
Non-Local Manifold Parzen Windows

Yoshua Bengio and Hugo Larochelle
Dept. IRO, Université de Montréal

P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7, Qc, Canada
{bengioy,larocheh}@iro.umontreal.ca

Technical Report 1264, February 2005, Revised June 2005
Département d’Informatique et Recherche Opérationnelle

July 5, 2005

Abstract
In order to escape from the curse of dimensionality, we claim that one can learn non-local functions, in the sense that
the value and shape of the learned function at x must be inferred using examples that may be far from x. With this
objective, we present a non-local non-parametric density estimator. It builds upon previously proposed Gaussian
mixture models with regularized covariance matrices to take into account the local shape of the manifold. It also
builds upon recent work on non-local estimators of the tangent plane of a manifold, which are able to generalize in
places with little training data, unlike traditional, local, non-parametric models.

1 Introduction

A central objective of statistical machine learning is to discover structure in the joint distribution between random
variables, so as to be able to make predictions about new combinations of values of these variables. A central issue
in obtaining generalization is how information from the training examples can be used to make predictions about
new examples and, without strong prior assumptions (i.e. in non-parametric models), this may be fundamentally
difficult, as illustrated by the curse of dimensionality.

(Bengio, Delalleau and Le Roux, 2005) and (Bengio and Monperrus, 2005) present several arguments illustrat-
ing some fundamental limitations of modern kernel methods due to the curse of dimensionality, when the kernel is
local (like the Gaussian kernel). These arguments are all based on the locality of the estimators, i.e., that very impor-
tant information about the predicted function at x is derived mostly from the near neighbors of x in the training set.
This analysis has been applied to supervised learning algorithms such as SVMs as well as to unsupervised manifold
learning algorithms such as LLE (Roweis and Saul, 2000), Isomap (Tenenbaum, de Silva and Langford, 2000),
and kernel Principal Component Analysis (kPCA) (Schölkopf, Smola and Müller, 1998). The analysis in (Bengio,
Delalleau and Le Roux, 2005) highlights intrinsic limitations of such local learning algorithms, that can make them
fail when applied on high-dimensional problems where one has to look beyond what happens locally in order to
overcome the curse of dimensionality.

This strongly suggests to investigate non-local learning methods, which can in principle generalize at x using
information gathered at training points xi that are far from x. We present here such a non-local learning algorithm,
in the realm of density estimation.

1

The proposed non-local non-parametric density estimator builds upon the Manifold Parzen density estima-
tor (Vincent and Bengio, 2003) that associates a regularized Gaussian with each training point, and upon recent
work on non-local estimators of the tangent plane of a manifold (Bengio and Monperrus, 2005). The local covari-
ance matrix characterizing the density in the immediate neighborhood of a data point is learned as a function of
that data point, with global parameters. This allows to potentially generalize in places with little or no training
data, unlike traditional, local, non-parametric models. The implicit assumption in such a model is that there is some
kind of regularity in the shape of the density, such that learning about its shape in one region could be informa-
tive of the shape in another region that is not adjacent. Note that the smoothness assumption typically underlying
non-parametric models relies on a simple form of such transfer, but only for neighboring regions, which is not very
helpful when the intrinsic dimension of the data (the dimension of the manifold on which or near which it lives) is
high or when the underlying density function has many variations (Bengio, Delalleau and Le Roux, 2005). The pro-
posed model is also related to the Neighborhood Component Analysis algorithm (Goldberger et al., 2005), which
learns a global covariance matrix for use in the Mahalanobis distance within a non-parametric classifier. Here we
generalize this global matrix to one that is a function of the datum x.

2 Manifold Parzen Windows

In the Parzen Windows estimator, one puts a spherical (isotropic) Gaussian around each training point xi, with
a single shared variance hyper-parameter. How can we improve upon this estimator in the light of the manifold
hypothesis (according to which high dimensional data is likely concentrated around a lower dimensional manifold),
and make it a bit less local? One approach, introduced in (Vincent and Bengio, 2003), is to use not just the presence
of xi and its neighbors but also their geometry, trying to infer the principal characteristics of the local shape of the
manifold (where the density concentrates), which can be summarized in the covariance matrix of the Gaussian, as
illustrated in Figure 1. If the data concentrates in certain directions around xi, we want that covariance matrix to be
“flat” (near zero variance) in the orthogonal directions.

