrees at different layers. In the next section, we experiment with SVMs
whose kernel functions are constructed in this way.

2.4 Experiments on binary classification

We evaluated SVMs with arc-cosine kernels on two challenging data sets of 28× 28 grayscale pixel
images. These data sets were specifically constructed to compare deep architectures and kernel
machines [11]. In the first data set, known as rectangles-image, each image contains an occluding
rectangle, and the task is to determine whether the width of the rectangle exceeds its height; ex-
amples are shown in Fig. 2 (left). In the second data set, known as convex, each image contains a
white region, and the task is to determine whether the white region is convex; examples are shown

4

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [2]. See text for details.

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 3: Left: examples from the convex data set. Right: classification error rates on the test set.
SVMs with arc cosine kernels have error rates from 17.15–20.51%. Results are shown for kernels
of varying degree (n) and levels of recursion (!). The best previous results are 19.13% for SVMs
with RBF kernels and 18.63% for deep belief nets [2]. See text for details.

2000 training examples as a validation set to choose the margin penalty parameter; after choosing
this parameter by cross-validation, we then retrained each SVM using all the training examples. For
reference, we also report the best results obtained previously from three layer deep belief nets (DBN-
3) and SVMs with RBF kernels (SVM-RBF). These references are representative of the current
state-of-the-art for deep and shallow architectures on these data sets.

The right panels of figures 2 and 3 show the test set error rates from arc cosine kernels of varying
degree (n) and levels of recursion (!). We experimented with kernels of degree n = 0, 1 and 2,
corresponding to single layer threshold networks with “step”, “ramp”, and “quarter-pipe” activation
functions. We also experimented with the multilayer kernels described in section 2.3, composed
from one to six levels of recursion. Overall, the figures show that on these two data sets, many
different arc cosine kernels outperform the best results previously reported for SVMs with RBF
kernels and deep belief nets. We give more details on these experiments below. At a high level,
though, we note that SVMs with arc cosine kernels are very straightforward to train; unlike SVMs
with RBF kernels, they do not require tuning a kernel width parameter, and unlike deep belief nets,
they do not require solving a difficult nonlinear optimization or searching over possible architectures.

In our experiments, we quickly discovered that the multilayer kernels only performed well when
n=1 kernels were used at higher (!> 1) levels in the recursion. Figs. 2 and 3 therefore show only
these sets of results; in particular, each group of bars shows the test error rates when a particular
kernel (of degree n = 0, 1, 2) was used at the first layer of nonlinearity, while the n = 1 kernel was
used at successive layers. We do not have a formal explanation for this effect. However, recall that
only the n = 1 arc cosine kernel preserves the norm of its inputs: the n = 0 kernel maps all inputs
onto a unit hypersphere in feature space, while higher-order (n > 1) kernels may induce feature
spaces with severely distorted dynamic ranges. Therefore, we hypothesize that only n=1 arc cosine
kernels preserve sufficient information about the magnitude of their inputs to work effectively in
composition with other kernels.

Finally, the results on both data sets reveal an interesting trend: the multilayer arc cosine kernels
often perform better than their single layer counterparts. Though SVMs are shallow architectures,

5

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc-cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [11]. See text for details.

We first examine the results of this procedure for widely used kernels. Here we find that the iterated
mapping in eq. (9) does not yield particularly interesting results. Consider the two-fold composition
that maps x to Φ(Φ(x)). For linear kernels k(x,y) = x · y, the composition is trivial: we obtain
the identity map Φ(Φ(x)) = Φ(x) = x. For homogeneous polynomial kernels k(x,y) = (x · y)d,
the composition yields:

Φ(Φ(x)) · Φ(Φ(y)) = (Φ(x) · Φ(y))d = ((x · y)d)d = (x · y)d2
. (10)

The above result is not especially interesting: the kernel implied by this composition is also polyno-
mial, just of higher degree (d2 versus d) than the one from which it was constructed. Likewise, for
RBF kernels k(x,y) = e−λ‖x−y‖2 , the composition yields:

Φ(Φ(x)) · Φ(Φ(y)) = e−λ‖Φ(x)−Φ(y)‖2 = e−2λ(1−k(x,y)). (11)

Though non-trivial, eq. (11) does not represent a particularly interesting computation. Recall that
RBF kernels mimic the computation of soft vector quantizers, with k(x,y) ! 1 when ‖x−y‖ is
large compared to the kernel width. It is hard to see how the iterated mapping Φ(Φ(x)) would
generate a qualitatively different representation than the original mapping Φ(x).

Next we consider the !-fold composition in eq. (9) for arc-cosine kernel functions. We state the
result in the form of a recursion. The base case is given by eq. (3) for kernels of depth ! = 1 and
degree n. The inductive step is given by:

k(l+1)
n (x,y) =

1
π

[
k(l)

n (x,x) k(l)
n (y,y)

]n/2
Jn

(
θ(")

n

)
, (12)

where θ(")
n is the angle between the images of x and y in the feature space induced by the !-fold

composition. In particular, we can write:

θ(")
n = cos−1

(
k(")

n (x,y)
[
k(")

n (x,x) k(")
n (y,y)

]−1/2
)

. (13)

The recursion in eq. (12) is simple to compute in practice. The resulting kernels mimic the com-
putations in large multilayer threshold networks. Above, for simplicity, we have assumed that the
arc-cosine kernels have the same degree n at every level (or layer) ! of the recursion. We can also
use kernels of different degrees at different layers. In the next section, we experiment with SVMs
whose kernel functions are constructed in this way.

2.4 Experiments on binary classification

We evaluated SVMs with arc-cosine kernels on two challenging data sets of 28× 28 grayscale pixel
images. These data sets were specifically constructed to compare deep architectures and kernel
machines [11]. In the first data set, known as rectangles-image, each image contains an occluding
rectangle, and the task is to determine whether the width of the rectangle exceeds its height; ex-
amples are shown in Fig. 2 (left). In the second data set, known as convex, each image contains a
white region, and the task is to determine whether the white region is convex; examples are shown

4

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [2]. See text for details.

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 3: Left: examples from the convex data set. Right: classification error rates on the test set.
SVMs with arc cosine kernels have error rates from 17.15–20.51%. Results are shown for kernels
of varying degree (n) and levels of recursion (!). The best previous results are 19.13% for SVMs
with RBF kernels and 18.63% for deep belief nets [2]. See text for details.

2000 training examples as a validation set to choose the margin penalty parameter; after choosing
this parameter by cross-validation, we then retrained each SVM using all the training examples. For
reference, we also report the best results obtained previously from three layer deep belief nets (DBN-
3) and SVMs with RBF kernels (SVM-RBF). These references are representative of the current
state-of-the-art for deep and shallow architectures on these data sets.

The right panels of figures 2 and 3 show the test set error rates from arc cosine kernels of varying
degree (n) and levels of recursion (!). We experimented with kernels of degree n = 0, 1 and 2,
corresponding to single layer threshold networks with “step”, “ramp”, and “quarter-pipe” activation
functions. We also experimented with the multilayer kernels described in section 2.3, composed
from one to six levels of recursion. Overall, the figures show that on these two data sets, many
different arc cosine kernels outperform the best results previously reported for SVMs with RBF
kernels and deep belief nets. We give more details on these experiments below. At a high level,
though, we note that SVMs with arc cosine kernels are very straightforward to train; unlike SVMs
with RBF kernels, they do not require tuning a kernel width parameter, and unlike deep belief nets,
they do not require solving a difficult nonlinear optimization or searching over possible architectures.

In our experiments, we quickly discovered that the multilayer kernels only performed well when
n=1 kernels were used at higher (!> 1) levels in the recursion. Figs. 2 and 3 therefore show only
these sets of results; in particular, each group of bars shows the test error rates when a particular
kernel (of degree n = 0, 1, 2) was used at the first layer of nonlinearity, while the n = 1 kernel was
used at successive layers. We do not have a formal explanation for this effect. However, recall that
only the n = 1 arc cosine kernel preserves the norm of its inputs: the n = 0 kernel maps all inputs
onto a unit hypersphere in feature space, while higher-order (n > 1) kernels may induce feature
spaces with severely distorted dynamic ranges. Therefore, we hypothesize that only n=1 arc cosine
kernels preserve sufficient information about the magnitude of their inputs to work effectively in
composition with other kernels.

Finally, the results on both data sets reveal an interesting trend: the multilayer arc cosine kernels
often perform better than their single layer counterparts. Though SVMs are shallow architectures,

5

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 3: Left: examples from the convex data set. Right: classification error rates on the test set.
SVMs with arc-cosine kernels have error rates from 17.15–20.51%. Results are shown for kernels
of varying degree (n) and levels of recursion (!). The best previous results are 19.13% for SVMs
with RBF kernels and 18.63% for deep belief nets [11]. See text for details.

in Fig. 3 (left). The rectangles-image data set has 12000 training examples, while the convex data
set has 8000 training examples; both data sets have 50000 test examples. These data sets have
been extensively benchmarked by previous authors [11]. Our experiments in binary classification
focused on these data sets because in previously reported benchmarks, they exhibited the biggest
performance gap between deep architectures (e.g., deep belief nets) and traditional SVMs.

We followed the same experimental methodology as previous authors [11]. SVMs were trained using
libSVM (version 2.88) [12], a publicly available software package. For each SVM, we used the last
2000 training examples as a validation set to choose the margin penalty parameter; after choosing
this parameter by cross-validation, we then retrained each SVM using all the training examples.
For reference, we also report the best results obtained previously from three-layer deep belief nets
(DBN-3) and SVMs with RBF kernels (SVM-RBF). These references appear to be representative of
the current state-of-the-art for deep and shallow architectures on these data sets.

Figures 2 and 3 show the test set error rates from arc-cosine kernels of varying degree (n) and levels
of recursion (!). We experimented with kernels of degree n = 0, 1 and 2, corresponding to thresh-
old networks with “step”, “ramp”, and “quarter-pipe” activation functions. We also experimented
with the multilayer kernels described in section 2.3, composed from one to six levels of recursion.
Overall, the figures show that many SVMs with arc-cosine kernels outperform traditional SVMs,
and a certain number also outperform deep belief nets. In addition to their solid performance, we
note that SVMs with arc-cosine kernels are very straightforward to train; unlike SVMs with RBF
kernels, they do not require tuning a kernel width parameter, and unlike deep belief nets, they do not
require solving a difficult nonlinear optimization or searching over possible architectures.

Our experiments with multilayer kernels revealed that these SVMs only performed well when arc-
cosine kernels of degree n = 1 were used at higher (! > 1) levels in the recursion. Figs. 2 and
3 therefore show only these sets of results; in particular, each group of bars shows the test error
rates when a particular kernel (of degree n = 0, 1, 2) was used at the first layer of nonlinearity,
while the n = 1 kernel was used at successive layers. We hypothesize that only n = 1 arc-cosine
kernels preserve sufficient information about the magnitude of their inputs to work effectively in
composition with other kernels. Recall that only the n = 1 arc-cosine kernel preserves the norm of
its inputs: the n = 0 kernel maps all inputs onto a unit hypersphere in feature space, while higher-
order (n>1) kernels induce feature spaces with different dynamic ranges.

Finally, the results on both data sets reveal an interesting trend: the multilayer arc-cosine kernels
often perform better than their single-layer counterparts. Though SVMs are (inherently) shallow
architectures, this trend suggests that for these problems in binary classification, arc-cosine kernels
may be yielding some of the advantages typically associated with deep architectures.

3 Deep learning

In this section, we explore how to use kernel methods in deep architectures [7]. We show how to train
deep kernel-based architectures by a simple combination of supervised and unsupervised methods.
Using the arc-cosine kernels in the previous section, these multilayer kernel machines (MKMs)
perform very competitively on multiclass data sets designed to foil shallow architectures [11].

5

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

• Comment ajouter de l’apprentissage non-supervisé
3.1 Multilayer kernel machines

We explored how to train MKMs in stages that involve kernel PCA [13] and feature selection [14] at
intermediate hidden layers and large-margin nearest neighbor classification [15] at the final output
layer. Specifically, for !-layer MKMs, we considered the following training procedure:

1. Prune uninformative features from the input space.
2. Repeat ! times:

(a) Compute principal components in the feature space induced by a nonlinear kernel.
(b) Prune uninformative components from the feature space.

3. Learn a Mahalanobis distance metric for nearest neighbor classification.

The individual steps in this procedure are well-established methods; only their combination is new.
While many other approaches are worth investigating, our positive results from the above procedure
provide a first proof-of-concept. We discuss each of these steps in greater detail below.

Kernel PCA. Deep learning in MKMs is achieved by iterative applications of kernel PCA [13]. This
use of kernel PCA was suggested over a decade ago [16] and more recently inspired by the pre-
training of deep belief nets by unsupervised methods. In MKMs, the outputs (or features) from
kernel PCA at one layer are the inputs to kernel PCA at the next layer. However, we do not strictly
transmit each layer’s top principal components to the next layer; some components are discarded if
they are deemed uninformative. While any nonlinear kernel can be used for the layerwise PCA in
MKMs, arc-cosine kernels are natural choices to mimic the computations in large neural nets.

Feature selection. The layers in MKMs are trained by interleaving a supervised method for feature
selection with the unsupervised method of kernel PCA. The feature selection is used to prune away
uninformative features at each layer in the MKM (including the zeroth layer which stores the raw
inputs). Intuitively, this feature selection helps to focus the unsupervised learning in MKMs on
statistics of the inputs that actually contain information about the class labels. We prune features
at each layer by a simple two-step procedure that first ranks them by estimates of their mutual
information, then truncates them using cross-validation. More specifically, in the first step, we
discretize each real-valued feature and construct class-conditional and marginal histograms of its
discretized values; then, using these histograms, we estimate each feature’s mutual information with
the class label and sort the features in order of these estimates [14]. In the second step, considering
only the first w features in this ordering, we compute the error rates of a basic kNN classifier using
Euclidean distances in feature space. We compute these error rates on a held-out set of validation
examples for many values of k and w and record the optimal values for each layer. The optimal w
determines the number of informative features passed onto the next layer; this is essentially the
width of the layer. In practice, we varied k from 1 to 15 and w from 10 to 300; though exhaustive,
this cross-validation can be done quickly and efficiently by careful bookkeeping. Note that this
procedure determines the architecture of the network in a greedy, layer-by-layer fashion.

Distance metric learning. Test examples in MKMs are classified by a variant of kNN classification
on the outputs of the final layer. Specifically, we use large margin nearest neighbor (LMNN) clas-
sification [15] to learn a Mahalanobis distance metric for these outputs, though other methods are
equally viable [17]. The use of LMNN is inspired by the supervised fine-tuning of weights in the
training of deep architectures [18]. In MKMs, however, this supervised training only occurs at the
final layer (which underscores the importance of feature selection in earlier layers). LMNN learns a
distance metric by solving a problem in semidefinite programming; one advantage of LMNN is that
the required optimization is convex. Test examples are classified by the energy-based decision rule
for LMNN [15], which was itself inspired by earlier work on multilayer neural nets [19].

3.2 Experiments on multiway classification

We evaluated MKMs on the two multiclass data sets from previous benchmarks [11] that exhibited
the largest performance gap between deep and shallow architectures. The data sets were created from
the MNIST data set [20] of 28 × 28 grayscale handwritten digits. The mnist-back-rand data set was
generated by filling the image background by random pixel values, while the mnist-back-image data
set was generated by filling the image background with random image patches; examples are shown
in Figs. 4 and 5. Each data set contains 12000 and 50000 training and test examples, respectively.

6

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

• Comment ajouter de l’apprentissage non-supervisé
3.1 Multilayer kernel machines

We explored how to train MKMs in stages that involve kernel PCA [13] and feature selection [14] at
intermediate hidden layers and large-margin nearest neighbor classification [15] at the final output
layer. Specifically, for !-layer MKMs, we considered the following training procedure:

1. Prune uninformative features from the input space.
2. Repeat ! times:

(a) Compute principal components in the feature space induced by a nonlinear kernel.
(b) Prune uninformative components from the feature space.

3. Learn a Mahalanobis distance metric for nearest neighbor classification.

The individual steps in this procedure are well-established methods; only their combination is new.
While many other approaches are worth investigating, our positive results from the above procedure
provide a first proof-of-concept. We discuss each of these steps in greater detail below.

Kernel PCA. Deep learning in MKMs is achieved by iterative applications of kernel PCA [13]. This
use of kernel PCA was suggested over a decade ago [16] and more recently inspired by the pre-
training of deep belief nets by unsupervised methods. In MKMs, the outputs (or features) from
kernel PCA at one layer are the inputs to kernel PCA at the next layer. However, we do not strictly
transmit each layer’s top principal components to the next layer; some components are discarded if
they are deemed uninformative. While any nonlinear kernel can be used for the layerwise PCA in
MKMs, arc-cosine kernels are natural choices to mimic the computations in large neural nets.

Feature selection. The layers in MKMs are trained by interleaving a supervised method for feature
selection with the unsupervised method of kernel PCA. The feature selection is used to prune away
uninformative features at each layer in the MKM (including the zeroth layer which stores the raw
inputs). Intuitively, this feature selection helps to focus the unsupervised learning in MKMs on
statistics of the inputs that actually contain information about the class labels. We prune features
at each layer by a simple two-step procedure that first ranks them by estimates of their mutual
information, then truncates them using cross-validation. More specifically, in the first step, we
discretize each real-valued feature and construct class-conditional and marginal histograms of its
discretized values; then, using these histograms, we estimate each feature’s mutual information with
the class label and sort the features in order of these estimates [14]. In the second step, considering
only the first w features in this ordering, we compute the error rates of a basic kNN classifier using
Euclidean distances in feature space. We compute these error rates on a held-out set of validation
examples for many values of k and w and record the optimal values for each layer. The optimal w
determines the number of informative features passed onto the next layer; this is essentially the
width of the layer. In practice, we varied k from 1 to 15 and w from 10 to 300; though exhaustive,
this cross-validation can be done quickly and efficiently by careful bookkeeping. Note that this
procedure determines the architecture of the network in a greedy, layer-by-layer fashion.

