Introduction

(Hinton, Osindero and Teh, 2006. Hinton and Salakhutdinov, 2006; Bengio et al., 2007; Ranzato et al., 2007; Lee, Ekanadham and Ng, 2008) successfully train deep architectures

Underlying commonalities in these works:

- Unsupervised learning to initialize each layer in the network
- Each layer learns a representation of its input that serves as input for the next layer, and training progresses greedily

Principle of training a deep architecture by greedy layer-wise unsupervised training has been shown to be successful for deep connectionist architectures

Hypothesis

This deep training principle applies to deep architectures that comprise other kinds of primitive units

Attempt to exploit this principle to new deep architectures based on ensembles of deterministic or stochastic decision trees?

Distributed representation (Hinton, 1986) output at each level:

- For deterministic trees, transform input x into a binary code $h(x)$ representing the leaves in the ensemble into which the input falls, with one bit per node
- For probabilistic trees, transform input x into the probability vector $h(x)$ representing the likelihood of the input falling into each node in the ensemble, with one entry per node

Reconstruction Trees

Idea

Boost an ensemble of decision trees to reconstruct the input, minimizing some choice of reconstruction loss, e.g. log-loss for binary inputs

Also, can be very sparse in features used for splitting, i.e. splitting features need not be equivalent to features used in reconstruction

Training technique

Gradient-based greedy ensemble induction (Turian, 2007), generalized to multilabel task, one label per reconstruction dimension

Choose decision tree splits with steepest reconstruction loss gradient

Disadvantage

Slow to train

Speed of ordinary tree boosting $\times \neq$ reconstruction dimensions

Results

Data: MNIST discretized to four levels of grayscale, downsampled to 10K training examples

MNIST error of NN trained on different representations of input

Future work

(Bengio et al., 2007) indicate that greedy unsupervised layer-wise training is most useful when followed by supervised fine-tuning

Restricted Boltzmann Forests (RBFs)

Idea

Extend RBM framework to hidden layers with tree-structured groups of units, in order to obtain more complex representation $h(x)$ of inputs

RBM = RBF with depth 0 trees

Model

$E_2(x, h) = -h^T x - h^T W x - \varepsilon^T h + \lambda$ \hfill (13) (13)

$\ell(h)$ penalizes violations of tree constraints: one of two children subtrees under node gets shut off based on node value

Train with $\lambda \rightarrow \infty$, thus completely disallowing non-tree configurations

- $P(h|x)$ is same as with traditional RBM
- $P(h|x) = \prod_{i \in \text{tree}} P(h_{\text{node i}})$. Each $P(h_{\text{node i}} | x)$ can be computed in $O(\text{nodes } \in \text{ tree})$, so inference remains efficient by exploiting tree structure and sharing computations made at nodes in different levels

Training

Contrastive Divergence (Hinton, 2000) can be used just as in a regular RBM

Difference is in:

- sampling procedure of hidden layer given a value for input layer
- μ in computation of $P(h_i = 1 | x)$ for positive and negative phase updates

Classification results

IDBN = DBN stacking RBFs instead of RBMs

IDBN = IDBN with depth 0 trees

Results

Clusters learned by an RBF with a single tree of depth 6 (64 leaves, 128 clusters)

Results on the rotated MNIST digit dataset

Future work

- Extensions for trees with arbitrary graph structure and branching factors can be derived
- Learn the topology of the trees, possibly different in each tree, using gradually decreasing ℓ^1 regularization + greedy constructive training