One way to achieve this is to parametrize each of these covariance matrices in terms of “principal directions”
(which correspond to the tangent vectors of the manifold, if the data concentrates on a manifold). In this way we
do not need to specify individually all the entries of the covariance matrix. The only required assumption is that the
“noise directions” orthogonal to the “principal directions” all have the same variance.

p̂(y) =
1

n

n
∑

i=1

N(y;xi + µ(xi), S(xi)) (1)

where N(y;xi + µ(xi), S(xi)) is the Gaussian density of y, with mean vector xi + µ(xi) and covariance matrix
S(xi) represented compactly by

S(xi) = σ2
noise(xi)I +

d
∑

j=1

sj(xi)vj(xi)vj(xi)
′ (2)

where sj(xi) and σ2
noise(xi) are scalars, and vj(xi) denotes a “principal” direction with variance sj(xi)+σ2

noise(xi),
while σ2

noise(xi) is the noise variance (the variance in all the other directions). vj(xi)
′ denotes the transpose of

vj(xi).
In (Vincent and Bengio, 2003), µ(xi) = 0, and σ2

noise(xi) = σ2
0 is a global hyper-parameter, while (λj(xi), vj) =

(sj(xi) + σ2
noise(xi), vj(xi)) are the leading (eigenvalue,eigenvector) pairs from the eigen-decomposition of a lo-

cally weighted covariance matrix (e.g. the empirical covariance of the vectors xl − xi, with xl a near neighbor

2

of xi). The “noise level” hyper-parameter σ2
0 must be chosen such that the principal eigenvalues are all greater

than σ2
0 . Another hyper-parameter is the number d of principal components to keep. Alternatively, one can choose

σ2
noise(xi) to be the d + 1-th eigenvalue, which guarantees that λj(xi) > σ2

noise(xi), and gets rid of a hyper-
parameter. This very simple model was found to be consistently better than the ordinary Parzen density estimator
in numerical experiments in which all hyper-parameters are chosen by cross-validation.

Like mixtures of factor analysis models (Roweis, Saul and Hinton, 2002) and other low-rank Gaussian mix-
tures (Brand, 2003), this model works well when the data locally span a smooth low-dimensional manifold. In (Teh
and Roweis, 2003), an algorithm is proposed to form a globally coherent coordinate system from all these local
patches (assuming a connected overlap graph). However, such models are still very local, since only the examples
in the neighborhood of xi contribute in inferring the shape of the manifold around xi.

3 Non-Local Manifold Tangent Learning

In (Bengio and Monperrus, 2005) a manifold learning algorithm was introduced in which the tangent plane of a
d-dimensional manifold at x is learned as a function of x ∈ R

D, using globally estimated parameters. The output
of the predictor function F (x) is a d × D matrix whose rows are (possibly non-orthogonal) vectors that span the
tangent plane. The training information about the tangent plane is obtained by considering pairs of near neighbors
xi and xj in the training set. Consider the predicted tangent plane of the manifold at xi, characterized by the rows
of F (xi). For a good predictor we expect the vector (xi−xj) to be close to its projection on the tangent plane, with
local coordinates w ∈ R

d. w can be obtained analytically by solving a linear system of dimension d. The training
criterion chosen in (Bengio and Monperrus, 2005) then minimizes the sum over such (xi, xj) of the sinus of the
projection angle, i.e.:

||F ′(xi)w − (xj − xi)||2
||xj − xi||2

The above is a heuristic criterion, which will be replaced in our new algorithm by one derived from the maximum
likelihood criterion, considering that F (xi) indirectly provides the principal eigenvectors of the local covariance
matrix at xi. Both criteria gave similar results experimentally, but the model proposed here yields a complete
density estimator. In both cases F (xi) can be interpreted as specifying the directions in which one expects to see
the most variations when going from xi to one of its near neighbors in a finite sample.