Distance metric learning. Test examples in MKMs are classified by a variant of kNN classification
on the outputs of the final layer. Specifically, we use large margin nearest neighbor (LMNN) clas-
sification [15] to learn a Mahalanobis distance metric for these outputs, though other methods are
equally viable [17]. The use of LMNN is inspired by the supervised fine-tuning of weights in the
training of deep architectures [18]. In MKMs, however, this supervised training only occurs at the
final layer (which underscores the importance of feature selection in earlier layers). LMNN learns a
distance metric by solving a problem in semidefinite programming; one advantage of LMNN is that
the required optimization is convex. Test examples are classified by the energy-based decision rule
for LMNN [15], which was itself inspired by earlier work on multilayer neural nets [19].

3.2 Experiments on multiway classification

We evaluated MKMs on the two multiclass data sets from previous benchmarks [11] that exhibited
the largest performance gap between deep and shallow architectures. The data sets were created from
the MNIST data set [20] of 28 × 28 grayscale handwritten digits. The mnist-back-rand data set was
generated by filling the image background by random pixel values, while the mnist-back-image data
set was generated by filling the image background with random image patches; examples are shown
in Figs. 4 and 5. Each data set contains 12000 and 50000 training and test examples, respectively.

6

“feature selection”

“kernel PCA”

“large margin nearest neighbor”

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

5

6

7

8

DBN!3

Test error rate (%)

 0 1 2 3 4 5
 Step (n=0)

 1 2 3 4 5
 Ramp (n=1)

 1 2
Quarter!pipe (n=2)

 1 2
 RBF

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [2]. See text for details.

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 3: Left: examples from the convex data set. Right: classification error rates on the test set.
SVMs with arc cosine kernels have error rates from 17.15–20.51%. Results are shown for kernels
of varying degree (n) and levels of recursion (!). The best previous results are 19.13% for SVMs
with RBF kernels and 18.63% for deep belief nets [2]. See text for details.

2000 training examples as a validation set to choose the margin penalty parameter; after choosing
this parameter by cross-validation, we then retrained each SVM using all the training examples. For
reference, we also report the best results obtained previously from three layer deep belief nets (DBN-
3) and SVMs with RBF kernels (SVM-RBF). These references are representative of the current
state-of-the-art for deep and shallow architectures on these data sets.

The right panels of figures 2 and 3 show the test set error rates from arc cosine kernels of varying
degree (n) and levels of recursion (!). We experimented with kernels of degree n = 0, 1 and 2,
corresponding to single layer threshold networks with “step”, “ramp”, and “quarter-pipe” activation
functions. We also experimented with the multilayer kernels described in section 2.3, composed
from one to six levels of recursion. Overall, the figures show that on these two data sets, many
different arc cosine kernels outperform the best results previously reported for SVMs with RBF
kernels and deep belief nets. We give more details on these experiments below. At a high level,
though, we note that SVMs with arc cosine kernels are very straightforward to train; unlike SVMs
with RBF kernels, they do not require tuning a kernel width parameter, and unlike deep belief nets,
they do not require solving a difficult nonlinear optimization or searching over possible architectures.

In our experiments, we quickly discovered that the multilayer kernels only performed well when
n=1 kernels were used at higher (!> 1) levels in the recursion. Figs. 2 and 3 therefore show only
these sets of results; in particular, each group of bars shows the test error rates when a particular
kernel (of degree n = 0, 1, 2) was used at the first layer of nonlinearity, while the n = 1 kernel was
used at successive layers. We do not have a formal explanation for this effect. However, recall that
only the n = 1 arc cosine kernel preserves the norm of its inputs: the n = 0 kernel maps all inputs
onto a unit hypersphere in feature space, while higher-order (n > 1) kernels may induce feature
spaces with severely distorted dynamic ranges. Therefore, we hypothesize that only n=1 arc cosine
kernels preserve sufficient information about the magnitude of their inputs to work effectively in
composition with other kernels.

Finally, the results on both data sets reveal an interesting trend: the multilayer arc cosine kernels
often perform better than their single layer counterparts. Though SVMs are shallow architectures,

5

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 4: Left: examples from the mnist-back-rand data set. Right: classification error rates on the
test set for MKMs with different kernels and numbers of layers !. MKMs with arc-cosine kernel
have error rates from 6.36–7.52%. The best previous results are 14.58% for SVMs with RBF kernels
and 6.73% for deep belief nets [11].

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [2]. See text for details.

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 3: Left: examples from the convex data set. Right: classification error rates on the test set.
SVMs with arc cosine kernels have error rates from 17.15–20.51%. Results are shown for kernels
of varying degree (n) and levels of recursion (!). The best previous results are 19.13% for SVMs
with RBF kernels and 18.63% for deep belief nets [2]. See text for details.

2000 training examples as a validation set to choose the margin penalty parameter; after choosing
this parameter by cross-validation, we then retrained each SVM using all the training examples. For
reference, we also report the best results obtained previously from three layer deep belief nets (DBN-
3) and SVMs with RBF kernels (SVM-RBF). These references are representative of the current
state-of-the-art for deep and shallow architectures on these data sets.

The right panels of figures 2 and 3 show the test set error rates from arc cosine kernels of varying
degree (n) and levels of recursion (!). We experimented with kernels of degree n = 0, 1 and 2,
corresponding to single layer threshold networks with “step”, “ramp”, and “quarter-pipe” activation
functions. We also experimented with the multilayer kernels described in section 2.3, composed
from one to six levels of recursion. Overall, the figures show that on these two data sets, many
different arc cosine kernels outperform the best results previously reported for SVMs with RBF
kernels and deep belief nets. We give more details on these experiments below. At a high level,
though, we note that SVMs with arc cosine kernels are very straightforward to train; unlike SVMs
with RBF kernels, they do not require tuning a kernel width parameter, and unlike deep belief nets,
they do not require solving a difficult nonlinear optimization or searching over possible architectures.

In our experiments, we quickly discovered that the multilayer kernels only performed well when
n=1 kernels were used at higher (!> 1) levels in the recursion. Figs. 2 and 3 therefore show only
these sets of results; in particular, each group of bars shows the test error rates when a particular
kernel (of degree n = 0, 1, 2) was used at the first layer of nonlinearity, while the n = 1 kernel was
used at successive layers. We do not have a formal explanation for this effect. However, recall that
only the n = 1 arc cosine kernel preserves the norm of its inputs: the n = 0 kernel maps all inputs
onto a unit hypersphere in feature space, while higher-order (n > 1) kernels may induce feature
spaces with severely distorted dynamic ranges. Therefore, we hypothesize that only n=1 arc cosine
kernels preserve sufficient information about the magnitude of their inputs to work effectively in
composition with other kernels.

Finally, the results on both data sets reveal an interesting trend: the multilayer arc cosine kernels
often perform better than their single layer counterparts. Though SVMs are shallow architectures,

5

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

15

20

25

30

DBN!3

SVM!RBF

Test error rate (%)

 0 1 2 3 4 5
 Step (n=0)

 1 2 3 4 5
 Ramp (n=1)

 1 2
Quarter!pipe (n=2)

 1 2
 RBF

Figure 5: Left: examples from the mnist-back-image data set. Right: classification error rates on the
test set for MKMs with different kernels and numbers of layers !. MKMs with arc-cosine kernel
have error rates from 18.43–29.79%. The best previous results are 22.61% for SVMs with RBF
kernels and 16.31% for deep belief nets [11].

We trained MKMs with arc-cosine kernels and RBF kernels in each layer. For each data set, we
initially withheld the last 2000 training examples as a validation set. Performance on this validation
set was used to determine each MKM’s architecture, as described in the previous section, and also
to set the kernel width in RBF kernels, following the same methodology as earlier studies [11].
Once these parameters were set by cross-validation, we re-inserted the validation examples into the
training set and used all 12000 training examples for feature selection and distance metric learning.
For kernel PCA, we were limited by memory requirements to processing only 6000 out of 12000
training examples. We chose these 6000 examples randomly, but repeated each experiment five
times to obtain a measure of average performance. The results we report for each MKM are the
average performance over these five runs.

The right panels of Figs. 4 and 5 show the test set error rates of MKMs with different kernels and
numbers of layers !. For reference, we also show the best previously reported results [11] using
traditional SVMs (with RBF kernels) and deep belief nets (with three layers). MKMs perform sig-
nificantly better than shallow architectures such as SVMs with RBF kernels or LMNN with feature
selection (reported as the case ! = 0). Compared to deep belief nets, the leading MKMs obtain
slightly lower error rates on one data set and slightly higher error rates on another.

We can describe the architecture of an MKM by the number of selected features at each layer (in-
cluding the input layer). The number of features essentially corresponds to the number of units in
each layer of a neural net. For the mnist-back-rand data set, the best MKM used an n=1 arc-cosine
kernel and 300-90-105-136-126-240 features at each layer. For the mnist-back-image data set, the
best MKM used an n=0 arc-cosine kernel and 300-50-130-240-160-150 features at each layer.

MKMs worked best with arc-cosine kernels of degree n=0 and n=1. The kernel of degree n=2
performed less well in MKMs, perhaps because multiple iterations of kernel PCA distorted the
dynamic range of the inputs (which in turn seemed to complicate the training for LMNN). MKMs
with RBF kernels were difficult to train due to the sensitive dependence on kernel width parameters.
It was extremely time-consuming to cross-validate the kernel width at each layer of the MKM. We
only obtained meaningful results for one and two-layer MKMs with RBF kernels.

7

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

5

6

7

8

DBN!3

Test error rate (%)

 0 1 2 3 4 5
 Step (n=0)

 1 2 3 4 5
 Ramp (n=1)

 1 2
Quarter!pipe (n=2)

 1 2
 RBF

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [2]. See text for details.

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 3: Left: examples from the convex data set. Right: classification error rates on the test set.
SVMs with arc cosine kernels have error rates from 17.15–20.51%. Results are shown for kernels
of varying degree (n) and levels of recursion (!). The best previous results are 19.13% for SVMs
with RBF kernels and 18.63% for deep belief nets [2]. See text for details.

2000 training examples as a validation set to choose the margin penalty parameter; after choosing
this parameter by cross-validation, we then retrained each SVM using all the training examples. For
reference, we also report the best results obtained previously from three layer deep belief nets (DBN-
3) and SVMs with RBF kernels (SVM-RBF). These references are representative of the current
state-of-the-art for deep and shallow architectures on these data sets.

The right panels of figures 2 and 3 show the test set error rates from arc cosine kernels of varying
degree (n) and levels of recursion (!). We experimented with kernels of degree n = 0, 1 and 2,
corresponding to single layer threshold networks with “step”, “ramp”, and “quarter-pipe” activation
functions. We also experimented with the multilayer kernels described in section 2.3, composed
from one to six levels of recursion. Overall, the figures show that on these two data sets, many
different arc cosine kernels outperform the best results previously reported for SVMs with RBF
kernels and deep belief nets. We give more details on these experiments below. At a high level,
though, we note that SVMs with arc cosine kernels are very straightforward to train; unlike SVMs
with RBF kernels, they do not require tuning a kernel width parameter, and unlike deep belief nets,
they do not require solving a difficult nonlinear optimization or searching over possible architectures.

In our experiments, we quickly discovered that the multilayer kernels only performed well when
n=1 kernels were used at higher (!> 1) levels in the recursion. Figs. 2 and 3 therefore show only
these sets of results; in particular, each group of bars shows the test error rates when a particular
kernel (of degree n = 0, 1, 2) was used at the first layer of nonlinearity, while the n = 1 kernel was
used at successive layers. We do not have a formal explanation for this effect. However, recall that
only the n = 1 arc cosine kernel preserves the norm of its inputs: the n = 0 kernel maps all inputs
onto a unit hypersphere in feature space, while higher-order (n > 1) kernels may induce feature
spaces with severely distorted dynamic ranges. Therefore, we hypothesize that only n=1 arc cosine
kernels preserve sufficient information about the magnitude of their inputs to work effectively in
composition with other kernels.

Finally, the results on both data sets reveal an interesting trend: the multilayer arc cosine kernels
often perform better than their single layer counterparts. Though SVMs are shallow architectures,

5

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 4: Left: examples from the mnist-back-rand data set. Right: classification error rates on the
test set for MKMs with different kernels and numbers of layers !. MKMs with arc-cosine kernel
have error rates from 6.36–7.52%. The best previous results are 14.58% for SVMs with RBF kernels
and 6.73% for deep belief nets [11].

22

24

26

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 2: Left: examples from the rectangles-image data set. Right: classification error rates on the
test set. SVMs with arc cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degree (n) and levels of recursion (!). The best previous results are 24.04% for
SVMs with RBF kernels and 22.50% for deep belief nets [2]. See text for details.

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

Figure 3: Left: examples from the convex data set. Right: classification error rates on the test set.
SVMs with arc cosine kernels have error rates from 17.15–20.51%. Results are shown for kernels
of varying degree (n) and levels of recursion (!). The best previous results are 19.13% for SVMs
with RBF kernels and 18.63% for deep belief nets [2]. See text for details.

2000 training examples as a validation set to choose the margin penalty parameter; after choosing
this parameter by cross-validation, we then retrained each SVM using all the training examples. For
reference, we also report the best results obtained previously from three layer deep belief nets (DBN-
3) and SVMs with RBF kernels (SVM-RBF). These references are representative of the current
state-of-the-art for deep and shallow architectures on these data sets.

The right panels of figures 2 and 3 show the test set error rates from arc cosine kernels of varying
degree (n) and levels of recursion (!). We experimented with kernels of degree n = 0, 1 and 2,
corresponding to single layer threshold networks with “step”, “ramp”, and “quarter-pipe” activation
functions. We also experimented with the multilayer kernels described in section 2.3, composed
from one to six levels of recursion. Overall, the figures show that on these two data sets, many
different arc cosine kernels outperform the best results previously reported for SVMs with RBF
kernels and deep belief nets. We give more details on these experiments below. At a high level,
though, we note that SVMs with arc cosine kernels are very straightforward to train; unlike SVMs
with RBF kernels, they do not require tuning a kernel width parameter, and unlike deep belief nets,
they do not require solving a difficult nonlinear optimization or searching over possible architectures.

In our experiments, we quickly discovered that the multilayer kernels only performed well when
n=1 kernels were used at higher (!> 1) levels in the recursion. Figs. 2 and 3 therefore show only
these sets of results; in particular, each group of bars shows the test error rates when a particular
kernel (of degree n = 0, 1, 2) was used at the first layer of nonlinearity, while the n = 1 kernel was
used at successive layers. We do not have a formal explanation for this effect. However, recall that
only the n = 1 arc cosine kernel preserves the norm of its inputs: the n = 0 kernel maps all inputs
onto a unit hypersphere in feature space, while higher-order (n > 1) kernels may induce feature
spaces with severely distorted dynamic ranges. Therefore, we hypothesize that only n=1 arc cosine
kernels preserve sufficient information about the magnitude of their inputs to work effectively in
composition with other kernels.

Finally, the results on both data sets reveal an interesting trend: the multilayer arc cosine kernels
often perform better than their single layer counterparts. Though SVMs are shallow architectures,

5

17

18

19

20

21

DBN!3

SVM!RBF

Test error rate (%)

1 2 3 4 5 6
 Step (n=0)

1 2 3 4 5 6
 Ramp (n=1)

1 2 3 4 5 6
Quarter!pipe (n=2)

15

20

25

30

DBN!3

SVM!RBF

Test error rate (%)

 0 1 2 3 4 5
 Step (n=0)

 1 2 3 4 5
 Ramp (n=1)

 1 2
Quarter!pipe (n=2)

 1 2
 RBF

Figure 5: Left: examples from the mnist-back-image data set. Right: classification error rates on the
test set for MKMs with different kernels and numbers of layers !. MKMs with arc-cosine kernel
have error rates from 18.43–29.79%. The best previous results are 22.61% for SVMs with RBF
kernels and 16.31% for deep belief nets [11].

We trained MKMs with arc-cosine kernels and RBF kernels in each layer. For each data set, we
initially withheld the last 2000 training examples as a validation set. Performance on this validation
set was used to determine each MKM’s architecture, as described in the previous section, and also
to set the kernel width in RBF kernels, following the same methodology as earlier studies [11].
Once these parameters were set by cross-validation, we re-inserted the validation examples into the
training set and used all 12000 training examples for feature selection and distance metric learning.
For kernel PCA, we were limited by memory requirements to processing only 6000 out of 12000
training examples. We chose these 6000 examples randomly, but repeated each experiment five
times to obtain a measure of average performance. The results we report for each MKM are the
average performance over these five runs.

The right panels of Figs. 4 and 5 show the test set error rates of MKMs with different kernels and
numbers of layers !. For reference, we also show the best previously reported results [11] using
traditional SVMs (with RBF kernels) and deep belief nets (with three layers). MKMs perform sig-
nificantly better than shallow architectures such as SVMs with RBF kernels or LMNN with feature
selection (reported as the case ! = 0). Compared to deep belief nets, the leading MKMs obtain
slightly lower error rates on one data set and slightly higher error rates on another.

We can describe the architecture of an MKM by the number of selected features at each layer (in-
cluding the input layer). The number of features essentially corresponds to the number of units in
each layer of a neural net. For the mnist-back-rand data set, the best MKM used an n=1 arc-cosine
kernel and 300-90-105-136-126-240 features at each layer. For the mnist-back-image data set, the
best MKM used an n=0 arc-cosine kernel and 300-50-130-240-160-150 features at each layer.

MKMs worked best with arc-cosine kernels of degree n=0 and n=1. The kernel of degree n=2
performed less well in MKMs, perhaps because multiple iterations of kernel PCA distorted the
dynamic range of the inputs (which in turn seemed to complicate the training for LMNN). MKMs
with RBF kernels were difficult to train due to the sensitive dependence on kernel width parameters.
It was extremely time-consuming to cross-validate the kernel width at each layer of the MKM. We
only obtained meaningful results for one and two-layer MKMs with RBF kernels.

