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Introduction Restricted Boltzmann Forests (RBFs) [ éo.'gb} [ C%O éo.} [O.b‘ng h

(Hinton, Osindero and Teh, 2006; Hinton and Salakhutdinov, 2006; Bengio et al., 2007; Ranzato et al., 2007; Lee, Ekanadham and Ng, 2008)

successfully train deep architectures Idea \ W

Underlying commonalities in these works:

e Unsupervised learning to initialize each layer in the network Extend. RBM framework to hidden loayerAs with t%’ee—structured groups of units, in order (@0®@0 ...) x
. o , . , to obtain more complex representation h(x) of inputs
e Each layer learns a representation of its input that serves as input for the next layer, and training progresses greedily RBM = RBF with depth 0 trees
Principle of training a deep architecture by greedy layer-wise unsupervised training has been shown to be successful for deep connectionist architec- Tralnlng
tures
HYPO thesis Model Contrastive Divergence (Hinton, 2000) can be used just
E\(x,h) = —b"x — hTWx — ¢’h + \ - Q(h) as in a regular REM

This deep training principle applies to deep architectures that comprise other kinds of primitive units Difference is in:

Attempt to exploit this principle = new deep architectures based on ensembles of deterministic or stochastic decision trees?
Distributed representation (Hinton, 1986) output at each level:

()(h) penalizes violations of tree constraints: one of two children subtrees under node
gets shut off based on node value
Train with A — oo, thus completely disallowing non-tree configurations

e Pr(x|h) is same as with traditional RBM

e sampling procedure of hidden layer given a value for
input layer

e For deterministic trees, transform input x into a binary code h(x) representing the leaves in the ensemble into which the input falls, with one bit and

per node | e in computation of Pr(h; = 1|x) for positive and nega-
e For probabilistic trees, transform input x into the probability vector h(x) representing the likelihood of the input falling into each node in the o Pr(hfx) =[]} Pr(hW;Od@SEW ee|X). Each PrqhnOdGSEt’” 66‘?(? can be computed 1n tive phase updates
S ensemble, with one entry per node ) O(mades c tree. ), so inference remains efficient by exploiting tree structure and
- - sharing computations made at nodes in different levels Classification results
: fDBN = DBN stacking RBFs instead of RBMs
Reconstruction Trees Results DBN = fDBN with depth 0 trees
I d Clusterings learned by an RBF with a single tree of depth 6 (64 leaves, 128 clusters) o
cd / _ 6 3 O Z Results on the rotated MNIST digit dataset
Boost an ensemble of decision trees to reconstruct the input, minimizing some choice of 14 [ 1| & 3G 2 ke - | ngL\‘h
reconstruction loss, e.g. log-loss for binary inputs [ \ g 5 0O 4 10 s . op
Also, can be very sparse 1n features used for splitting, 1.e. splitting features need not be X3 X Xs, 7 \ g 3 o =8 - -
equivalent to features used in reconstruction @ L2 I 1 4 202 & . N .
— I 14 % o 2 = -
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Gradient-based greedy ensemble induction (Turian, 2007), generalized to multilabel task, code: hx)= |-1|+1|-1]|+1|-1 I 1 7% 3 L Z [
one label per reconstruction dimension L~~~ [ 1Y S @a SVMrbfl 1 2 3
.. : : : : reconstruction: X = X9 + X4
Choose decision tree splits with steepest reconstruction loss gradient fDBN layers
. Clusterings learned by an RBF with two trees of depth 5 (64 leaves total, 4096 clusters total)
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Future work

e Extentions for trees with arbitrary graph structure and branching factors can be derived

Future work

(Bengio et al., 2007) indi§ate that gree.:dy unsupervised layer-wise training 1s most useful e Learn the topology of the trees, possibly different in each tree, using gradually decreasing ¢ regularization + greedy constructive training
\_ when followed by supervised fine-tuning. ) o /