4 Proposed Algorithm: Non-Local Manifold Parzen Windows

In equations (1) and (2) we wrote µ(xi) and S(xi) as if they were functions of xi rather than simply using indices
µi and Si. This is because we introduce here a non-local version of Manifold Parzen Windows inspired from the
non-local manifold tangent learning algorithm, i.e., in which we can share information about the density across
different regions of space. In our experiments we use a neural network of nhid hidden neurons, with xi in input
to predict µ(xi), σ2

noise(xi), and the sj(xi) and vj(xi). The vectors computed by the neural network do not need
to be orthonormal: we only need to consider the subspace that they span. Also, the vectors’ norm will be used
to infer sj(xi), instead of having a separate output for them. We will note F (xi) the matrix whose rows are the
vectors output of the neural network. From it we obtain the sj(xi) and vj(xi) by performing a singular value
decomposition, i.e. FF ′ =

∑d
j=1 sjvjv

′
j . Moreover, to make sure σ2

noise does not get too small, which could make
the optimization unstable, we impose σ2

noise(xi) = s2
noise(xi) + σ2

0 , where snoise(·) is an output of the neural
network and σ2

0 is a fixed constant.

3

Imagine that the data were lying near a lower dimensional manifold. Consider a training example xi near
the manifold. When the likelihood of the other examples is computed, only the near neighbors of xi will have
a significant gradient contribution for the Gaussian associated with xi, because its posterior will be very small
compared to Gaussian components closer to the example. The Gaussian centered near xi tells us how neighbors
of xi are expected to differ from xi. Its “principal” vectors vj(xi) span the tangent of the manifold near xi. The
Gaussian center variation µ(xi) tells us how xi is located with respect to its projection on the manifold. The
noise variance σ2

noise(xi) tells us how far from the manifold to expect neighbors, and the directional variances
sj(xi) + σ2

noise(xi) tell us how far to expect neighbors on the different local axes of the manifold, near xi’s
projection on the manifold. Figure 1 shows an illustration in 2 dimensions of the shape of the a Gaussian using this
parametrization, with s1 =

√
λi, σnoise =

√

σ2
noise(xi) and µ = µ(xi).

���
�

plane
tangentµ

xi

v1

s1 + σnoise

σnoise

Figure 1: Illustration of the local parametrization of local or Non-Local Manifold
Parzen. The examples around training point xi are modeled by a Gaussian. µ(xi)
specifies the center of that Gaussian, which should be non-zero when xi is off the
manifold. vk’s are principal directions of the Gaussian and are tangent vectors of the
manifold. σnoise represents the thickness of the manifold.

The important element of this model is that the parameters of the predictive neural network can potentially
represent non-local structure in the density, i.e., they allow to potentially discover shared structure among the
different covariance matrices in the mixture.

We propose to estimate µ(x) and S(x) by minimizing the regularized negative log-likelihood of the k neighbors
xj of each training point xi, according to the Gaussian with mean xi + µ(xi) and covariance matrix S(xi). In
the implementation made for the experiments reported here, training proceeds by stochastic gradient, visiting each
example xi (with all of its neighbors) and making a parameter update.

4.1 Parametrization of µ(x) and S(x)

The µ(x) function is simply the output of a neural net function of x. The S(x) function is more difficult to
parametrize. As explained earlier, in order to capture information about the underlying manifold of the data, we
will parametrize S(x) as follows:

4

S(x) = σ2
noise(x)I +

d
∑

j=1

Fj(x)′Fj(x)

where d is the number of principal directions of variance. Note that the vectors Fj(x) do not need to be
orthogonal. The neural net will then have to ouput the d × n matrix F (x) and the scalar σ2

noise(x). To make
sure that σ2

noise(x) is positive and does not get too small, which could make the stochastic gradient optimization
unstable, we impose σ2

noise(xi) = (snoise(xi))
2 + σ2

0 , where snoise(·) is an output of the neural network and σ2
0 is

a fixed constant.
When computing S−1(x), we simply compute the d eigenvalues λi and eigenvectors vi of F (x)′F (x) and get:

S−1(x) =
1

σ2
noise(x)

I +

d
∑

j=1

(

1

λj + σ2
noise(x)

− 1

σ2
noise(x)

)

vjv
′
j

Figure 1 shows an illustration in 2 dimensions of the shape of the a Gaussian using this parametrization, with
s1 =

√
λi, σnoise =

√

σ2
noise(xi) and µ = µ(xi).

4.2 Gradient derivation for µ(x) and S(x)

We consider here the error signal for a pair consisting of a training example x and a neighbor y of x.
Consider the derivative of NLL(y) = − log(p(y)) with respect to log(p(y|x)):

∂(− log(p(y)))

∂(log(p(y|x)))
= −p(y|x)p(x)

p(y)
= −p(x|y)

which also corresponds to the ’posterior’ factor in EM. The conditional log-likelihood log(p(y|x)) for a neighbor y
of an example x is written:

log(p(y|x)) = −0.5 log(|S(x)|)− (n/2) log(2π)− 0.5(y − x− µ(x))′S(x)−1(y − x− µ(x)).

