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Clusterings learned by an RBF with two trees of depth 5 (64 leaves total, 4096 clusters total)

Future work
• Extentions for trees with arbitrary graph structure and branching factors can be derived
• Learn the topology of the trees, possibly different in each tree, using gradually decreasing `1 regularization + greedy constructive training

'

&

$

%

Restricted Boltzmann Forests (RBFs)
Idea

Extend RBM framework to hidden layers with tree-structured groups of units, in order
to obtain more complex representation ĥ(x) of inputs
RBM = RBF with depth 0 trees

Model
Eλ(x,h) = −b

T
x− h

T
Wx − c

T
h + λ · Ω(h)

Ω(h) penalizes violations of tree constraints: one of two children subtrees under node
gets shut off based on node value
Train with λ → ∞, thus completely disallowing non-tree configurations
• Pr(x|h) is same as with traditional RBM
• Pr(h|x) =

∏
tree Pr(hnodes∈tree|x). Each Pr(hnodes∈tree|x) can be computed in

O(|nodes ∈ tree|), so inference remains efficient by exploiting tree structure and
sharing computations made at nodes in different levels

Results
Clusterings learned by an RBF with a single tree of depth 6 (64 leaves, 128 clusters)
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Training
Contrastive Divergence (Hinton, 2000) can be used just
as in a regular RBM
Difference is in:
• sampling procedure of hidden layer given a value for

input layer
and

• in computation of Pr(hk = 1|x) for positive and nega-
tive phase updates

Classification results
fDBN = DBN stacking RBFs instead of RBMs
DBN = fDBN with depth 0 trees

Results on the rotated MNIST digit dataset
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Reconstruction Trees
Idea

Boost an ensemble of decision trees to reconstruct the input, minimizing some choice of
reconstruction loss, e.g. log-loss for binary inputs
Also, can be very sparse in features used for splitting, i.e. splitting features need not be
equivalent to features used in reconstruction

Training technique
Gradient-based greedy ensemble induction (Turian, 2007), generalized to multilabel task,
one label per reconstruction dimension
Choose decision tree splits with steepest reconstruction loss gradient

Disadvantage
Slow to train
Speed of ordinary tree boosting × # reconstruction dimensions

Results
Data: MNIST discretized to four levels of grayscale, downsampled to 10K training ex-
amples

MNIST error of NN trained on different representations of input

Future work
(Bengio et al., 2007) indicate that greedy unsupervised layer-wise training is most useful
when followed by supervised fine-tuning.

code:  h(x) =    −1  +1  −1  +1  −1
L5L4L3L2 L1

L1

L3 L4 L5

L2

h x

PSfrag replacements

x̂1 x̂2

x̂3 x̂4 x̂5

reconstruction: x̂ = x̂2 + x̂4

Reconstruction of validation examples
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Introduction
(Hinton, Osindero and Teh, 2006; Hinton and Salakhutdinov, 2006; Bengio et al., 2007; Ranzato et al., 2007; Lee, Ekanadham and Ng, 2008)
successfully train deep architectures
Underlying commonalities in these works:
• Unsupervised learning to initialize each layer in the network
• Each layer learns a representation of its input that serves as input for the next layer, and training progresses greedily

Principle of training a deep architecture by greedy layer-wise unsupervised training has been shown to be successful for deep connectionist architec-
tures

Hypothesis
This deep training principle applies to deep architectures that comprise other kinds of primitive units
Attempt to exploit this principle ⇒ new deep architectures based on ensembles of deterministic or stochastic decision trees?
Distributed representation (Hinton, 1986) output at each level:
• For deterministic trees, transform input x into a binary code h(x) representing the leaves in the ensemble into which the input falls, with one bit

per node
• For probabilistic trees, transform input x into the probability vector ĥ(x) representing the likelihood of the input falling into each node in the

ensemble, with one entry per node
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