7

Kernel Methods for Deep learning
(Cho and Saul, NIPS 2009)

• Désavantages

★ pas possible de faire du raffinement supervisé

★ coûteux en temps et mémoire (kPCA)

• Avantages

★ suite d’opérations convexes

★ possible d’utiliser autre chose que la kPCA

! Piste de recherche !

Slow, Decorrelated Features for
Pretraining Complex Cell-like Networks

(Bergstra and Bengio, NIPS 2009)

• Un autre exemple d’application du principe
du pré-entraînement

★ avec un critère non-supervisé différent

★ avec un “encodeur” différent

Slow, Decorrelated Features for
Pretraining Complex Cell-like Networks

(Bergstra and Bengio, NIPS 2009)

• Les neurones sont entraînés sur des séquences
d’images

• Le critère:

and as an explanation for why V1 simple and complex cells behave the way they do. A good
overview can be found in (Berkes & Wiskott, 2005).

This work follows the pattern of initializing neural networks with unsupervised learning (pretrain-
ing) before fine-tuning with a supervised learning criterion. Supervised gradient descent explores the
parameter space sufficiently to get low training error on smaller training sets (tens of thousands of
examples, like MNIST). However, models that have been pretrained with appropriate unsupervised
learning procedures (such as RBMs and various forms of auto-encoders) generalize better (Hinton
et al., 2006; Larochelle et al., 2007; Lee et al., 2008; Ranzato et al., 2008; Vincent et al., 2008).
See Bengio (2009) for a comprehensive review and Erhan et al. (2009) for a thorough experimental
analysis of the improvements obtained. It appears that unsupervised pretraining guides the learning
dynamics in better regions of parameter space associated with basins of attraction of the supervised
gradient procedure corresponding to local minima with lower generalization error, even for very
large training sets (unlike other regularizers whose effects tend to quickly vanish on large training
sets) with millions of examples.

Recent work in the pretraining of neural networks has taken a generative modeling perspective. For
example, the Restricted Boltzmann Machine is an undirected graphical model, and training it (by
maximum likelihood) as such has been demonstrated to also be a good initialization. However, it is
an interesting open question whether a better generative model is necessarily (or even typically) a
better point of departure for fine-tuning. Contrastive divergence (CD) is not maximum likelihood,
and works just fine as pretraining. Reconstruction error is an even poorer approximation of the
maximum likelihood gradient, and sometimes works better than CD (with additional twists like
sparsity or the denoising of (Vincent et al., 2008)).

The temporal coherence and decorrelation criterion is an alternative to training generative models
such as RBMs or auto-encoder variants. Recently (Mobahi et al., 2009) demonstrated that a slowness
criterion regularizing the top-most internal layer of a deep convolutional network during supervised
learning helps their model to generalize better. Our model is similar in spirit to pre-training with
the semi-supervised embedding criterion at each level (Weston et al., 2008; Mobahi et al., 2009),
but differs in the use of decorrelation as a mechanism for preventing trivial solutions to a slowness
criterion. Whereas RBMs and denoising autoencoders are defined for general input distributions,
the temporal coherence and decorrelation criterion makes sense only in the context of data with
slowly-changing temporal or spatial structure, such as images, video, and sound.

In the same way that simple cell models were the inspiration for sigmoidal activation units in arti-
ficial neural networks and validated simple cell models, we investigate in artificial neural network
classifiers the value of complex cell models. This paper builds on these results by showing that
the principle of temporal coherence is useful for finding initial conditions for the hidden layer of
a neural network that biases it towards better generalization in object recognition. We introduce
temporal coherence and decorrelation as a pretraining algorithm. Hidden units are initialized so that
they are invariant to irrelevant transformations of the image, and sensitive to relevant ones. In order
for this criterion to be useful in the context of large models, we derive a fast online algorithm for
decorrelating units and maximizing temporal coherence.

2 Algorithm

2.1 Slow, decorrelated feature learning algorithm

(Körding et al., 2004) introduced a principle (and training criterion) to explain the formation of
complex cell receptive fields. They based their analysis on the complex-cell model of (Adelson &
Bergen, 1985), which describes a complex cell as a pair of half-rectified linear filters whose outputs
are squared and added together and then a square root is applied to that sum.

Suppose x is an input image and we have F complex cells h1, ..., hF such that hi =√
(ui · x)2 + (vi · x)2. (Körding et al., 2004) showed that by minimizing the following cost,

LK2004 = α
∑

i!=j

Covt(hi, hj)2

Var(hi)Var(hj)
+

∑

t

∑

i

(hi,t − hi,t−1)2

Var(hi)
(1)

2neurones doivent
être non-corrélés

neurones doivent
être “lents”

{ {

• Les neurones sont plus complexes

• Inspirés des “complex cells” du cerveau

Slow, Decorrelated Features for
Pretraining Complex Cell-like Networks

(Bergstra and Bengio, NIPS 2009)

Subtracting the C2
ii terms from the sum of all squared elements lets us rewrite Equation 2 in a way

that suggests the linear-time implementation.

L(t) =
α

N2

(
|Z(t)Z ′(t)|2 −

F∑

i=1

(
N∑

τ=1

zi(τ)2)2
)

+
1

N − 1

N−1∑

τ=1

F∑

i=1

(zi(τ)− zi(τ − 1))2 (3)

The time complexity of computing L(t) using Equation 3 from Z(t) is O(NNF). The sum of
squared correlations is still the most expensive term, but for the case where N << F , this expression
makes L(t)’s computation linear in F . Considering that each iteration treats N training examples,
the per-training-example cost of this algorithm can be seen as O(NF). In implementation, an
additional factor of two in runtime can be obtained by only computing half of the Gram matrix G,
which is symmetric.

2.2 Complex-cell activation function

Recently, (Rust et al., 2005) have argued that existing models, such as that of (Adelson & Bergen,
1985) cannot account for the variety of behaviour found in visual area V1. Some complex cells
behave like simple cells to some extent and vice versa; there is a continuous range of simple to com-
plex cells. They put forward a similar but more involved expression that can capture the simple and
complex cells as special cases, but ultimately parameterizes a larger class of cell-response functions
(Eq. 4).

a +
β

(
max(0, wx)2 +

∑I
i=1(u

(i)x)2
)ζ
− δ

(∑J
j=1(v

(j)x)2
)ζ

1 + γ
(
max(0, wx)2 +

∑I
i=1(u(i)x)2

)ζ
+ ε

(∑J
j=1(v(j)x)2

)ζ
(4)

The numerator in Eq 4 describes the difference between an excitation term and a shunting inhibition
term. The denominator acts to normalize this difference. Parameters w, u(i), v(j) have the same
shape as the input image x, and can be thought of as image filters like the first layer of a neural
network or the codebook of a sparse-coding model. The parameters a,β, δ, γ, ε, ζ are scalars that
control the range and shape of the activation function, given all the filter responses. The numbers I
and J of quadratic filters required to explain a particular cellular response were on the order of 2-16.

We introduce the approximation in Equation 5 because it is easier to learn by gradient descent. We
replaced the max operation with a softplus(x) = log(1 + ex) function so that there is always a
gradient on w and b, even when wx + b is negative. We fixed the scalar parameters to prevent the
system from entering regimes of extreme non-linearity. We fixed β, δ, γ, ε to 1, and a to 0. We chose
to fix the exponent ζ to 0.5 because (Rust et al., 2005) found that values close to 0.5 offered good
fits to cell firing-rate data. Future work might look at choosing these constants in a principled way
or adapting them; we found that these values worked well. The range of this activation function (as
a function of x) is a connected set on the (−1, 1) interval. However, the whole (−1, 1) range is not
always available, depending on the parameters. If the inhibition term is always 0 for example, then
the activation function will be non-negative.

√
log(1 + ewx+b)2 +

∑I
i=1(u(i)x)2 −

√∑J
j=1(v(j)x)2

1.0 +
√

log(1 + ewx+b)2 +
∑I

i=1(u(i)x)2 +
√∑J

j=1(v(j)x)2
(5)

3 Results

Classification results were obtained by adding a logistic regression model on top of the features
learned, and treating the resulting model as a single-hidden-layer neural network. The weights of
the logistic regression were always initialized to zero.

All work was done on 28x28 images (MNIST-sized), using a model with 300 hidden units. Each
hidden unit had one linear filter w, a bias b, two quadratic excitatory filters u1, u2 and two quadratic
inhibitory filters v1, v2. The computational cost of evaluating each unit was thus five times the cost
of evaluating a normal sigmoidal activation function of the form tanh(w′x + b).

4

filtre du neurone filtres excitateurs filtres inhibiteurs

• Résultats:

★ MNIST: sans pré-entraînement = 1.56%
 avec pré-entraînement = 1.34%

★ Avec seulement 100 exemples étiquetés

Slow, Decorrelated Features for
Pretraining Complex Cell-like Networks

(Bergstra and Bengio, NIPS 2009)

Table 1: Generalization error (% error) from 100 labeled MNIST examples after pretraining on
MIXED-movies and MNIST-movies.

Pre-training Dataset Number of pretraining iterations (×104)
0 1 2 3 4 5

MIXED-movies 23.1 21.2 20.8 20.8 20.6 20.6
MNIST-movies 23.1 19.0 18.7 18.8 18.4 18.6

4 Discussion

The results on MNIST compare well with many results in the literature. A single-hidden layer neural
network of sigmoidal units can achieve 1.8% error by training from random initial conditions, and
our model achieves 1.5% from random initial conditions. A single-hidden layer sigmoidal neural
network pretrained as a denoising auto-encoder (and then fine-tuned) can achieve 1.4% error on
average, and our model is able to achieve 1.34% error from many different fine-tuned models (Erhan
et al., 2009). Gaussian SVMs trained just on the original MNIST data achieve 1.4%; our pretraining
strategy allows our single-layer model be better than Gaussian SVMs (Decoste & Schölkopf, 2002).
Deep learning algorithms based on denoising auto-encoders and RBMs are typically able to achieve
slightly lower scores in the range of 1.2 − 1.3% (Hinton et al., 2006; Erhan et al., 2009). The
best convolutional architectures and models that have access to enriched datasets for fine-tuning can
achieve classification accuriacies under 0.4% (Ranzato et al., 2007). In future work, we will explore
strategies for combining these methods and with our decorrelation criterion to train deep networks
of models with quadratic input interactions. We will also look at comparative performance on a
wider variety of tasks.

4.1 Transfer learning, the value of pretraining

To evaluate our unsupervised criterion of slow, decorrelated features as a pretraining step for clas-
sification by a neural network, we fine-tuned the weights obtained after ten, twenty, thirty, forty,
and fifty thousand iterations of unsupervised learning. We used only a small subset (the first 100
training examples) from the MNIST data to magnify the importance of pre-training. The results
are listed in Table 1. Training from random weights initial led to 23.1 % error. The value of pre-
training is evident right away: after two unsupervised passes over the MNIST training data (100K
movies and 10K iterations), the weights have been initialized better. Fine-tuning the weights learned
on the MIXED-movies led to test error rate of 21.2%, and fine-tuning the weights learned on the
MNIST-movies led to a test error rate of 19.0%. Further pretraining offers a diminishing marginal
return, although after ten unsupervised passes through the training data (500K movies) there is no
evidence of over-pretraining. The best score (20.6%) on MIXED-movies occurs at both eight and
ten unsupervised passes, and the best score on MNIST-movies (18.4%) occurs after eight. A larger
test set would be required to make a strong conclusion about a downward trend in test set scores
for larger numbers of pretraining iterations. The results with MNIST-movies pretraining are slightly
better than MIXED-movies but these results suggest strong transfer learning: the videos featuring
digits in random locations and natural image patches are almost as good for pretraining as compared
with videos featuring images very similar to those in the test set.

4.2 Slowness in normalized features encourages binary activations

Somewhat counter-intuitively, the slowness criterion requires movement in the features h. Suppose
a feature hi has activation levels that are normally distributed around 0.1 and 0.2, but the activation
at each frame of a movie is independent of previous frames. Since the features has a small variance,
then the normalized feature zi will oscillate in the same way, but with unit variance. This will cause
zi(t)− zi(t− 1) to be relatively high, and for our slowness criterion not to be well satisfied. In this
way the lack of variance in hi can actually make for a relatively fast normalized feature zi rather
than a slow one.

However, if hi has activation levels that are normally distributed around .1 and .2 for some image
sequences and around .8 and .9 for other image sequences, the marginal variance in hi will be larger.

7

Quel est le meilleur module
non-supervisé?

• Y a-t-il d’autres critères d’apprentissage non-
supervisé intéressants?

• Qu’est-ce qui est plus important: le critère
non-supervisé ou le type d’encodeur?

• Est-ce utile d’introduire aussi un critère
supervisé en pré-entraînement?

! Piste de recherche !

Applications

 Automatic Identification of Instrument Classes
in Polyphonic and Poly-Instrument Audio

(Philippe Hamel, Sean Wood and Douglas Eck, ISMIR 2009)

• Exemple d’application autre que vision

and recall are defined as

Precision =
tp

tp + fp
, Recall =

tp

tp + fn
(1)

where tp, fp and fn are the number of ‘true positives’,
‘false positives’ and ‘false negatives’ examples. A true po-
sitive is a positive example that was correctly labeled as po-
sitive by the model. A false positive is a negative example
that was mislabeled as positive. A false negative is a posi-
tive example that was mislabeled as negative. The F-Score
(F) is defined as the harmonic mean of the precision and
the recall

F =
2(precision ∗ recall)

precision + recall
(2)

This can be simplified to

F =
2tp

2tp + fp + fn
. (3)

To obtain F-Scores for each instrument, we calculated
the F-Scores independently as for 7 independent classifica-
tion tasks. In order to get a global F-score that represents
the overall performance of the models, we took the sum of
tp, fp and fn over all the instruments.

The neural networks (MLP, DBN) output a probability
∈ [0, 1]for each instrument, representing the network’s be-
lief that the instrument is present in the given input frame.
If the probability for a given instrument is higher than a gi-
ven threshold, we classify this class as being present. Lo-
wering the threshold improves the recall, but lowers the
precision, while increasing the threshold has the opposite
effect. To label a whole song, we take the mean of the pro-
babilities from each frame and apply a threshold to decide
whether or not each instrument class is present. We opti-
mized the threshold to maximize the global F-score.

The output of our SVM model is binary (0 or 1) for each
class. We used a similar technique as the neural network to
label a song, except that we have binary votes instead of
probabilities.

6.2 Results and Discussion

6.2.1 Feature sets

To confirm that the features we extracted from the au-
dio were useful for training our models, we compared the
results of training with subsets of our feature sets on the
solo instrument audio corpus. The mean F-score for each
subset using our three models are shown in Table 1. We see
a tendency that using more features helps the SVM and the
DBN, but the MLP doesn’t show improvement with the full
set of features compared to using only 20 MFCCs. Another
result that is remarkable is that the DBN performs surpri-
singly well compared to the two other models with only the
spectral features as inputs. For the following experiments,
we will always use our full set of features.

6.2.2 Solo instrument audio

Our first audio corpus contains solo performances from
all the instruments. For this experiment, we generated a to-
tal of 2735 song examples generated from 7 different MIDI

SVM MLP DBN
Spectral Features (16) 0.51 0.74 0.81

12 MFCCs (72) 0.75 0.85 0.85
20 MFCCs (120) 0.81 0.86 0.87
All Features (136) 0.84 0.84 0.88

Table 1. Global F-score for different features subsets (fea-
tures vector length in parenthesis)

files. We used 1984 of these for training and validation, for
a total of 62434 1-second frames. The results are shown in
Table 2.

SVM MLP DBN %
Bass 0.88 0.88 0.88 13.85%
Brass 0.87 0.88 0.91 22.37%
Guitar 0.0 0.0 0.21 2.13%
Organ 0.96 0.89 0.96 7.46%
Piano 0.45 0.43 0.57 6.39%

Strings 0.94 0.95 0.97 9.59%
Woodwind 0.82 0.85 0.89 29.83%

Global 0.84 0.84 0.88

Table 2. F-score for solo instrument audio. The results that
clearly outperforms the other models are highlighted in
bold. The percentage of positive examples in the training
set for each instrument is shown in the rightmost column

We see that the DBN tends to perform better than both
the SVM and the MLP in this experiment. Moreover, the
DBN seems to perform significantly better when the quan-
tity of positive training example is smaller. Note that both
the SVM and the MLP were unable to recognize the guitar
instrument class. This is probably related to the fact that
only a small fraction of the data set contained positive gui-
tar examples.

The DBN that gave the best validation F-score had 5
layers of 50 units each. Only 3 epochs of pre-training over
the training set were necessary to achieve the best genera-
lization performance. The best MLP model had 40 hidden
units.

6.2.3 Poly-instrument audio

Our second audio corpus is constructed from mixes of
instruments. Each song is generated from one of 6 MIDI
files containing between 2 and 6 tracks, and thus each example
contains from 1 to 6 classes (many instruments from the
same class are allowed). The data set is constituted of 3654
training and validation examples divided in 186532 frames.
Results are shown in Table 3.

Again, in this experiment, the DBN seems to perform
slightly better than the SVM and the MLP. In three cases
(brass, guitar and woodwind), the performance difference
was important. The DBN with the best generalization per-
formance in this experiment had 4 layers of 100 units and

 Automatic Identification of Instrument Classes
in Polyphonic and Poly-Instrument Audio

(Philippe Hamel, Sean Wood and Douglas Eck, ISMIR 2009)

and recall are defined as

Precision =
tp

tp + fp
, Recall =

tp

tp + fn
(1)

where tp, fp and fn are the number of ‘true positives’,
‘false positives’ and ‘false negatives’ examples. A true po-
sitive is a positive example that was correctly labeled as po-
sitive by the model. A false positive is a negative example
that was mislabeled as positive. A false negative is a posi-
tive example that was mislabeled as negative. The F-Score
(F) is defined as the harmonic mean of the precision and
the recall

F =
2(precision ∗ recall)

precision + recall
(2)

This can be simplified to

F =
2tp

2tp + fp + fn
. (3)

To obtain F-Scores for each instrument, we calculated
the F-Scores independently as for 7 independent classifica-
tion tasks. In order to get a global F-score that represents
the overall performance of the models, we took the sum of
tp, fp and fn over all the instruments.