Hence

∂NLL(y)

∂θ
= 0.5p(x|y)

[

∂

∂θ
log(|S(x)|)

+
∂

∂θ
(y − x− µ(x))′S(x)−1(y − x− µ(x))

]

which gives significant weight only to the near neighbors y of x. This justifies the approximation used here:

∂NLL(y)

∂θ
≈ 0.5

�

y∈Nk(x)

k

[

∂

∂θ
log(|S(x)|)

+
∂

∂θ
(y − x− µ(x))′S(x)−1(y − x− µ(x))

]

(3)

where Nk(x) is the set of the k nearest neighbors of x.
Now, we can compute the gradient for θ = µ(x) and θ = S(x). It is straightforward to show that:

5

NLL(y)

∂µ(x)
≈ −0.5

�

y∈Nk(x)

k
S(x)−1(y − x− µ(x))

For S(x), the derivation is less obvious. Let’s start with σ2
noise(x). We have from equation 3:

∂NLL(y)

∂σ2
noise

≈ 0.5

�

y∈Nk(x)

k

[

∂

∂σ2
noise

log(|S(x)|)

+
∂

∂σ2
noise

(y − x− µ(x))′S(x)−1(y − x− µ(x))

]

≈ 0.5

�

y∈Nk(x)

k

[|S(x)|
|S(x)|Tr

(

S(x)−1 ∂

∂σ2
noise

S(x)

)

−(y − x− µ(x))′S(x)−1

(

∂

∂σ2
noise

S(x)

)

S(x)−1(y − x− µ(x))

]

(4)

≈ 0.5

�

y∈Nk(x)

k

[

Tr
(

S(x)−1
)

− (y − x− µ(x))′S(x)−1S(x)−1(y − x− µ(x))
]

≈ 0.5

�

y∈Nk(x)

k

[

Tr
(

S(x)−1
)

− ||(y − x− µ(x))′S(x)−1||2
]

where at equation 4, we used:

∂

∂x
|A| = |A|Tr

(

A−1 ∂

∂x
A

)

(5)

and

∂

∂x
A−1 = −A−1

(

∂

∂x
A

)

A−1 (6)

Also, for F (x), let fji be the element at position (j, i) of matrix F (x). From equation 3, we have:

∂NLL(y)

∂fji

≈ 0.5

�

y∈Nk(x)

k

[

∂

∂fji

log(|S(x)|)

+
∂

∂fji

(y − x− µ(x))′S(x)−1(y − x− µ(x))

]

≈ 0.5

�

y∈Nk(x)

k

[|S(x)|
|S(x)|Tr

(

S(x)−1 ∂

∂fji

S(x)

)

−(y − x− µ(x))′S(x)−1

(

∂

∂fji

S(x)

)

S(x)−1(y − x− µ(x))

]

(7)

where we obtain equation 7 using equations 5 and 6. Since:

6

∂

∂fji

S = (eiFj(x) + Fj(x)′e′i)

where ei = (
�

k=i)
n
k=1, we then have:

∂NLL(y)

∂fji

≈ 0.5

�

y∈Nk(x)

k

[

Tr
(

S(x)−1(eiFj(x) + Fj(x)′e′i)
)

−(y − x− µ(x))′S(x)−1(eiFj(x) + Fj(x)′e′i)S(x)−1(y − x− µ(x))
]

≈ 0.5

�

y∈Nk(x)

k

[

Tr
(

S(x)−1eiFj(x)
)

+ Tr
(

S(x)−1Fj(x)′e′i
)

−(y − x− µ(x))′S(x)−1eiFj(x)S(x)−1(y − x− µ(x))

−(y − x− µ(x))′S(x)−1Fj(x)′e′iS(x)−1(y − x− µ(x))
]

≈
�

y∈Nk(x)

k

[

Tr
(

Fj(x)S(x)−1ei

)

− Fj(x)S(x)−1(y − x− µ(x))(y − x− µ(x))′S(x)−1ei

]

≈
�

y∈Nk(x)

k
Fj(x)S(x)−1

(

I − (y − x− µ(x))(y − x− µ(x))′S(x)−1
)

ei

From that equation, we finally obtain:

∂NLL(y)

∂F
≈

�

y∈Nk(x)

k
FS−1

(

I + (y − x− µ(x))(y − x− µ(x))′S−1
)

Note that a different number of neighbors can be selected to train µ(x) and S(x).

4.3 Algorithms and Optimization details

To sum up, here is the pseudo-code algorithm for computing the density at a test point with Non-Local Manifold
Parzen:

Algorithm NLMP::Test(x,X, µ(·), S(·), σ2
0)

Input: test point x, training set X , functions µ(·) and S(·), and regularization hyper-parameter σ2
0 .

(1) s← 0
(2) For xi ∈ X
(3) s← s + N(x;xi + µ(xi), S(xi))
Output: NLMP estimator p̂nlmp(x) = s

|X| .

where N(x;µ,Σ) is the density value at x for a Gaussian of mean µ and covariance Σ. Of course, for problems
in high dimension, it is highly recommended to work with log-densities instead, in order to avoid decimal precision
issues.

Also, here is the pseudo-code algorithm for training the Non-Local Manifold Parzen model:

7

Algorithm NLMP::Train(X, d, k, kµ, µ(·), S(·), σ2
0)

Input: training set X , chosen number of principal directions d, chosen number of neighbors k and kµ,
functions µ(·) and S(·), and regularization hyper-parameter σ2

0 .
(1) For xi ∈ X
(2) Collect k nearest neighbors xj and kµ nearest neighbors xµ

j of xi .
(3) Perform a stochastic gradient step on parameters of S(·),

using the negative log-likelihood error signal on the xj , with a Gaussian
of mean xi + µ(xi) and of covariance matrix S(xi).
Do the same for the parameters of µ(·) using the xµ

j

The gradients are:

∂C(xµ
j

,xi)

∂µ(xi)
= − 1

kµ
S−1(xi)(x

µ
j − xi − µ(xi))

∂C(xj ,xi)

∂σ2

noise
(xi)

= 0.5 1
k

(

Tr(S−1(xi))− ||(xj − xi − µ(xi))
′S−1(xi)||2

)

∂C(xj ,xi)
∂F (xi)

= 1
k
F (xi)S

−1(xi)
(

I − (xj − xi − µ(xi))(xj − xi − µ(xi))
′S−1(xi)

)

(4) Go to (1) until a given criterion is satisfied (e.g. average NLL of NLMP density estimation on a
validation set stops decreasing)
Result: trained µ(·) and S(·) functions, with corresponding σ2

0 .

Optimization can get quite unstable if σ2
noise(x) is trained without constraints on its progression. The reason

is that, when σ2
noise(x) gets too small and that the principal directions are not correctly estimated, then the term

(xj − xi − µ(xi))
′S−1(xi) gets quite large, giving a gradient step that is too big. To escape this problem, we

imposed a threshold on the error signal through σ2
noise(x). When the absolute value of the error signal is bigger

than a certain proportion α of the σ2
noise(x) value, the error signal is fixed to that threshold, with the appropriate

sign. In our experiments, we used α = 0.1. Also, it is quite useful to set the initial value of σ2
noise(x), in order to

make sure that it is not too small, so that the optimization is stable, and that it is not too big, so that the optimization
does not take too long.

5 Experimental results

We have performed comparative experiments on both toy and real-world data, on density estimation and classifica-
tion tasks. All hyper-parameters are selected by cross-validation, and the costs on a large test set is used to compare
final performance of all algorithms.

5.1 Experiments on toy 2D data

To understand and validate the non-local algorithm we tested it on toy 2D data where it is easy to understand what
is being learned. The sinus data set (see figure 2(a)) includes examples sampled from a sinusoidal distribution with
uniformly distributed noise. In the spiral data set (see figure 2(b)) examples are sampled near a spiral. Respectively,
57 and 113 examples are used for training, 23 and 48 for validation (hyper-parameter selection), and 920 and 3839
for testing.

8

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) Sinusoidal data set

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) Spiral data set

Figure 2: Distribution samples of data sets

Algorithm sinus ANLL spiral ANLL
Non-Local Manifold Parzen 1.144 -1.346
Manifold Parzen 1.345 -0.914
Gaussian Mixture 1.567 -0.857
Parzen Windows 1.841 -0.487

Table 1: Average out-of-sample Negative Log-Likelihood (ANLL) on two toy problems, for Non-
Local Manifold Parzen, a Gaussian mixture with full covariance, Manifold Parzen, and Parzen
Windows. The non-local algorithm dominates all the others.