The neural networks (MLP, DBN) output a probability
∈ [0, 1]for each instrument, representing the network’s be-
lief that the instrument is present in the given input frame.
If the probability for a given instrument is higher than a gi-
ven threshold, we classify this class as being present. Lo-
wering the threshold improves the recall, but lowers the
precision, while increasing the threshold has the opposite
effect. To label a whole song, we take the mean of the pro-
babilities from each frame and apply a threshold to decide
whether or not each instrument class is present. We opti-
mized the threshold to maximize the global F-score.

The output of our SVM model is binary (0 or 1) for each
class. We used a similar technique as the neural network to
label a song, except that we have binary votes instead of
probabilities.

6.2 Results and Discussion

6.2.1 Feature sets

To confirm that the features we extracted from the au-
dio were useful for training our models, we compared the
results of training with subsets of our feature sets on the
solo instrument audio corpus. The mean F-score for each
subset using our three models are shown in Table 1. We see
a tendency that using more features helps the SVM and the
DBN, but the MLP doesn’t show improvement with the full
set of features compared to using only 20 MFCCs. Another
result that is remarkable is that the DBN performs surpri-
singly well compared to the two other models with only the
spectral features as inputs. For the following experiments,
we will always use our full set of features.

6.2.2 Solo instrument audio

Our first audio corpus contains solo performances from
all the instruments. For this experiment, we generated a to-
tal of 2735 song examples generated from 7 different MIDI

SVM MLP DBN
Spectral Features (16) 0.51 0.74 0.81

12 MFCCs (72) 0.75 0.85 0.85
20 MFCCs (120) 0.81 0.86 0.87
All Features (136) 0.84 0.84 0.88

Table 1. Global F-score for different features subsets (fea-
tures vector length in parenthesis)

files. We used 1984 of these for training and validation, for
a total of 62434 1-second frames. The results are shown in
Table 2.

SVM MLP DBN %
Bass 0.88 0.88 0.88 13.85%
Brass 0.87 0.88 0.91 22.37%
Guitar 0.0 0.0 0.21 2.13%
Organ 0.96 0.89 0.96 7.46%
Piano 0.45 0.43 0.57 6.39%

Strings 0.94 0.95 0.97 9.59%
Woodwind 0.82 0.85 0.89 29.83%

Global 0.84 0.84 0.88

Table 2. F-score for solo instrument audio. The results that
clearly outperforms the other models are highlighted in
bold. The percentage of positive examples in the training
set for each instrument is shown in the rightmost column

We see that the DBN tends to perform better than both
the SVM and the MLP in this experiment. Moreover, the
DBN seems to perform significantly better when the quan-
tity of positive training example is smaller. Note that both
the SVM and the MLP were unable to recognize the guitar
instrument class. This is probably related to the fact that
only a small fraction of the data set contained positive gui-
tar examples.

The DBN that gave the best validation F-score had 5
layers of 50 units each. Only 3 epochs of pre-training over
the training set were necessary to achieve the best genera-
lization performance. The best MLP model had 40 hidden
units.

6.2.3 Poly-instrument audio

Our second audio corpus is constructed from mixes of
instruments. Each song is generated from one of 6 MIDI
files containing between 2 and 6 tracks, and thus each example
contains from 1 to 6 classes (many instruments from the
same class are allowed). The data set is constituted of 3654
training and validation examples divided in 186532 frames.
Results are shown in Table 3.

Again, in this experiment, the DBN seems to perform
slightly better than the SVM and the MLP. In three cases
(brass, guitar and woodwind), the performance difference
was important. The DBN with the best generalization per-
formance in this experiment had 4 layers of 100 units and

SVM MLP DBN %
Bass 0.86 0.83 0.85 50.00%
Brass 0.38 0.45 0.63 25.90%
Guitar 0.05 0.15 0.28 11.94%
Organ 0.84 0.84 0.85 62.99%
Piano 0.83 0.80 0.83 64.44%

Strings 0.37 0.37 0.36 18.82%
Woodwind 0.31 0.41 0.52 31.81%

Global 0.72 0.72 0.74

Table 3. F-score for poly-instrument audio. The results
that clearly outperforms the other models are highlighted
in bold. The percentage of positive examples in the training
set for each instrument is shown in the rightmost column

required 4 epochs of pre-training. The best MLP was construc-
ted with 60 hidden units.

6.3 Discussion

In all 3 experiments, the DBN generally performed bet-
ter than the 2 other models, although the difference is not
always important. The DBN tends to perform better espe-
cially in cases where the quantity of positive examples is
small. This could indicate that the DBN was able to learn
higher-level features to discriminate instrument classes. In
other words, it was able to use what it learned from other
instrument classes to discriminate instruments that were
less frequent.

Although the results seem to show that the DBN perfor-
med better than the SVM and MLP, we cannot draw any
hard conclusion with these results because of the similarity
of the results and the lack of confidence intervals. The F-
Score may not be the best measure to get such confidence
intervals. However, these results clearly show that DBNs
can be useful for the task of instrument recognition. These
results also motivate more experiments to confirm the ten-
dency shown. In future work, these experiments should be
run using cross-fold testing and measuring the classifica-
tion error in order to obtain a reliable confidence measure.

When generating our labeled examples, we tried to stay
as close to real music as possible. The MIDI format is good
to reproduce some features of real music such as harmoni-
zation and timing. However, it is harder to represent mu-
sical features such as expressiveness and instrument dyna-
mics variations in MIDI. Also, our system used a rather
simple fixed mixing of the instruments in a given song,
which gave rise to small variability in the relative volume
of the instruments. The limited number of midi files we
used is also a limitation of our model. In future work, we
would like to add more variability to the music generation
by using more songs and by diversifying the mixing bet-
ween instruments.

Another aspect that could improve the performance of
the three models would be to learn an independent decision
threshold for each instrument class. We used only one deci-
sion threshold that was optimized on the validation set glo-

bal F-Score. This may be related to the fact that the SVM
and the MLP were unable to recognize the guitar class in
the solo instrument experiment.

7. CONCLUSION AND FUTURE WORK

In this work, we have introduced the DBN model for
instrument recognition. We have shown that DBNs per-
form at least as well as SVMs and MLPs for this task. We
have also shown that the DBN tends to outperform these
models when the feature set is limited, and when the num-
ber of positive examples for a class is limited. These results
motivate the application of deep networks in music infor-
mation retrieval tasks.

As seen in Section 4, adding more relevant features seems
to improve the performance of the classifiers. In future
work, it would be interesting to consider extracting a wi-
der variety of features from the audio. In this study, we
avoided harmonic features that rely on the identification of
a single fundamental frequencey for a frame of audio be-
cause this is ill-defined in the polyphonic case. In future
work, it would be interesting to test if extracting simple
harmonic features (e.g. odd to even harmonics ratio) from
mixed instruments using an estimate of the most salient
frequency could help for this task. We suppose that there is
useful information in such features.

We also plan to add more variability to our data set by
adding reverb and background noise to our audio examples.
We hypothesize that this would add robustness to our trai-
ned models.

Finally, it would be interesting to test our model on real
music. This is something that we plan for the near future.
To test our model on commercial music, we would need to
train a wider range of instruments, such as drums, distorted
guitars, vocals, etc.

8. ACKNOWLEDGMENTS

Philippe Hamel was supported financially by FQRNT.
Douglas Eck and Sean Wood are financed by NSERC Dis-
covery Grants. Special thanks to Nathanael Lecaude, Pas-
cal Lamblin, Simon Lemieux, Olivier Delalleau, and all the
people at the GAMME and LISA labs for helpful discus-
sions.

9. REFERENCES

[1] G. Agostini, M. Longari, and E. Pollastri. Musical ins-
trument timbres classification with spectral features.
EURASIP J. Appl. Signal Process., 2003 :5–14, 2003.

[2] Y Bengio. Learning deep architectures for AI. Founda-
tions and Trends in Machine Learning, to appear, 2009.

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.
Greedy layer-wise training of deep networks. In Bern-
hard Schölkopf, John Platt, and Thomas Hoffman, edi-
tors, Advances in Neural Information Processing Sys-
tems 19, pages 153–160. MIT Press, 2007.

[4] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere.
Autotagger : A model for predicting social tags from

Reducing the Dimensionality of
Data with Neural Networks

(Hinton and Salakhutdinov, Science 2006)

• Application:

réduction de
dimensionalité

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Reducing the Dimensionality of
Data with Neural Networks

(Hinton and Salakhutdinov, Science 2006)

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Résultats: reconstruction

Reducing the Dimensionality of
Data with Neural Networks

(Hinton and Salakhutdinov, Science 2006)

Résultats: visualisation

adjusting the weights and biases to lower the
energy of that image and to raise the energy of
similar, Bconfabulated[images that the network
would prefer to the real data. Given a training
image, the binary state hj of each feature de-
tector j is set to 1 with probability s(bj þP

iviwij), where s(x) is the logistic function
1/E1 þ exp (–x)^, bj is the bias of j, vi is the
state of pixel i, and wij is the weight between i
and j. Once binary states have been chosen for
the hidden units, a Bconfabulation[is produced
by setting each vi to 1 with probability s(bi þP

jhjwij), where bi is the bias of i. The states of

the hidden units are then updated once more so
that they represent features of the confabula-
tion. The change in a weight is given by

Dwij 0 e
!
bvihjÀdata j bvihjÀrecon

"
ð2Þ

where e is a learning rate, bvihjÀdata is the
fraction of times that the pixel i and feature
detector j are on together when the feature
detectors are being driven by data, and
bvihjÀrecon is the corresponding fraction for
confabulations. A simplified version of the

same learning rule is used for the biases. The
learning works well even though it is not
exactly following the gradient of the log
probability of the training data (6).

A single layer of binary features is not the
best way to model the structure in a set of im-
ages. After learning one layer of feature de-
tectors, we can treat their activities—when they
are being driven by the data—as data for
learning a second layer of features. The first
layer of feature detectors then become the
visible units for learning the next RBM. This
layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

REPORTS

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org506

Reducing the Dimensionality of
Data with Neural Networks

(Hinton and Salakhutdinov, Science 2006)

Résultats: recherche d’information

adjusting the weights and biases to lower the
energy of that image and to raise the energy of
similar, Bconfabulated[images that the network
would prefer to the real data. Given a training
image, the binary state hj of each feature de-
tector j is set to 1 with probability s(bj þP

iviwij), where s(x) is the logistic function
1/E1 þ exp (–x)^, bj is the bias of j, vi is the
state of pixel i, and wij is the weight between i
and j. Once binary states have been chosen for
the hidden units, a Bconfabulation[is produced
by setting each vi to 1 with probability s(bi þP

jhjwij), where bi is the bias of i. The states of

the hidden units are then updated once more so
that they represent features of the confabula-
tion. The change in a weight is given by

Dwij 0 e
!
bvihjÀdata j bvihjÀrecon

"
ð2Þ

where e is a learning rate, bvihjÀdata is the
fraction of times that the pixel i and feature
detector j are on together when the feature
detectors are being driven by data, and
bvihjÀrecon is the corresponding fraction for
confabulations. A simplified version of the

same learning rule is used for the biases. The
learning works well even though it is not
exactly following the gradient of the log
probability of the training data (6).

A single layer of binary features is not the
best way to model the structure in a set of im-
ages. After learning one layer of feature de-
tectors, we can treat their activities—when they
are being driven by the data—as data for
learning a second layer of features. The first
layer of feature detectors then become the
visible units for learning the next RBM. This
layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

REPORTS

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org506

Reducing the Dimensionality of
Data with Neural Networks

(Hinton and Salakhutdinov, Science 2006)

Résultats: visualisation

adjusting the weights and biases to lower the
energy of that image and to raise the energy of
similar, Bconfabulated[images that the network
would prefer to the real data. Given a training
image, the binary state hj of each feature de-
tector j is set to 1 with probability s(bj þP

iviwij), where s(x) is the logistic function
1/E1 þ exp (–x)^, bj is the bias of j, vi is the
state of pixel i, and wij is the weight between i
and j. Once binary states have been chosen for
the hidden units, a Bconfabulation[is produced
by setting each vi to 1 with probability s(bi þP

jhjwij), where bi is the bias of i. The states of

the hidden units are then updated once more so
that they represent features of the confabula-
tion. The change in a weight is given by

Dwij 0 e
!
bvihjÀdata j bvihjÀrecon

"
ð2Þ

where e is a learning rate, bvihjÀdata is the
fraction of times that the pixel i and feature
detector j are on together when the feature
detectors are being driven by data, and
bvihjÀrecon is the corresponding fraction for
confabulations. A simplified version of the

same learning rule is used for the biases. The
learning works well even though it is not
exactly following the gradient of the log
probability of the training data (6).

A single layer of binary features is not the
best way to model the structure in a set of im-
ages. After learning one layer of feature de-
tectors, we can treat their activities—when they
are being driven by the data—as data for
learning a second layer of features. The first
layer of feature detectors then become the
visible units for learning the next RBM. This
layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

REPORTS

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org506

adjusting the weights and biases to lower the
energy of that image and to raise the energy of
similar, Bconfabulated[images that the network
would prefer to the real data. Given a training
image, the binary state hj of each feature de-
tector j is set to 1 with probability s(bj þP

iviwij), where s(x) is the logistic function
1/E1 þ exp (–x)^, bj is the bias of j, vi is the
state of pixel i, and wij is the weight between i
and j. Once binary states have been chosen for
the hidden units, a Bconfabulation[is produced
by setting each vi to 1 with probability s(bi þP

jhjwij), where bi is the bias of i. The states of

the hidden units are then updated once more so
that they represent features of the confabula-
tion. The change in a weight is given by

Dwij 0 e
!
bvihjÀdata j bvihjÀrecon

"
ð2Þ

where e is a learning rate, bvihjÀdata is the
fraction of times that the pixel i and feature
detector j are on together when the feature
detectors are being driven by data, and
bvihjÀrecon is the corresponding fraction for
confabulations. A simplified version of the

same learning rule is used for the biases. The
learning works well even though it is not
exactly following the gradient of the log
probability of the training data (6).

A single layer of binary features is not the
best way to model the structure in a set of im-
ages. After learning one layer of feature de-
tectors, we can treat their activities—when they
are being driven by the data—as data for
learning a second layer of features. The first
layer of feature detectors then become the
visible units for learning the next RBM. This
layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

REPORTS

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org506

LSA

Semantic Hashing
(Salakhutdinov and Hinton, IJAR 2009)

• Application: recherche d’information

These recently introduced probabilistic models can be viewed as graphical models in which hidden topic variables have
directed connections to variables that represent word-counts. Their major drawback is that exact inference is intractable due
to explaining away, so they have to resort to slow or inaccurate approximations to compute the posterior distribution over
topics. This makes it difficult to fit the models to data. Also, as Welling et al. [21] point out, fast inference is important for
information retrieval. To achieve this [21] introduce a class of two-layer undirected graphical models that generalize Re-
stricted Boltzmann Machines (RBM’s) [9] to exponential family distributions. This allows them to model non-binary data
and to use non-binary hidden (i.e. latent) variables. Maximum likelihood learning is intractable in these models, but learning
can be performed efficiently by following an approximation to the gradient of a different objective function called ‘‘contras-
tive divergence” [9]. Several further developments of these undirected models [8,22] show that they are competitive in terms
of retrieval accuracy with their directed counterparts.

All of the above models, however, have important limitations. First, there are limitations on the types of structure that can
be represented efficiently by a single layer of hidden variables [2]. We will show that a network with multiple hidden layers
and with millions of parameters can discover latent representations that work much better for information retrieval. Second,
all of these text retrieval algorithms are based on computing a similarity measure between a query document and other doc-
uments in the collection. The similarity is computed either directly in the word space or in a low-dimensional latent space. If
this is done naively, the retrieval time complexity of these models is OðNVÞ, where N is the size of the document corpus and V
is the size of vocabulary or dimensionality of the latent space. By using an inverted index, the time complexity for TF-IDF can
be improved to OðBVÞ, where B is the average, over all terms in the query document, of the number of other documents in
which the term appears. For LSA, the time complexity can be improved to OðV logNÞ by using special data structures such as
KD-trees [7,15], provided the intrinsic dimensionality of the representations is low enough for KD-trees to be effective. For
all of these models, however, the larger the size of document collection, the longer it will take to search for relevant
documents.

In this paper, we describe a new retrieval method called ‘‘semantic hashing” that produces a shortlist of similar docu-
ments in a time that is independent of the size of the document collection and linear in the size of the shortlist. Moreover,
only a few machine instructions are required per document in the shortlist. Our method must store additional information
about every document in the collection, but this additional information is only about one word of memory per document.
Our method depends on a new way of training deep graphical models one layer at a time, so we start by describing the type
of graphical model we use and how we train it.

The lowest layer in our graphical model represents the word-count vector of a document and the highest (i.e. deepest)
layer represents a learned binary code for that document. The top two layers of the generative model form an undirected
bipartite graph and the remaining layers form a belief net with directed, top–down connections (see Fig. 2). The model
can be trained efficiently by using a Restricted Boltzmann Machine (RBM) to learn one layer of hidden variables at a time
[10]. After learning is complete, the mapping from a word-count vector to the states of the top-level variables is fast, requir-
ing only a matrix multiplication followed by a componentwise non-linearity for each hidden layer.