The following algorithms were compared:
• Non-Local Manifold Parzen Windows. The hyper-parameters are the number of principal directions (i.e., the
dimension of the manifold), the number of nearest neighbors k and kµ, the minimum constant noise variance σ2

0

and the number of hidden units of the neural network. The starting learning rate and decrease constant also have to
be selected, and early stopping is used on the validation set.
• Gaussian mixture with full but regularized covariance matrices. Regularization is done by setting a minimum
constant value σ2

0 to the eigenvalues of the Gaussians. It is trained by EM and initialized using the k-means
algorithm. The hyper-parameter is σ2

0 , and early stopping is used with EM on a validation set.
• Parzen Windows density estimator, with a spherical Gaussian kernel. The hyper-parameter is the spread of the
Gaussian kernel.
•Manifold Parzen density estimator. The hyper-parameters are the number of principal components, the number of
nearest neighbors of the k-nearest neighbors kernel and the minimum eigenvalue σ2

0 .
Note that, for these experiments, the number of principal directions (or components) was fixed to 1 for both

NLMP and Manifold Parzen.
Density estimation results are shown in table 1. To help understand why Non-Local Manifold Parzen works

well on these data, figure 3 illustrates the learned densities for the sinus and spiral data. Basically, it works better
here because it yields an estimator that is less sensitive to the specific samples around each test point, thanks to its
ability to share structure across the whole training set. In figure 4, the principal directions learned by Non-Local

9

Manifold Parzen and local Manifold Parzen are displayed for the spiral distribution data. We can clearly see that
the former predicts principal directions that are more consistent with the true shape of the manifold, whereas the
latter is very sensible to the noise of the data.

Figure 3: Illustration of the learned densities (sinus on top, spiral on bottom) for four
compared models. From left to right: Non-Local Manifold Parzen, Gaussian mix-
ture, Parzen Windows, Manifold Parzen. Parzen Windows wastes probability mass in
the spheres around each point, while leaving many holes. Gaussian mixtures tend to
choose too few components to avoid overfitting. The Non-Local Manifold Parzen ex-
ploits global structure to yield the best estimator.

5.2 Experiments on rotated digits

The next experiment is meant to show both qualitatively and quantitatively the power of non-local learning, by
using 9 classes of rotated digit images (from 729 first examples of the USPS training set) to learn about the rotation
manifold and testing on the left-out class (digit 1), not used for training. Each training digit was rotated by 0.1 and
0.2 radians and all these images were used as training data. We used NLMP for training, and for testing we formed
an augmented mixture with Gaussians centered not only on the training examples, but also on the original unrotated
1 digits. We tested our estimator on the rotated versions of each of the 1 digits. We compared this to Manifold
Parzen trained on the training data containing both the original and rotated images of the training class digits and
the unrotated 1 digits. During the test, we forced the Gaussian components to be centered on the test point. We
tested our estimator on the rotated versions of each of the original images. We compared it to Manifold Parzen
where the parameters of the Gaussian components for digit 1 were computed as usual, by including the unrotated
1 digits to its training set. The objective of the experiment was to see if the model was able to infer the density
correctly around the original unrotated images, i.e., to predict a high probability for the rotated versions of these
images. In table 2 we see quantitatively that the non-local estimator predicts the rotated images much better.

As qualitative evidence, we used small steps in the principal direction predicted by the neural net to rotate an
image of the digit 1. To make this task even more illustrative of the generalization potential of non-local learning,
we followed the tangent in the direction opposite to the rotations of the training set. It can be seen in figure 5 that
the rotated digit obtained is quite similar to the same digit analytically rotated. For comparison, we tried to apply
the same rotation technique to that digit, but by using the principal direction, computed by Manifold Parzen, of its
nearest neighbor’s Gaussian component in the training set. This clearly did not work, and hence shows how crucial

10

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a) Non-Local Manifold Parzen

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) Manifold Parzen

Figure 4: Illustration of the learned principal directions for Non-Local Manifold
Parzen and local Manifold Parzen, for the spiral distribution data set. Note how the
principal directions are more consistent with the underlying manifold for Non-Local
Manifold Parzen than for Manifold Parzen

Algorithm Validation ANLL Test ANLL
Non-Local Manifold Parzen -73.10 -76.03
Manifold Parzen 65.21 58.33
Parzen Windows 77.87 65.94

Table 2: Average Negative Log-Likelihood (ANLL) on the digit rotation experiment, when test-
ing on a digit class (1’s) not used during training, for Non-Local Manifold Parzen, Manifold
Parzen, and Parzen Windows. The non-local algorithm is clearly superior.

non-local learning is for this task.
Note that, to make sure that NLMP learns the tangent plane of the rotation manifold, we fixed the number of

principal directions d and the number of nearest neighbors k to one, and we also imposed µ(·) = 0. The same was
done for Manifold Parzen.