After the greedy, layer-by-layer training, the generative model is not significantly better than a model with only one hid-
den layer. To take full advantage of the multiple hidden layers, the layer-by-layer learning must be treated as a ‘‘pretraining”
stage that finds a good region of the parameter space. Starting in this region, a gradient search can then fine-tune the model
parameters to produce a much better model [12].

In the next section, we introduce the ‘‘Constrained Poisson Model” that is used for modeling word-count vectors. This
model can be viewed as a variant of the Rate Adaptive Poisson model [8] that is easier to train and has a better way of dealing
with documents of different lengths. In Section 3, we describe both the layer-by-layer pretraining and the fine-tuning of the
deep multi-layer model. We also show how ‘‘deterministic noise” can be used to force the fine-tuning to discover binary
codes in the top layer. In Section 4, we describe two different ways of using binary codes for retrieval. For relatively small
codes we use semantic hashing and for larger binary codes we simply compare the code of the query document to the codes

Semantically
Similar
Documents

Document

Address Space

Semantic
Hashing
Function

Fig. 1. A schematic representation of semantic hashing.

970 R. Salakhutdinov, G. Hinton / International Journal of Approximate Reasoning 50 (2009) 969–978

Semantic Hashing
(Salakhutdinov and Hinton, IJAR 2009)

• Application: recherche d’information

of all candidate documents. This is still very fast because it can use bit operations. We present experimental results showing
that both methods work very well on a collection of about a million documents as well as on a smaller collection.

2. The constrained Poisson model

We use a conditional ‘‘constrained” Poisson distribution for modeling observed ‘‘visible” word-count data v and a condi-
tional Bernoulli distribution for modeling ‘‘hidden” topic features h:

pðv i ¼ njhÞ ¼ Ps n;
expðki þ

P
jhjwijÞ

P
k exp kk þ

P
jhjwkj

! "N

0

@

1

A; ð1Þ

pðhj ¼ 1jvÞ ¼ r bj þ
X

i
wijv i

! "
; ð2Þ

where Ps(n,k) = e%kkn/n!, r(x) = 1/(1 + e%x), wij is a symmetric interaction term between word i and feature j, N ¼
P

iv i is the
total length of the document, ki is the bias of the conditional Poisson model for word i, and bj is the bias of feature j. The
Poisson rate, whose log is shifted by the weighted combination of the feature activations, is normalized and scaled up by
N. We call this the ‘‘Constrained Poisson Model” (see Fig. 3) since it ensures that the mean Poisson rates across all words
sum up to the length of the document. This normalization is significant because it makes learning stable and it deals appro-
priately with documents of different lengths.

The marginal distribution over visible count vectors v is:

pðvÞ ¼
X

h

expð%Eðv;hÞÞP
u;g expð%Eðu; gÞÞ

ð3Þ

with an ‘‘energy” term (i.e. the negative log probability + unknown constant offset) given by:

W

W

W

W W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

W

2000
1

2

500

2000

3

1

500

500

2000
1 1

2 2

500

500

Gaussian
Noise

500

3 3

2000

500

500
RBM

500

500
RBM

3

RBM

Recursive Pretraining

Top Layer Binary Codes

Fine−tuning

2

1

3 4

5

6

Code Layer

The Deep Generative Model

2

32

32

32

T

T

T

Fig. 2. Left panel: The deep generative model. Middle panel: pretraining consists of learning a stack of RBM’s in which the feature activations of one RBM
are treated as data by the next RBM. Right panel: After pretraining, the RBM’s are ‘‘unrolled” to create a multi-layer autoencoder that is fine-tuned by
backpropagation.

v

h

W

Poisson

Binary

Constrained

Latent Topic Features

Observed Distribution
over Words over Words

N*W W
softmax

Reconstructed Distribution

Fig. 3. The left panel shows the Markov random field of the constrained Poisson model. The top layer represents a vector, h, of stochastic, binary, latent,
topic features and the bottom layer represents a Poisson visible vector v. The right panel shows a different interpretation of the constrained Poisson model
in which the visible activities have all been divided by the number of words in the document so that they represent a probability distribution. The factor of
N that multiplies the upgoing weights is a result of having N i.i.d. observations from the observed distribution.

R. Salakhutdinov, G. Hinton / International Journal of Approximate Reasoning 50 (2009) 969–978 971

of all candidate documents. This is still very fast because it can use bit operations. We present experimental results showing
that both methods work very well on a collection of about a million documents as well as on a smaller collection.

2. The constrained Poisson model

We use a conditional ‘‘constrained” Poisson distribution for modeling observed ‘‘visible” word-count data v and a condi-
tional Bernoulli distribution for modeling ‘‘hidden” topic features h:

pðv i ¼ njhÞ ¼ Ps n;
expðki þ

P
jhjwijÞ

P
k exp kk þ

P
jhjwkj

! "N

0

@

1

A; ð1Þ

pðhj ¼ 1jvÞ ¼ r bj þ
X

i
wijv i

! "
; ð2Þ

where Ps(n,k) = e%kkn/n!, r(x) = 1/(1 + e%x), wij is a symmetric interaction term between word i and feature j, N ¼
P

iv i is the
total length of the document, ki is the bias of the conditional Poisson model for word i, and bj is the bias of feature j. The
Poisson rate, whose log is shifted by the weighted combination of the feature activations, is normalized and scaled up by
N. We call this the ‘‘Constrained Poisson Model” (see Fig. 3) since it ensures that the mean Poisson rates across all words
sum up to the length of the document. This normalization is significant because it makes learning stable and it deals appro-
priately with documents of different lengths.

The marginal distribution over visible count vectors v is:

pðvÞ ¼
X

h

expð%Eðv;hÞÞP
u;g expð%Eðu; gÞÞ

ð3Þ

with an ‘‘energy” term (i.e. the negative log probability + unknown constant offset) given by:

W

W

W

W W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

W

2000
1

2

500

2000

3

1

500

500

2000
1 1

2 2

500

500

Gaussian
Noise

500

3 3

2000

500

500
RBM

500

500
RBM

3

RBM

Recursive Pretraining

Top Layer Binary Codes

Fine−tuning

2

1

3 4

5

6

Code Layer

The Deep Generative Model

2

32

32

32

T

T

T

Fig. 2. Left panel: The deep generative model. Middle panel: pretraining consists of learning a stack of RBM’s in which the feature activations of one RBM
are treated as data by the next RBM. Right panel: After pretraining, the RBM’s are ‘‘unrolled” to create a multi-layer autoencoder that is fine-tuned by
backpropagation.

v

h

W

Poisson

Binary

Constrained

Latent Topic Features

Observed Distribution
over Words over Words

N*W W
softmax

Reconstructed Distribution

Fig. 3. The left panel shows the Markov random field of the constrained Poisson model. The top layer represents a vector, h, of stochastic, binary, latent,
topic features and the bottom layer represents a Poisson visible vector v. The right panel shows a different interpretation of the constrained Poisson model
in which the visible activities have all been divided by the number of words in the document so that they represent a probability distribution. The factor of
N that multiplies the upgoing weights is a result of having N i.i.d. observations from the observed distribution.

R. Salakhutdinov, G. Hinton / International Journal of Approximate Reasoning 50 (2009) 969–978 971

Semantic Hashing
(Salakhutdinov and Hinton, IJAR 2009)

• Application: recherche d’information

4. Experimental results

To evaluate performance of our model on an information retrieval task we use Precision–Recall curves where we define:

Recall ¼ Number of retrieved relevant documents
Total number of all relevant documents

;

Precision ¼ Number of relevant retrieved documents
Total number of retrieved documents

:

To decide whether a retrieved document is relevant to the query document, we simply look to see if they have the same
class label. This is the only time that the class labels are used. It is not a particularly good measure of relevance, but it is the
same for all the methods we compare.

Results of [8] show that pLSA and LDA models do not generally outperform LSA and TF-IDF. Therefore for comparison we
only used LSA and TF-IDF as benchmark methods. For LSA each word-count, ci, was replaced by log(1 + ci) before the SVD
decomposition, which slightly improved performance. For both these methods we used the cosine of the angle between
two vectors as a measure of their similarity.

4.1. Description of the text corpora

In this section we present experimental results for document retrieval on two text datasets: 20-newsgroups and Reuters
Corpus Volume I (RCV1-v2) [14].

The 20-newsgroups corpus contains 18,845 postings taken from the Usenet newsgroup collection. The corpus is parti-
tioned fairly evenly into 20 different newsgroups, each corresponding to a separate topic.4 The data was split by date into
11,314 training and 7531 test articles, so the training and test sets were separated in time. The training set was further ran-
domly split into 8,314 training and 3000 validation documents. Newsgroups such as soc.religion.christian and talk.religion.misc
are very closely related to each other, while newsgroups such as comp.graphics and rec.sport.hockey are very different (see
Fig. 5) We further preprocessed the data by removing common stopwords, stemming, and then only considering the 2000 most
frequent words in the training dataset. As a result, each posting was represented as a vector containing 2000 word-counts. No
other preprocessing was done.

The Reuters Corpus Volume I is an archive of 804,414 newswire stories5 that have been manually categorized into 103 top-
ics. The corpus covers four major groups: corporate/industrial, economics, government/social, and markets. Sample topics are
displayed in Fig. 5. The topic classes form a tree which is typically of depth 3. For this dataset, we define the relevance of one
document to another to be the fraction of the topic labels that agree on the two paths from the root to the two documents.

The data was randomly split into 402,207 training and 402,207 test articles. The training set was further randomly split
into 302,207 training and 100,000 validation documents. The available data was already in the preprocessed format, where
common stopwords were removed and all documents were stemmed. We again only considered the 2000 most frequent
words in the training dataset.

4.2. Results using 128-bit codes

For both datasets we used a 2000-500-500-128 architecture which is like the architecture shown in Fig. 2, but with 128
code units. To see whether the learned 128-bit codes preserve class information, we used stochastic neighbor embedding

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10 5

Activation Probabilities

Pretrained

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10 5

Activation Probabilities

Fine−tuned

Fig. 4. The distribution of the activities of the 128 code units on the 20-newsgroups training data before and after fine-tuning with backpropagation and
deterministic noise.

4 Available at http://people.csail.mit.edu/jrennie/20Newsgroups (20news-bydate.tar.gz). It has been preprocessed and organized by date.
5 The Reuters Corpus Volume 1 (RCV1-v2) dataset is available at the following address http://trec.nist.gov/data/reuters/reuters.html.

974 R. Salakhutdinov, G. Hinton / International Journal of Approximate Reasoning 50 (2009) 969–978

Semantic Hashing
(Salakhutdinov and Hinton, IJAR 2009)

• “Constrained Poisson Model”

• Pas très élégant... Voir plutôt:
Replicated Softmax: an Undirected Topic Model,
NIPS 2009

of all candidate documents. This is still very fast because it can use bit operations. We present experimental results showing
that both methods work very well on a collection of about a million documents as well as on a smaller collection.

2. The constrained Poisson model

We use a conditional ‘‘constrained” Poisson distribution for modeling observed ‘‘visible” word-count data v and a condi-
tional Bernoulli distribution for modeling ‘‘hidden” topic features h:

pðv i ¼ njhÞ ¼ Ps n;
expðki þ

P
jhjwijÞ

P
k exp kk þ

P
jhjwkj

! "N

0

@

1

A; ð1Þ

pðhj ¼ 1jvÞ ¼ r bj þ
X

i
wijv i

! "
; ð2Þ

where Ps(n,k) = e%kkn/n!, r(x) = 1/(1 + e%x), wij is a symmetric interaction term between word i and feature j, N ¼
P

iv i is the
total length of the document, ki is the bias of the conditional Poisson model for word i, and bj is the bias of feature j. The
Poisson rate, whose log is shifted by the weighted combination of the feature activations, is normalized and scaled up by
N. We call this the ‘‘Constrained Poisson Model” (see Fig. 3) since it ensures that the mean Poisson rates across all words
sum up to the length of the document. This normalization is significant because it makes learning stable and it deals appro-
priately with documents of different lengths.

The marginal distribution over visible count vectors v is:

pðvÞ ¼
X

h

expð%Eðv;hÞÞP
u;g expð%Eðu; gÞÞ

ð3Þ

with an ‘‘energy” term (i.e. the negative log probability + unknown constant offset) given by:

W

W

W

W W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

W

2000
1

2

500

2000

3

1

500

500

2000
1 1

2 2

500

500

Gaussian
Noise

500

3 3

2000

500

500
RBM

500

500
RBM

3

RBM

Recursive Pretraining

Top Layer Binary Codes

Fine−tuning

2

1

3 4

5

6

Code Layer

The Deep Generative Model

2

32

32

32

T

T

T

Fig. 2. Left panel: The deep generative model. Middle panel: pretraining consists of learning a stack of RBM’s in which the feature activations of one RBM
are treated as data by the next RBM. Right panel: After pretraining, the RBM’s are ‘‘unrolled” to create a multi-layer autoencoder that is fine-tuned by
backpropagation.

v

h

W

Poisson

Binary

Constrained

Latent Topic Features

Observed Distribution
over Words over Words

N*W W
softmax

Reconstructed Distribution

Fig. 3. The left panel shows the Markov random field of the constrained Poisson model. The top layer represents a vector, h, of stochastic, binary, latent,
topic features and the bottom layer represents a Poisson visible vector v. The right panel shows a different interpretation of the constrained Poisson model
in which the visible activities have all been divided by the number of words in the document so that they represent a probability distribution. The factor of
N that multiplies the upgoing weights is a result of having N i.i.d. observations from the observed distribution.

R. Salakhutdinov, G. Hinton / International Journal of Approximate Reasoning 50 (2009) 969–978 971

Semantic Hashing
(Salakhutdinov and Hinton, IJAR 2009)

Résultats: visualisation

[11] to visualize the 128-bit codes of all the documents from 5 or 6 separate classes. Fig. 5 shows that for both datasets the
128-bit codes preserve the class structure of the documents.

In addition to requiring very little memory, binary codes allow very fast search because fast bit counting routines6 can be
used to compute the Hamming distance between two binary codes. On a 3 GHz Intel Xeon running C, for example, it only takes
3.6 ms to search through 1 million documents using 128-bit codes. The same search takes 72 ms for 128-dimensional LSA.

Figs. 6 and 7 (left panels) show that our 128-bit codes are better at document retrieval than the 128 real-values produced
by LSA. We tried thresholding the 128 real-values produced by LSA to get binary codes. The thresholds were set so that each
of the 128 components was a 0 for half of the training set and a 1 for the other half. The results of Fig. 6 reveal that binarizing
LSA significantly reduces its performance. This is hardly surprising since LSA has not been optimized to make the binary
codes perform well.

TF-IDF is slightly more accurate than our 128-bit codes when retrieving the top few documents in either dataset. If, how-
ever, we use our 128-bit codes to preselect the top 100 documents for the 20-newsgroups data or the top 1000 for the Reu-
ters data, and then re-rank these preselected documents using TF-IDF, we get better accuracy than running TF-IDF alone on
the whole document set (see Figs. 6 and 7). This means that some documents which TF-IDF would have considered a very
good match to the query document have been correctly eliminated by using the 128-bit codes as a filter.

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

60

70

80

90

Recall (%)

P
re

ci
si

on
 (%

)

Fine−tuned 128−bit codes
LSA 128
Binarized LSA 128

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

60

70

80

90

Recall (%)

P
re

ci
si

on
 (%

)

LSA 128
TF−IDF

TF−IDF using 128−bit
codes for prefiltering

20-newsgroups

Fig. 6. Precision–Recall curves for the 20-newsgroups dataset, when a query document from the test set is used to retrieve other test set documents,
averaged over all 7531 possible queries.

20−newsgroups 2−D Topic Space

comp.graphics

rec.sport.hockey

sci.cryptography

soc.religion.christian

talk.politics.guns

talk.politics.mideast

Reuters 2−D Topic Space

Accounts/Earnings

Government Borrowing

European Community
Monetary/Economic

Disasters and Accidents

Energy Markets

Fig. 5. A 2-dimensional embedding of the 128-bit codes using stochastic neighbor embedding for the 20-newsgroups data (left panel) and the Reuters
RCV1-v2 corpus (right panel). See in color for better visualization.

6 Code is available at http://www-db.stanford.edu/~manku/bitcount/bitcount.html.

R. Salakhutdinov, G. Hinton / International Journal of Approximate Reasoning 50 (2009) 969–978 975

Semantic Hashing
(Salakhutdinov and Hinton, IJAR 2009)

Résultats: recherche d’information

[11] to visualize the 128-bit codes of all the documents from 5 or 6 separate classes. Fig. 5 shows that for both datasets the
128-bit codes preserve the class structure of the documents.

In addition to requiring very little memory, binary codes allow very fast search because fast bit counting routines6 can be
used to compute the Hamming distance between two binary codes. On a 3 GHz Intel Xeon running C, for example, it only takes
3.6 ms to search through 1 million documents using 128-bit codes. The same search takes 72 ms for 128-dimensional LSA.

Figs. 6 and 7 (left panels) show that our 128-bit codes are better at document retrieval than the 128 real-values produced
by LSA. We tried thresholding the 128 real-values produced by LSA to get binary codes. The thresholds were set so that each
of the 128 components was a 0 for half of the training set and a 1 for the other half. The results of Fig. 6 reveal that binarizing
LSA significantly reduces its performance. This is hardly surprising since LSA has not been optimized to make the binary
codes perform well.

TF-IDF is slightly more accurate than our 128-bit codes when retrieving the top few documents in either dataset. If, how-
ever, we use our 128-bit codes to preselect the top 100 documents for the 20-newsgroups data or the top 1000 for the Reu-
ters data, and then re-rank these preselected documents using TF-IDF, we get better accuracy than running TF-IDF alone on
the whole document set (see Figs. 6 and 7). This means that some documents which TF-IDF would have considered a very
good match to the query document have been correctly eliminated by using the 128-bit codes as a filter.