5.3 Experiments on classification by density estimation

The USPS data set was used to perform a classification experiment. The original training set (7291) was split
into a training (first 6291) and validation set (last 1000), used to tune hyper-parameters. One density estimator
for each of the 10 digit classes is estimated. For comparison we also show the results obtained with a Gaussian
kernel Support Vector Machine (already used in (Vincent and Bengio, 2003)). The improvement brought by the
Non-Local Manifold Parzen algorithm over the other methods is statistically significant with a t-test on the test set
of 2007 examples. Note that better SVM results (about 3% error) can be obtained using prior knowledge about
image invariances, e.g. with virtual support vectors (Decoste and Scholkopf, 2002). However, as far as we know
the NLMP performance is the best on the original USPS data set among algorithms that do not use prior knowledge
about images.

11

Figure 5: From left to right: original image of a digit 1; same image analytically
rotated by−0.2 radians; rotation predicted using Non-Local Manifold Parzen; rotation
predicted using local Manifold Parzen. The rotations are obtained by following the
tangent vector in small steps.

Table 3: Classification error obtained on USPS with SVM, Parzen Windows and Local
and Non-Local Manifold Parzen Windows classifiers.

Algorithm Valid. Test Parameters
SVM 1.2% 4.68% C = 100, σ = 8

Parzen Windows 1.8% 5.08% σ = 0.8
Manifold Parzen 0.9% 4.08% d = 11, k = 11, σ2

0 = 0.1
Non-local MP 0.6% 3.54% d = 7, k = 10, kµ = 4, σ2

0 = 0.05, nhid = 30

6 Conclusion

We have proposed a non-parametric density estimator that, unlike its predecessors, is able to generalize far from
the training examples by capturing global structural features of the density. It does so by learning a function with
global parameters that successfully predicts the local shape of the density, i.e., the tangent plane of the manifold
along which the density concentrates. Three types of experiments showed that this idea works, yields improved
density estimation and classification error compared to its local predecessors.

Acknowledgments

The authors would like to thank the following funding organizations for support: NSERC, MITACS, and the Canada
Research Chairs. The authors are also grateful for the feedback and stimulating exchanges that helped to shape this
report, with Sam Roweis and Olivier Delalleau.

References

Bengio, Y., Delalleau, O., and Le Roux, N. (2005). The curse of dimensionality for local kernel machines. Techni-
cal Report 1258, Département d’informatique et recherche opérationnelle, Université de Montréal.

Bengio, Y. and Monperrus, M. (2005). Non-local manifold tangent learning. In Saul, L., Weiss, Y., and Bottou, L.,
editors, Advances in Neural Information Processing Systems 17. MIT Press.

Brand, M. (2003). Charting a manifold. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural
Information Processing Systems 15. MIT Press.

12

Decoste, D. and Scholkopf, B. (2002). Training invariant support vector machines. Machine Learning, 46:161–190.

Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. (2005). Neighbourhood component analysis. In Saul,
L., Weiss, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 17. MIT Press.

Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science,
290(5500):2323–2326.

Roweis, S., Saul, L., and Hinton, G. (2002). Global coordination of local linear models. In Dietterich, T., Becker,
S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14, Cambridge, MA.
MIT Press.

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem.
Neural Computation, 10:1299–1319.

Teh, Y. W. and Roweis, S. (2003). Automatic alignment of local representations. In Becker, S., Thrun, S., and
Obermayer, K., editors, Advances in Neural Information Processing Systems 15. MIT Press.

Tenenbaum, J., de Silva, V., and Langford, J. (2000). A global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500):2319–2323.

Vincent, P. and Bengio, Y. (2003). Manifold parzen windows. In Becker, S., Thrun, S., and Obermayer, K., editors,
Advances in Neural Information Processing Systems 15, Cambridge, MA. MIT Press.

13