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

60

70

80

90

Recall (%)

P
re

ci
si

on
 (%

)

Fine−tuned 128−bit codes
LSA 128
Binarized LSA 128

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

60

70

80

90

Recall (%)

P
re

ci
si

on
 (%

)

LSA 128
TF−IDF

TF−IDF using 128−bit
codes for prefiltering

20-newsgroups

Fig. 6. Precision–Recall curves for the 20-newsgroups dataset, when a query document from the test set is used to retrieve other test set documents,
averaged over all 7531 possible queries.

20−newsgroups 2−D Topic Space

comp.graphics

rec.sport.hockey

sci.cryptography

soc.religion.christian

talk.politics.guns

talk.politics.mideast

Reuters 2−D Topic Space

Accounts/Earnings

Government Borrowing

European Community
Monetary/Economic

Disasters and Accidents

Energy Markets

Fig. 5. A 2-dimensional embedding of the 128-bit codes using stochastic neighbor embedding for the 20-newsgroups data (left panel) and the Reuters
RCV1-v2 corpus (right panel). See in color for better visualization.

6 Code is available at http://www-db.stanford.edu/~manku/bitcount/bitcount.html.

R. Salakhutdinov, G. Hinton / International Journal of Approximate Reasoning 50 (2009) 969–978 975

Semantic Hashing
(Salakhutdinov and Hinton, IJAR 2009)

Résultats: recherche d’information

4.3. Results using 20-bit codes

Using 20-bit codes, we also checked whether our learning procedure could discover a way to model similarity of count
vectors by similarity of 20-bit addresses that was good enough to allow high precision and retrieval for our set of 402,207
Reuters RCV1-v2 test documents. After learning to assign 20-bit addresses to documents using the training data, we compute
the 20-bit address of each test document and place a pointer to the document at its address.7

For the 402,207 test documents, a 20-bit address space gives a density of about 0.4 documents per address. For a given
query document, we compute its 20-bit address and then retrieve all of the documents stored in a hamming ball of radius 4
(about 6196 ! 0.402207 u 2500 documents) without performing any search at all. Fig. 8 shows that neither precision nor
recall is lost by restricting TF-IDF to this fixed, preselected set.

Using a simple implementation of semantic Hashing in C, it takes about 0.5 ms to create the shortlist of about 2500
semantically similar documents and about 10 ms to retrieve the top few matches from that shortlist using TF-IDF. Local-
ity-Sensitive Hashing (LSH) [5,1] takes about 500 ms to perform the same search using E2LSH 0.1 software, provided by Alex-
andr Andoni and Piotr Indyk. Also, locality sensitive hashing is an approximation to nearest-neighbor matching in the word-
count space, so it cannot be expected to perform better than TF-IDF and it generally performs slightly worse. Fig. 8 shows

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (%

)

Fine−tuned 128−bit codes
LSA 128

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (%

)

LSA 128
TF−IDF
TF−IDF using 128−bit
codes for prefiltering

Reuters RCV1-v2

Fig. 7. Precision–Recall curves for the Reuters RCV1-v2 dataset, when a query document from the test set is used to retrieve other test set documents,
averaged over all 402,207 possible queries.

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (%

)

TF−IDF
TF−IDF using 20 bit filter

Locality Sensitive Hashing

Reuters 2−D Embedding of 20−bit codes

Accounts/Earnings

Government
Borrowing

European Community
Monetary/Economic

Disasters and
Accidents

Energy Markets

Reuters RCV1-v2

Fig. 8. Left panel: Precision–Recall curves for the Reuters RCV1-v2 dataset, when a query document from the test set is used to retrieve other test set
documents, averaged over all 402,207 possible queries. Right panel: 2-dimensional embedding of the 20-bit codes using stochastic neighbor embedding for
the Reuters RCV1-v2 corpus. See in color for better visualization.

7 We actually start with a pointer to null at all addresses and then replace it by a one-dimensional array that contains pointers to all the documents that have
that address.

976 R. Salakhutdinov, G. Hinton / International Journal of Approximate Reasoning 50 (2009) 969–978

Avec 20 bits +
“Hamming ball” de rayon 4

- 0.5 ms pour filtrer
 documents
 (~2500 / 402 207)

- 10 ms pour traiter ces
 documents avec tf-idf

Semantic Hashing
(Salakhutdinov and Hinton, IJAR 2009)

• Trucs pour la modélisation de texte

★ enlever les mots communs

★ enlever les informations de genre et de
nombre

★ porter attention à l’impact du nombre de
mot de chaque document

Semi-supervised Learning of Compact Document
Representations with Deep Networks

(Ranzato and Szummer, ICML 2008)

• Même application, mais en utilisant des
autoencodeurs

• Innovations:

★ entraînement partiellement supervisé

★ autoencodeur adapté aux documents

Semi-supervised learning of compact document representations with deep networks

top-level representation to capture high-order corre-
lations that would be difficult to efficiently represent
with similar but shallow models (Bengio and LeCun,
2007). Many authors have pointed out that RBMs are
robust to uncorrelated noise in the input since they
model the distribution of the input data, and they im-
plicitly perform automatic model selection by not using
unnecessary hidden units. But they are also somewhat
cumbersome to train, relying on two disparate steps:
unsupervised pre-training using an approximate sam-
pling technique such as contrastive divergence (Hinton,
2000), followed by supervised back-propagation. It is
rather difficult to predict when training can be stopped
and how long the Markov Chain has to run. An alter-
native is to replace RBMs with autoencoders (Bengio
et al., 2006), or special autoencoders that produce
sparse representations (Ranzato et al., 2007b). Ac-
cording to these authors, the performance of RBMs
and standard autoencoders is quite similar as long as
the dimensionality of the latent space is smaller than
the input. Seeking an algorithm that can be trained
efficiently, and that can produce a representation with
just a few matrix multiplications, we propose a deep
network whose building blocks are autoencoders, with
a specially designed first layer for modeling discrete
counts of words.

Previously, deep networks have been trained either
from fully labeled data, or purely unlabeled data. Nei-
ther method is ideal, as it is expensive to label large
collections, whereas purely unsupervised learning may
not capture the relevant class information in the data.
Inspired by the experiments by Bengio, Lamblin et
al. (2006), we learn the parameters of the model by us-
ing both a supervised and an unsupervised objective. In
other words, we require the representation to produce
good reconstructions of the input documents and, at
the same time, to give good predictions of the document
class labels. Besides demonstrating better accuracy in
retrieval, we also extend the deep network framework to
a semi-supervised setting where we deal with partially
labeled collections of documents. This allows us to use
relatively few labeled documents yet leverage language
structure learned from large corpora, see Sec. 3.1.

Finally, we study the relative advantages of different
deep models. For instance, we investigate when deep
models are better than shallow ones. Our experiments
in Sec. 3.2 show that for learning compact representa-
tions of documents, deep architectures greatly outper-
form shallow models. Compact representations are ben-
eficial because they require less storage (an important
consideration for large search engines), and they are
more computationally efficient when used in indexing.
We also explored the possibility to use deep networks to

Encoder 1
Input count

Decoder 1

Classifier 1

Encoder 2

Decoder 2

Classifier 2

Encoder 3

Decoder 3

Classifier 3

Code 1

Code 2
Code 3

Figure 1. Architecture of a model with three stages. The
system is trained layer by layer. During the training of
the n-th layer, the n-th encoder is coupled with the n-th
decoder and classifier (shown in dashed line). The n-th
encoder will provide the codes to train the layer above. After
training, the feedback decoding modules are discarded and
the system is used to produce very compact codes by a
feed-forward pass through the chain of encoders.

learn binary high-dimensional representations instead
of compact representations. These high-dimensional
representations were trained using the Symmetric En-
coding Sparse Machine (SESM) (Ranzato et al., 2007b).
However, the compact representations proved to be far
more efficient in terms of memory usage and CPU time,
as described in Sec. 3.3. Also, training is more com-
putationally efficient than for related models such as
RBMs.

2. The model

The input to the system is a bag of words representation
of each text document in the form of a count vector.
The length of the vector equals the number of unique
words in the collection, and its i-th entry stores the
number of times the corresponding word occurs in
the document. The goal of the system is to extract a
compact representation from this very high-dimensional
but sparse input vector. A compact representation is
good because it requires less storage, and allows fast
index lookup. Since the representation is produced by a
deep multi-layer model, it can efficiently discover latent
topics by grouping similar words and by activating
features whenever some “interesting” combination of
words is detected (see visualization in Sec. 3.4).

We propose a system that is composed of multiple
layers. Each layer computes a weighted sum of its
input followed by a logistic nonlinearity. Each layer
can be seen as an encoder producing a representation,
or code, from its input. This code will be propagated
and used as the input to the next layer of the model.
This architecture is quite similar to a neural network
model, but is trained differently and has a special first
layer able to encode discrete count data. The goal of
training is to find the parameters in each layer.

Semi-supervised Learning of Compact Document
Representations with Deep Networks

(Ranzato and Szummer, ICML 2008)

• Autoencodeur (en images)

• Coût d’entraînement:

Semi-supervised learning of compact document representations with deep networks

In order to successfully learn the parameters we follow
the strategy advocated by recent work (Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al.,
2006) on deep multi-layer models. Learning proceeds
greedily layer by layer. When the parameters of one
layer have been found, the data is fed through that
layer and the output becomes the input for the next
layer, which is trained subsequently.

Let us consider a generic layer in the model, and let x
be its input and let z be the representation produced
by the layer. In order to warrant the fidelity of the
code z, we attach a feedback module which aims to
reconstruct the input x from the code z. The reason is
that if the model achieves a good reconstruction from
the code z, then we can be sure that the representation
has preserved most of the information from x. The
original layer can then be interpreted as an encoder
that computes a code from the input, while the feed-
back module can be seen as a decoder that reconstructs
the input x from the code z. Learning consists of min-
imizing a reconstruction error ER with respect to the
parameters in the encoder and decoder when the input
x is drawn from the training dataset. Since we learn
by stochastic gradient descent, any type of encoder and
decoder is allowed as long as it is differentiable.

Some inputs may have labels specifying the class to
which they belong. In order to incorporate this infor-
mation, we add another module to the decoder. The
feedback module now not only has a decoder recon-
structing the input x, but also a classifier predicting
the label y from the code z, see Fig. 1. During training
the parameters of the encoder, classifier and decoder
are learned by minimizing the loss

L = ER + αcEC , (1)

where ER and EC are terms measuring the reconstruc-
tion and classification error respectively, and αc is a
coefficient balancing them. The first term is common
to many unsupervised learning algorithms and makes
the system model the structure and the dependencies
among the input components of x. The second term
represents the supervised goal ensuring that codes are
also going to be good for discriminating between classes.

For the classifier module we used a linear classifier
trained by cross-entropy error EC . Denoting with
(WC)i the i-th row of the classifier weight matrix, with
bCi the i-th bias of the classifier, and with hj the j-th
output unit of the classifier passed through a soft-max:

hj =
exp((WC)j · z + bCj)∑
i exp((WC)i · z + bCi)

,

we define EC = −
∑

i yi log hi, where y is a 1-of-N
encoding of the target class label.

c!

!" !#

!$

log exp

softmax

logistic NLL+
Input

count !

1
" rate

CE

+
loss

Label #

Code

Figure 2. The architecture of the first stage has three com-
ponents: (1) an encoder, (2) a decoder (Poisson regressor),
and (3) a classifier. The loss is the weighted sum of cross-
entropy (CE) and negative log-likelihood (NLL) under the
Poisson model.

2.1. Training the First Stage

The first stage is special because the input x is a
discrete vector of word counts, with xi counting the
number of occurrences of the i-th word in the document.
The decoder is a Poisson regression model aiming to
predict x from the code z. A Poisson regressor is a
log-linear model which assigns the following probability
to an observed x:

P (x) =
∏

i

P (xi) =
∏

i

e−λi
λxi

i

xi!
, (2)

where the set of rates is given by λ = βeWDz+bD , with
a decoder weight matrix WD, decoder biases bD, and a
constant β proportional to the document length. This
normalization handles documents of different lengths
and makes learning stable. The reconstruction error
ER minimized at the first stage (eq. 1) is the negative
log-likelihood of the data

ER =
∑

i

(βe((WD)i·z+bDi)−xi(WD)i·z−xibDi+log xi!),

(3)
averaged over the samples x in the training dataset.

We design the encoder by “reverse-engineering” the
decoder to make the machine symmetric. Since the
decoder computes an exponential of a weighted sum,
the encoder performs a weighted sum of the log-
transformed input x. In addition to this, the encoder
applies a logistic nonlinearity. Hence, the code z is
given by z = σ(WE log(x) + bE), where WE and bE

are the weight matrix and the biases in the encoder,
and σ is the logistic. Since many components in x are
zero (because only a few dictionary words are actually
present in a given document), and since the rate at
which a word might appear is generally fairly low, this
architecture is prone to numerical problems in the eval-
uation of the logarithm, and would possibly require
large negative weights in WD (in order to make the
rate λ small). Thus, we shift the Poisson regression by
adding one to the input. As a result, if a word does not
occur in the document, the input to the encoder weight
matrix WE will be zero (and not minus infinity), and

Semi-supervised learning of compact document representations with deep networks

In order to successfully learn the parameters we follow
the strategy advocated by recent work (Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al.,
2006) on deep multi-layer models. Learning proceeds
greedily layer by layer. When the parameters of one
layer have been found, the data is fed through that
layer and the output becomes the input for the next
layer, which is trained subsequently.

Let us consider a generic layer in the model, and let x
be its input and let z be the representation produced
by the layer. In order to warrant the fidelity of the
code z, we attach a feedback module which aims to
reconstruct the input x from the code z. The reason is
that if the model achieves a good reconstruction from
the code z, then we can be sure that the representation
has preserved most of the information from x. The
original layer can then be interpreted as an encoder
that computes a code from the input, while the feed-
back module can be seen as a decoder that reconstructs
the input x from the code z. Learning consists of min-
imizing a reconstruction error ER with respect to the
parameters in the encoder and decoder when the input
x is drawn from the training dataset. Since we learn
by stochastic gradient descent, any type of encoder and
decoder is allowed as long as it is differentiable.

Some inputs may have labels specifying the class to
which they belong. In order to incorporate this infor-
mation, we add another module to the decoder. The
feedback module now not only has a decoder recon-
structing the input x, but also a classifier predicting
the label y from the code z, see Fig. 1. During training
the parameters of the encoder, classifier and decoder
are learned by minimizing the loss

L = ER + αcEC , (1)

where ER and EC are terms measuring the reconstruc-
tion and classification error respectively, and αc is a
coefficient balancing them. The first term is common
to many unsupervised learning algorithms and makes
the system model the structure and the dependencies
among the input components of x. The second term
represents the supervised goal ensuring that codes are
also going to be good for discriminating between classes.

For the classifier module we used a linear classifier
trained by cross-entropy error EC . Denoting with
(WC)i the i-th row of the classifier weight matrix, with
bCi the i-th bias of the classifier, and with hj the j-th
output unit of the classifier passed through a soft-max:

hj =
exp((WC)j · z + bCj)∑
i exp((WC)i · z + bCi)

,

we define EC = −
∑

i yi log hi, where y is a 1-of-N
encoding of the target class label.

c!

!" !#

!$

log exp

softmax

logistic NLL+
Input

count !

1
" rate

CE

+
loss

Label #

Code

Figure 2. The architecture of the first stage has three com-
ponents: (1) an encoder, (2) a decoder (Poisson regressor),
and (3) a classifier. The loss is the weighted sum of cross-
entropy (CE) and negative log-likelihood (NLL) under the
Poisson model.

2.1. Training the First Stage

The first stage is special because the input x is a
discrete vector of word counts, with xi counting the
number of occurrences of the i-th word in the document.
The decoder is a Poisson regression model aiming to
predict x from the code z. A Poisson regressor is a
log-linear model which assigns the following probability
to an observed x:

P (x) =
∏

i

P (xi) =
∏

i

e−λi
λxi

i

xi!
, (2)

where the set of rates is given by λ = βeWDz+bD , with
a decoder weight matrix WD, decoder biases bD, and a
constant β proportional to the document length. This
normalization handles documents of different lengths
and makes learning stable. The reconstruction error
ER minimized at the first stage (eq. 1) is the negative
log-likelihood of the data

ER =
∑

i

(βe((WD)i·z+bDi)−xi(WD)i·z−xibDi+log xi!),

(3)
averaged over the samples x in the training dataset.

We design the encoder by “reverse-engineering” the
decoder to make the machine symmetric. Since the
decoder computes an exponential of a weighted sum,
the encoder performs a weighted sum of the log-
transformed input x. In addition to this, the encoder
applies a logistic nonlinearity. Hence, the code z is
given by z = σ(WE log(x) + bE), where WE and bE

are the weight matrix and the biases in the encoder,
and σ is the logistic. Since many components in x are
zero (because only a few dictionary words are actually
present in a given document), and since the rate at
which a word might appear is generally fairly low, this
architecture is prone to numerical problems in the eval-
uation of the logarithm, and would possibly require
large negative weights in WD (in order to make the
rate λ small). Thus, we shift the Poisson regression by
adding one to the input. As a result, if a word does not
occur in the document, the input to the encoder weight
matrix WE will be zero (and not minus infinity), and

{
{{ encodeur décodeur

classifieur

Semi-supervised Learning of Compact Document
Representations with Deep Networks

(Ranzato and Szummer, ICML 2008)

• Autoencodeur (en équations)

Semi-supervised learning of compact document representations with deep networks

In order to successfully learn the parameters we follow
the strategy advocated by recent work (Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al.,
2006) on deep multi-layer models. Learning proceeds
greedily layer by layer. When the parameters of one
layer have been found, the data is fed through that
layer and the output becomes the input for the next
layer, which is trained subsequently.

Let us consider a generic layer in the model, and let x
be its input and let z be the representation produced
by the layer. In order to warrant the fidelity of the
code z, we attach a feedback module which aims to
reconstruct the input x from the code z. The reason is
that if the model achieves a good reconstruction from
the code z, then we can be sure that the representation
has preserved most of the information from x. The
original layer can then be interpreted as an encoder
that computes a code from the input, while the feed-
back module can be seen as a decoder that reconstructs
the input x from the code z. Learning consists of min-
imizing a reconstruction error ER with respect to the
parameters in the encoder and decoder when the input
x is drawn from the training dataset. Since we learn
by stochastic gradient descent, any type of encoder and
decoder is allowed as long as it is differentiable.

Some inputs may have labels specifying the class to
which they belong. In order to incorporate this infor-
mation, we add another module to the decoder. The
feedback module now not only has a decoder recon-
structing the input x, but also a classifier predicting
the label y from the code z, see Fig. 1. During training
the parameters of the encoder, classifier and decoder
are learned by minimizing the loss

L = ER + αcEC , (1)

where ER and EC are terms measuring the reconstruc-
tion and classification error respectively, and αc is a
coefficient balancing them. The first term is common
to many unsupervised learning algorithms and makes
the system model the structure and the dependencies
among the input components of x. The second term
represents the supervised goal ensuring that codes are
also going to be good for discriminating between classes.

For the classifier module we used a linear classifier
trained by cross-entropy error EC . Denoting with
(WC)i the i-th row of the classifier weight matrix, with
bCi the i-th bias of the classifier, and with hj the j-th
output unit of the classifier passed through a soft-max:

hj =
exp((WC)j · z + bCj)∑
i exp((WC)i · z + bCi)

,

we define EC = −
∑

i yi log hi, where y is a 1-of-N
encoding of the target class label.

c!

!" !#

!$

log exp

softmax

logistic NLL+
Input

count !

1
" rate

CE

+
loss

Label #

Code

Figure 2. The architecture of the first stage has three com-
ponents: (1) an encoder, (2) a decoder (Poisson regressor),
and (3) a classifier. The loss is the weighted sum of cross-
entropy (CE) and negative log-likelihood (NLL) under the
Poisson model.

2.1. Training the First Stage

The first stage is special because the input x is a
discrete vector of word counts, with xi counting the
number of occurrences of the i-th word in the document.
The decoder is a Poisson regression model aiming to
predict x from the code z. A Poisson regressor is a
log-linear model which assigns the following probability
to an observed x:

P (x) =
∏

i

P (xi) =
∏

i

e−λi
λxi

i

xi!
, (2)

where the set of rates is given by λ = βeWDz+bD , with
a decoder weight matrix WD, decoder biases bD, and a
constant β proportional to the document length. This
normalization handles documents of different lengths
and makes learning stable. The reconstruction error
ER minimized at the first stage (eq. 1) is the negative
log-likelihood of the data

ER =
∑

i

(βe((WD)i·z+bDi)−xi(WD)i·z−xibDi+log xi!),

(3)
averaged over the samples x in the training dataset.

We design the encoder by “reverse-engineering” the
decoder to make the machine symmetric. Since the
decoder computes an exponential of a weighted sum,
the encoder performs a weighted sum of the log-
transformed input x. In addition to this, the encoder
applies a logistic nonlinearity. Hence, the code z is
given by z = σ(WE log(x) + bE), where WE and bE

are the weight matrix and the biases in the encoder,
and σ is the logistic. Since many components in x are
zero (because only a few dictionary words are actually
present in a given document), and since the rate at
which a word might appear is generally fairly low, this
architecture is prone to numerical problems in the eval-
uation of the logarithm, and would possibly require
large negative weights in WD (in order to make the
rate λ small). Thus, we shift the Poisson regression by
adding one to the input. As a result, if a word does not
occur in the document, the input to the encoder weight
matrix WE will be zero (and not minus infinity), and

Semi-supervised learning of compact document representations with deep networks

In order to successfully learn the parameters we follow
the strategy advocated by recent work (Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al.,
2006) on deep multi-layer models. Learning proceeds
greedily layer by layer. When the parameters of one
layer have been found, the data is fed through that
layer and the output becomes the input for the next
layer, which is trained subsequently.

Let us consider a generic layer in the model, and let x
be its input and let z be the representation produced
by the layer. In order to warrant the fidelity of the
code z, we attach a feedback module which aims to
reconstruct the input x from the code z. The reason is
that if the model achieves a good reconstruction from
the code z, then we can be sure that the representation
has preserved most of the information from x. The
original layer can then be interpreted as an encoder
that computes a code from the input, while the feed-
back module can be seen as a decoder that reconstructs
the input x from the code z. Learning consists of min-
imizing a reconstruction error ER with respect to the
parameters in the encoder and decoder when the input
x is drawn from the training dataset. Since we learn
by stochastic gradient descent, any type of encoder and
decoder is allowed as long as it is differentiable.

Some inputs may have labels specifying the class to
which they belong. In order to incorporate this infor-
mation, we add another module to the decoder. The
feedback module now not only has a decoder recon-
structing the input x, but also a classifier predicting
the label y from the code z, see Fig. 1. During training
the parameters of the encoder, classifier and decoder
are learned by minimizing the loss

L = ER + αcEC , (1)

where ER and EC are terms measuring the reconstruc-
tion and classification error respectively, and αc is a
coefficient balancing them. The first term is common
to many unsupervised learning algorithms and makes
the system model the structure and the dependencies
among the input components of x. The second term
represents the supervised goal ensuring that codes are
also going to be good for discriminating between classes.

For the classifier module we used a linear classifier
trained by cross-entropy error EC . Denoting with
(WC)i the i-th row of the classifier weight matrix, with
bCi the i-th bias of the classifier, and with hj the j-th
output unit of the classifier passed through a soft-max:

hj =
exp((WC)j · z + bCj)∑
i exp((WC)i · z + bCi)

,

we define EC = −
∑

i yi log hi, where y is a 1-of-N
encoding of the target class label.

c!

!" !#

!$

log exp

softmax

logistic NLL+
Input

count !

1
" rate

CE

+
loss

Label #

Code

Figure 2. The architecture of the first stage has three com-
ponents: (1) an encoder, (2) a decoder (Poisson regressor),
and (3) a classifier. The loss is the weighted sum of cross-
entropy (CE) and negative log-likelihood (NLL) under the
Poisson model.

2.1. Training the First Stage

The first stage is special because the input x is a
discrete vector of word counts, with xi counting the
number of occurrences of the i-th word in the document.
The decoder is a Poisson regression model aiming to
predict x from the code z. A Poisson regressor is a
log-linear model which assigns the following probability
to an observed x:

P (x) =
∏

i

P (xi) =
∏

i

e−λi
λxi

i

xi!
, (2)

where the set of rates is given by λ = βeWDz+bD , with
a decoder weight matrix WD, decoder biases bD, and a
constant β proportional to the document length. This
normalization handles documents of different lengths
and makes learning stable. The reconstruction error
ER minimized at the first stage (eq. 1) is the negative
log-likelihood of the data

ER =
∑

i

(βe((WD)i·z+bDi)−xi(WD)i·z−xibDi+log xi!),

(3)
averaged over the samples x in the training dataset.

We design the encoder by “reverse-engineering” the
decoder to make the machine symmetric. Since the
decoder computes an exponential of a weighted sum,
the encoder performs a weighted sum of the log-
transformed input x. In addition to this, the encoder
applies a logistic nonlinearity. Hence, the code z is
given by z = σ(WE log(x) + bE), where WE and bE

are the weight matrix and the biases in the encoder,
and σ is the logistic. Since many components in x are
zero (because only a few dictionary words are actually
present in a given document), and since the rate at
which a word might appear is generally fairly low, this
architecture is prone to numerical problems in the eval-
uation of the logarithm, and would possibly require
large negative weights in WD (in order to make the
rate λ small). Thus, we shift the Poisson regression by
adding one to the input. As a result, if a word does not
occur in the document, the input to the encoder weight
matrix WE will be zero (and not minus infinity), and

Semi-supervised learning of compact document representations with deep networks

In order to successfully learn the parameters we follow
the strategy advocated by recent work (Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al.,
2006) on deep multi-layer models. Learning proceeds
greedily layer by layer. When the parameters of one
layer have been found, the data is fed through that
layer and the output becomes the input for the next
layer, which is trained subsequently.

Let us consider a generic layer in the model, and let x
be its input and let z be the representation produced
by the layer. In order to warrant the fidelity of the
code z, we attach a feedback module which aims to
reconstruct the input x from the code z. The reason is
that if the model achieves a good reconstruction from
the code z, then we can be sure that the representation
has preserved most of the information from x. The
original layer can then be interpreted as an encoder
that computes a code from the input, while the feed-
back module can be seen as a decoder that reconstructs
the input x from the code z. Learning consists of min-
imizing a reconstruction error ER with respect to the
parameters in the encoder and decoder when the input
x is drawn from the training dataset. Since we learn
by stochastic gradient descent, any type of encoder and
decoder is allowed as long as it is differentiable.

Some inputs may have labels specifying the class to
which they belong. In order to incorporate this infor-
mation, we add another module to the decoder. The
feedback module now not only has a decoder recon-
structing the input x, but also a classifier predicting
the label y from the code z, see Fig. 1. During training
the parameters of the encoder, classifier and decoder
are learned by minimizing the loss

L = ER + αcEC , (1)

where ER and EC are terms measuring the reconstruc-
tion and classification error respectively, and αc is a
coefficient balancing them. The first term is common
to many unsupervised learning algorithms and makes
the system model the structure and the dependencies
among the input components of x. The second term
represents the supervised goal ensuring that codes are
also going to be good for discriminating between classes.

For the classifier module we used a linear classifier
trained by cross-entropy error EC . Denoting with
(WC)i the i-th row of the classifier weight matrix, with
bCi the i-th bias of the classifier, and with hj the j-th
output unit of the classifier passed through a soft-max:

hj =
exp((WC)j · z + bCj)∑
i exp((WC)i · z + bCi)

,

we define EC = −
∑

i yi log hi, where y is a 1-of-N
encoding of the target class label.

c!

!" !#

!$

log exp

softmax

logistic NLL+
Input

count !

1
" rate

CE

+
loss

Label #

Code

Figure 2. The architecture of the first stage has three com-
ponents: (1) an encoder, (2) a decoder (Poisson regressor),
and (3) a classifier. The loss is the weighted sum of cross-
entropy (CE) and negative log-likelihood (NLL) under the
Poisson model.

2.1. Training the First Stage

The first stage is special because the input x is a
discrete vector of word counts, with xi counting the
number of occurrences of the i-th word in the document.
The decoder is a Poisson regression model aiming to
predict x from the code z. A Poisson regressor is a
log-linear model which assigns the following probability
to an observed x:

P (x) =
∏

i

P (xi) =
∏

i

e−λi
λxi

i

xi!
, (2)

where the set of rates is given by λ = βeWDz+bD , with
a decoder weight matrix WD, decoder biases bD, and a
constant β proportional to the document length. This
normalization handles documents of different lengths
and makes learning stable. The reconstruction error
ER minimized at the first stage (eq. 1) is the negative
log-likelihood of the data

ER =
∑

i

(βe((WD)i·z+bDi)−xi(WD)i·z−xibDi+log xi!),

(3)
averaged over the samples x in the training dataset.

We design the encoder by “reverse-engineering” the
decoder to make the machine symmetric. Since the
decoder computes an exponential of a weighted sum,
the encoder performs a weighted sum of the log-
transformed input x. In addition to this, the encoder
applies a logistic nonlinearity. Hence, the code z is
given by z = σ(WE log(x) + bE), where WE and bE

are the weight matrix and the biases in the encoder,
and σ is the logistic. Since many components in x are
zero (because only a few dictionary words are actually
present in a given document), and since the rate at
which a word might appear is generally fairly low, this
architecture is prone to numerical problems in the eval-
uation of the logarithm, and would possibly require
large negative weights in WD (in order to make the
rate λ small). Thus, we shift the Poisson regression by
adding one to the input. As a result, if a word does not
occur in the document, the input to the encoder weight
matrix WE will be zero (and not minus infinity), and

Semi-supervised learning of compact document representations with deep networks

In order to successfully learn the parameters we follow
the strategy advocated by recent work (Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al.,
2006) on deep multi-layer models. Learning proceeds
greedily layer by layer. When the parameters of one
layer have been found, the data is fed through that
layer and the output becomes the input for the next
layer, which is trained subsequently.

Let us consider a generic layer in the model, and let x
be its input and let z be the representation produced
by the layer. In order to warrant the fidelity of the
code z, we attach a feedback module which aims to
reconstruct the input x from the code z. The reason is
that if the model achieves a good reconstruction from
the code z, then we can be sure that the representation
has preserved most of the information from x. The
original layer can then be interpreted as an encoder
that computes a code from the input, while the feed-
back module can be seen as a decoder that reconstructs
the input x from the code z. Learning consists of min-
imizing a reconstruction error ER with respect to the
parameters in the encoder and decoder when the input
x is drawn from the training dataset. Since we learn
by stochastic gradient descent, any type of encoder and
decoder is allowed as long as it is differentiable.

Some inputs may have labels specifying the class to
which they belong. In order to incorporate this infor-
mation, we add another module to the decoder. The
feedback module now not only has a decoder recon-
structing the input x, but also a classifier predicting
the label y from the code z, see Fig. 1. During training
the parameters of the encoder, classifier and decoder
are learned by minimizing the loss

L = ER + αcEC , (1)

where ER and EC are terms measuring the reconstruc-
tion and classification error respectively, and αc is a
coefficient balancing them. The first term is common
to many unsupervised learning algorithms and makes
the system model the structure and the dependencies
among the input components of x. The second term
represents the supervised goal ensuring that codes are
also going to be good for discriminating between classes.

For the classifier module we used a linear classifier
trained by cross-entropy error EC . Denoting with
(WC)i the i-th row of the classifier weight matrix, with
bCi the i-th bias of the classifier, and with hj the j-th
output unit of the classifier passed through a soft-max:

hj =
exp((WC)j · z + bCj)∑
i exp((WC)i · z + bCi)

,

we define EC = −
∑

i yi log hi, where y is a 1-of-N
encoding of the target class label.

c!

!" !#

!$

log exp

softmax

logistic NLL+
Input

count !

1
" rate

CE

+
loss

Label #

Code

Figure 2. The architecture of the first stage has three com-
ponents: (1) an encoder, (2) a decoder (Poisson regressor),
and (3) a classifier. The loss is the weighted sum of cross-
entropy (CE) and negative log-likelihood (NLL) under the
Poisson model.

2.1. Training the First Stage

The first stage is special because the input x is a
discrete vector of word counts, with xi counting the
number of occurrences of the i-th word in the document.
The decoder is a Poisson regression model aiming to
predict x from the code z. A Poisson regressor is a
log-linear model which assigns the following probability
to an observed x:

P (x) =
∏

i

P (xi) =
∏

i

e−λi
λxi

i

xi!
, (2)

where the set of rates is given by λ = βeWDz+bD , with
a decoder weight matrix WD, decoder biases bD, and a
constant β proportional to the document length. This
normalization handles documents of different lengths
and makes learning stable. The reconstruction error
ER minimized at the first stage (eq. 1) is the negative
log-likelihood of the data

ER =
∑

i

(βe((WD)i·z+bDi)−xi(WD)i·z−xibDi+log xi!),

(3)
averaged over the samples x in the training dataset.

We design the encoder by “reverse-engineering” the
decoder to make the machine symmetric. Since the
decoder computes an exponential of a weighted sum,
the encoder performs a weighted sum of the log-
transformed input x. In addition to this, the encoder
applies a logistic nonlinearity. Hence, the code z is
given by z = σ(WE log(x) + bE), where WE and bE

are the weight matrix and the biases in the encoder,
and σ is the logistic. Since many components in x are
zero (because only a few dictionary words are actually
present in a given document), and since the rate at
which a word might appear is generally fairly low, this
architecture is prone to numerical problems in the eval-
uation of the logarithm, and would possibly require
large negative weights in WD (in order to make the
rate λ small). Thus, we shift the Poisson regression by
adding one to the input. As a result, if a word does not
occur in the document, the input to the encoder weight
matrix WE will be zero (and not minus infinity), and

encodeur

décodeur

distribution
Poisson

NLL
Poisson

log() à cause du exp() en sortie

Semi-supervised Learning of Compact Document
Representations with Deep Networks

(Ranzato and Szummer, ICML 2008)

• Pour éviter log(0), on ajoute 1 à la fréquence
de tous les mots d’un document

• Les autoencodeurs des couches
subséquentes utilisent le coût de l’erreur au
carré pour la reconstruction (sans log(x))

Semi-supervised Learning of Compact Document
Representations with Deep Networks

(Ranzato and Szummer, ICML 2008)

Résultats: classification (20 newsgroup)
Semi-supervised learning of compact document representations with deep networks

2 5 10 20 50
0

10

20

30

40

50

60

70

Number of labelled training samples

A
c
c
u
r
a
c
y

(
%
)

Semisup.: 1st layer(200)+SVM

Semisup.: 4th layer(20) +SVM

Unsup.: 1st layer(200)+SVM

tf!idf: (2000)+SVM

Figure 3. SVM classification of documents from the 20
Newsgroups dataset (2000 word vocabulary) trained with
between 2 and 50 labeled samples per class. The SVM was
applied to representations from the deep model trained in
a semi-supervised or unsupervised way, and to the tf-idf
representation. The numbers in parentheses denote the
number of code units. Error bars indicate one standard
deviation. The fourth layer representation has only 20 units,
and is much more compact and computationally efficient
than all the other representations.

removing stop words and words appearing less than
three times or in only a single document, and retain-
ing between 1000 and 30,000 words with the highest
mutual information.

Unless stated otherwise, we trained each layer of the net-
work for only 4 epochs over the whole training dataset.
Convergence took only a couple of epochs, and was
robust to the choice of the learning rate. This was
set to about 10−4 when training the first layer, and
to 10−3 when training the layers above. The learning
rate was exponentially decreased by multiplying it by
0.97 every 1000 samples. A small L1 regularizer on
the parameters was added to the loss. Each weight
was randomly initialized, and was updated by taking a
gradient step with a regularizer given by the value of
the learning rate times 5 · 10−4 the sign of the weight.
The value of αc in eq. 1 was set to the ratio between
the number of input units in the layer and the number
of classes in order to make the two error terms ER

and EC comparable. Its exact value did not affect
the performance as long as it had the right order of
magnitude.

3.1. The Value of Labels

In order to assess whether semi-supervised training was
better than purely unsupervised training, we trained
the deep model on the 20 Newsgroup dataset using only

10
!4

10
!3

10
!2

10
!1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RECALL

P
R
E
C
I
S
I
O
N

LSI (2)

LSI (3)

LSI (10)

LSI (40)

deep(2)

deep(3)

deep(10)

deep(40)

tf!idf

Figure 4. Precision-recall curves for the Reuters dataset
comparing a linear model (LSI) to the nonlinear deep model
with the same number of code units (in parentheses). Re-
trieval is done using the k most similar documents according
to cosine similarity, with k ∈ [1 . . . 4095].

2, 5, 10, 20 and 50 samples per class. During train-
ing we showed the system 10 labeled samples every
100 examples by sweeping more often over the labeled
data. This procedure was repeated at each layer dur-
ing training. We trained 4 layers for 10 epochs with
an architecture of 2000-200-100-50-20, denoting 2000
inputs, 200 hidden units at the first layer, 100 at the
second, 50 at the third, and 20 at the fourth. Then,
we trained a Support Vector Machine3 (SVM) with a
Gaussian kernel on (1) the codes that corresponded to
the labeled documents, and we compared the accuracy
of the semi-supervised model to the one achieved by
a Gaussian SVM trained on the features produced by
(2) the same model but trained in an unsupervised
way, and by (3) the tf-idf representation of the same
labeled documents. The SVM was generally tuned
by five-fold cross validation on the available labeled
samples (but two-fold cross validation when using only
two samples per class). Fig. 3 demonstrates that the
learned features gave much better accuracy than the tf-
idf representation overall when labeled data was scarce.
The model was able to exploit the very few labeled
samples producing features that were easier to discrim-
inate. The performance actually improved when the
dimensionality of the code was reduced and only 2 or
5 labeled samples per class were available, probably
because a more compact code implicitly enforces a
stronger regularization. Semi-supervised training out-
performed unsupervised training, and the gap widened
as we increased the number of labeled samples, indicat-

3We used libsvm package available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm

Semi-supervised Learning of Compact Document
Representations with Deep Networks

(Ranzato and Szummer, ICML 2008)

Résultats: recherche d’information (profond ou pas)
Semi-supervised learning of compact document representations with deep networks

10
!4

10
!3

10
!2

10
!1

10
0

0.2

0.3

0.4

0.5

0.6

0.7

RECALL

P
R
E
C
I
S
I
O
N

shallow(2)

shallow(3)

shallow(10)

shallow(40)

deep(2)

deep(3)

deep(10)

deep(40)

tf!idf

Figure 5. Precision-recall curves for the Reuters dataset
comparing shallow models (one-layer) to deep models with
the same number of code units. The deep models are more
accurate overall when the codes are extremely compact.
This also suggests that the number of hidden units has to
be gradually decreased from layer to layer.

ing that the unsupervised method had failed to model
information relevant for classification when compress-
ing to a low-dimensional space.

Interestingly, if we classify the data using the classi-
fier of the feedback module we obtain a performance
similar to the one achieved by the Gaussian SVM. For
example, when all training samples are labeled the
classifier at the first stage achieves accuracy of 76.3%
(as opposed to 75.5% of the SVM trained either on the
learned representation or on tf-idf), while the one on
the fourth layer achieves accuracy of 74.8%. Hence,
the training algorithm provides an accurate classifier
as a side product of the training, reducing the overall
learning time.

3.2. Deep or Shallow?

In all the experiments discussed in this section the
model was trained using fully labeled data (still, train-
ing also includes an unsupervised objective as discussed
earlier). In order to retrieve documents after training
the model, all documents are mapped into the latent
low-dimensional space, the cosine similarity between
each document in the test dataset and each document
in the training dataset is measured, and the k most
similar documents are retrieved. k is chosen to be equal
to 1, 3, 7, ..., 4095. Based on the topic label of the
documents, we assess the performance by computing
the recall and the precision averaged over the whole
test dataset.

In the first experiment, we compared the linear map-

10
!3

10
!2

10
!1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RECALL

P
R
E
C
I
S
I
O
N

shallow 1,000 words

shallow 2,000 words

shallow 5,000 words

shallow 10,000 words

tf!idf 1,000 words

tf!idf 2,000 words

tf!idf 5,000 words

tf!idf 10,000 words

Figure 6. Precision-recall curves for the 20 Newsgroups
dataset comparing the performance of tf-idf versus a one-
layer shallow model with 200 code units for varying sizes of
the word dictionary (from 1000 to 10000 words).

ping produced by LSI to the nonlinear mapping pro-
duced by our model. We considered the Reuters dataset
with a 12317 word vocabulary and trained a network
with 3 layers. The first layer had 100 code units, the
second layer had 40 units in one experiment and 10
in another, the third layer was trained with either 3
or 2 code units. As shown in Fig. 4, the nonlinear
representation is more powerful than the linear one,
when the representation is very compact.

Another interesting question is whether adding layers
is useful. Fig. 5 shows that for a given dimensionality
of the output latent space the deep architecture outper-
forms the shallow one. The deep architecture is capable
of capturing more complex dependencies among the
input variables than the shallow one, while the repre-
sentation remains compact. The compactness allows us
to efficiently handle very large vocabularies (more than
30,000 words for the Ohsumed, see Sec. 3.4). Fig. 6
shows that increasing the number of words (i.e. the
dimensionality of the input) does give better retrieval
performance.

3.3. Compact or Binary High-Dimensional?

The most popular representation of documents is tf-
idf, a very high-dimensional and sparse representa-
tion. One might wonder whether we should learn a
high-dimensional representation instead of a compact
representation. Unfortunately, the autoencoder based
learning algorithm forces us to map data into a lower-
dimensional space at each layer, as without additional
constraints (Ranzato et al., 2007a) the trivial identity
function would be learned. We used the sparse encod-

Semi-supervised Learning of Compact Document
Representations with Deep Networks

(Ranzato and Szummer, ICML 2008)

Résultats: recherche d’information (taille vocab.)Semi-supervised learning of compact document representations with deep networks

10
!4

10
!3

10
!2

10
!1

10
0

0.2

0.3

0.4

0.5

0.6

0.7

RECALL

P
R
E
C
I
S
I
O
N

shallow(2)

shallow(3)

shallow(10)

shallow(40)

deep(2)

deep(3)

deep(10)

deep(40)

tf!idf

Figure 5. Precision-recall curves for the Reuters dataset
comparing shallow models (one-layer) to deep models with
the same number of code units. The deep models are more
accurate overall when the codes are extremely compact.
This also suggests that the number of hidden units has to
be gradually decreased from layer to layer.

ing that the unsupervised method had failed to model
information relevant for classification when compress-
ing to a low-dimensional space.

Interestingly, if we classify the data using the classi-
fier of the feedback module we obtain a performance
similar to the one achieved by the Gaussian SVM. For
example, when all training samples are labeled the
classifier at the first stage achieves accuracy of 76.3%
(as opposed to 75.5% of the SVM trained either on the
learned representation or on tf-idf), while the one on
the fourth layer achieves accuracy of 74.8%. Hence,
the training algorithm provides an accurate classifier
as a side product of the training, reducing the overall
learning time.

3.2. Deep or Shallow?

In all the experiments discussed in this section the
model was trained using fully labeled data (still, train-
ing also includes an unsupervised objective as discussed
earlier). In order to retrieve documents after training
the model, all documents are mapped into the latent
low-dimensional space, the cosine similarity between
each document in the test dataset and each document
in the training dataset is measured, and the k most
similar documents are retrieved. k is chosen to be equal
to 1, 3, 7, ..., 4095. Based on the topic label of the
documents, we assess the performance by computing
the recall and the precision averaged over the whole
test dataset.

In the first experiment, we compared the linear map-

10
!3

10
!2

10
!1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RECALL

P
R
E
C
I
S
I
O
N

shallow 1,000 words

shallow 2,000 words

shallow 5,000 words

shallow 10,000 words

tf!idf 1,000 words

tf!idf 2,000 words

tf!idf 5,000 words

tf!idf 10,000 words

Figure 6. Precision-recall curves for the 20 Newsgroups
dataset comparing the performance of tf-idf versus a one-
layer shallow model with 200 code units for varying sizes of
the word dictionary (from 1000 to 10000 words).

ping produced by LSI to the nonlinear mapping pro-
duced by our model. We considered the Reuters dataset
with a 12317 word vocabulary and trained a network
with 3 layers. The first layer had 100 code units, the
second layer had 40 units in one experiment and 10
in another, the third layer was trained with either 3
or 2 code units. As shown in Fig. 4, the nonlinear
representation is more powerful than the linear one,
when the representation is very compact.

Another interesting question is whether adding layers
is useful. Fig. 5 shows that for a given dimensionality
of the output latent space the deep architecture outper-
forms the shallow one. The deep architecture is capable
of capturing more complex dependencies among the
input variables than the shallow one, while the repre-
sentation remains compact. The compactness allows us
to efficiently handle very large vocabularies (more than
30,000 words for the Ohsumed, see Sec. 3.4). Fig. 6
shows that increasing the number of words (i.e. the
dimensionality of the input) does give better retrieval
performance.

3.3. Compact or Binary High-Dimensional?

The most popular representation of documents is tf-
idf, a very high-dimensional and sparse representa-
tion. One might wonder whether we should learn a
high-dimensional representation instead of a compact
representation. Unfortunately, the autoencoder based
learning algorithm forces us to map data into a lower-
dimensional space at each layer, as without additional
constraints (Ranzato et al., 2007a) the trivial identity
function would be learned. We used the sparse encod-

Semi-supervised Learning of Compact Document
Representations with Deep Networks

(Ranzato and Szummer, ICML 2008)

Résultats: recherche d’information (autoencoder vs RBM)Semi-supervised learning of compact document representations with deep networks

10
!3

10
!2

10
!1

10
0

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

RECALL

P
R
E
C
I
S
I
O
N

tf!idf(2000)

binary(1000)

deep(7)

deep(20)

DBN pre!trained(20)

DBN fine!tuned(20)

Figure 7. Precision-recall curves comparing compact rep-
resentations vs. high-dimensional binary representations.
Compact representations can achieve better performance
using less memory and CPU time.

ing symmetric machine (SESM) (Ranzato et al., 2007b)
as a building block for training a deep network produc-
ing sparse features. SESM is a symmetric autoencoder
with a sparsity constraint on the representation, and it
is trained without labels. In order to make the sparse
representation at the final layer computationally appeal-
ing we thresholded it to make it binary. We trained a
2000-1000-1000 SESM network on the Reuters dataset.
In order to make a fair comparison with our compact
representation, we fixed the information content of the
code in terms of precision4 at k = 1. We measured
the precision and recall of the binary representation of
a test document by computing its Hamming distance
from the representation of the training documents. We
then trained our model with the following number of
units 2000-200-100-7. The last number of units was set
to match the precision of the binary representation at
k = 1. Fig. 7 shows that our compact representation
outperforms the high-dimensional and binary represen-
tation at higher values of k. Just 7 continuous units
are able to achieve better retrieval than 1000 binary
units! Storing the Reuters dataset with the compact
representation takes less than half the memory space
than using the binary representation, and comparing
a test document against the whole training dataset is
five times faster with the compact representation. The
best accuracy for our model is given with a 20-unit
representation. Fig. 7 shows the performance of a rep-
resentation with the same number of units learned by
a deep belief network (DBN) following Salakhutdinov
and Hinton’s constrained Poisson model (2007). Their

4The entropy of the representation would be more natu-
ral, but its value depends on the quantization level.

model was greedily pre-trained for one epoch in an
unsupervised way (200 pre-training epochs gave similar
fine-tuned accuracy), and then fine-tuned with super-
vision for 100 epochs. While fine-tuning does not help
our model, it significantly improves the DBN which
eventually achieves the same accuracy as our model.
Despite the similar accuracy, the computational cost of
training a DBN (with our implementation using conju-
gate gradient on mini-batches) is several times higher
due to this supervised training through a large and
deep network. By looking at how words are mapped

Table 1. Neighboring word stems for the model trained on
Reuters. The number of units is 2000-200-100-7.

Word stem Neighboring word stems
livestock beef, meat, pork, cattle
lend rate, debt, bond, downgrad
acquisit merger, stake, takeov
port ship, port, vessel, freight
branch stake, merger, takeov, acquisit
plantat coffe, cocoa, rubber, palm
barrel oil, crude, opec, refineri
subcommitte bill, trade, bond, committe
coconut soybean, wheat, corn, grain
meat beef, pork, cattl, hog
ghana cocoa, buffer, coffe, icco
varieti wheat, grain, agricultur, crop
warship ship, freight, vessel, tanker
edibl beef, pork, meat, poultri

to the top-level feature space, we can get an intuition
about the learned mapping. For instance, the code
closest to the representation of the word “jakarta” cor-
responds to the word “indonesia”, similarly,“meat” is
closest to “beef” (table 1). As expected, the model
implicitly clusters synonymous and related words.

3.4. Visualization

The deep model can also be used to visualize documents.
When the top layer is two-dimensional we can visualize
high-dimensional nonlinear manifolds in the space of
bags of words. Fig. 8 shows how documents in the
Ohsumed test set are mapped to the plane. The model
exposes clusters documents according to the topic class,
and places similar topics next to each other. The
dimensionality reduction is extreme in this case, from
more than 30000 to 2.

4. Conclusions

We have proposed and demonstrated a simple and effi-
cient algorithm to learn document representations from

Semi-supervised Learning of Compact Document
Representations with Deep Networks

(Ranzato and Szummer, ICML 2008)

Résultats: similarité entre les mots

Semi-supervised learning of compact document representations with deep networks

10
!3

10
!2

10
!1

10
0

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

RECALL

P
R
E
C
I
S
I
O
N

tf!idf(2000)

binary(1000)

deep(7)

deep(20)

DBN pre!trained(20)

DBN fine!tuned(20)

Figure 7. Precision-recall curves comparing compact rep-
resentations vs. high-dimensional binary representations.
Compact representations can achieve better performance
using less memory and CPU time.

ing symmetric machine (SESM) (Ranzato et al., 2007b)
as a building block for training a deep network produc-
ing sparse features. SESM is a symmetric autoencoder
with a sparsity constraint on the representation, and it
is trained without labels. In order to make the sparse
representation at the final layer computationally appeal-
ing we thresholded it to make it binary. We trained a
2000-1000-1000 SESM network on the Reuters dataset.
In order to make a fair comparison with our compact
representation, we fixed the information content of the
code in terms of precision4 at k = 1. We measured
the precision and recall of the binary representation of
a test document by computing its Hamming distance
from the representation of the training documents. We
then trained our model with the following number of
units 2000-200-100-7. The last number of units was set
to match the precision of the binary representation at
k = 1. Fig. 7 shows that our compact representation
outperforms the high-dimensional and binary represen-
tation at higher values of k. Just 7 continuous units
are able to achieve better retrieval than 1000 binary
units! Storing the Reuters dataset with the compact
representation takes less than half the memory space
than using the binary representation, and comparing
a test document against the whole training dataset is
five times faster with the compact representation. The
best accuracy for our model is given with a 20-unit
representation. Fig. 7 shows the performance of a rep-
resentation with the same number of units learned by
a deep belief network (DBN) following Salakhutdinov
and Hinton’s constrained Poisson model (2007). Their

4The entropy of the representation would be more natu-
ral, but its value depends on the quantization level.

model was greedily pre-trained for one epoch in an
unsupervised way (200 pre-training epochs gave similar
fine-tuned accuracy), and then fine-tuned with super-
vision for 100 epochs. While fine-tuning does not help
our model, it significantly improves the DBN which
eventually achieves the same accuracy as our model.
Despite the similar accuracy, the computational cost of
training a DBN (with our implementation using conju-
gate gradient on mini-batches) is several times higher
due to this supervised training through a large and
deep network. By looking at how words are mapped

Table 1. Neighboring word stems for the model trained on
Reuters. The number of units is 2000-200-100-7.

Word stem Neighboring word stems
livestock beef, meat, pork, cattle
lend rate, debt, bond, downgrad
acquisit merger, stake, takeov
port ship, port, vessel, freight
branch stake, merger, takeov, acquisit
plantat coffe, cocoa, rubber, palm
barrel oil, crude, opec, refineri
subcommitte bill, trade, bond, committe
coconut soybean, wheat, corn, grain
meat beef, pork, cattl, hog
ghana cocoa, buffer, coffe, icco
varieti wheat, grain, agricultur, crop
warship ship, freight, vessel, tanker
edibl beef, pork, meat, poultri

to the top-level feature space, we can get an intuition
about the learned mapping. For instance, the code
closest to the representation of the word “jakarta” cor-
responds to the word “indonesia”, similarly,“meat” is
closest to “beef” (table 1). As expected, the model
implicitly clusters synonymous and related words.

3.4. Visualization

The deep model can also be used to visualize documents.
When the top layer is two-dimensional we can visualize
high-dimensional nonlinear manifolds in the space of
bags of words. Fig. 8 shows how documents in the
Ohsumed test set are mapped to the plane. The model
exposes clusters documents according to the topic class,
and places similar topics next to each other. The
dimensionality reduction is extreme in this case, from
more than 30000 to 2.

4. Conclusions

We have proposed and demonstrated a simple and effi-
cient algorithm to learn document representations from

“to be continued...”

