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Conventional coexpression analysis looks at gene expression levels over diverse conditions.

Although such “condition independent” analyses provide useful generalized information, the

coexpression of genes can depend on biological context. Looking at gene coexpression in

a condition-dependent fashion identifies gene interactions relevant to more-specific biological

questions. This thesis addresses condition-dependent coexpression in the context of seed ger-

mination in Arabidopsis thaliana. We study two broad aspects of the problem: (i) detecting

pairwise interactions, and (ii) detecting three-way interactions. First, using gene expression data

gathered exclusively from mature seeds, we develop a coexpression network, SeedNet. We ana-

lyze its statistical properties and find, for example, that SeedNet bifurcates into two previously

undescribed components, one corresponding to germination and one to non-germination. Sec-

ond, we develop a detector for three-way interactions in gene expression data and demonstrate

its efficacy. In this approach, the coexpression of a pair of genes can depend on the expression

level of a third gene. That is, coexpression is conditioned on the transcriptional environment.

Because of the vast number of possible three-way interactions, there is an extremely large po-

tential for false positives, so it is crucial to accurately estimate the False Discovery Rate (FDR).

We show that extending approaches used for two-way interactions can significantly underesti-

mate the FDR of three-way interactions. The thesis develops and evaluates a new approach for

estimating FDR based on the bootstrap. We show that the bootstrap approach produces rea-

sonable estimates over a wide range of statistical conditions, whereas conventional approaches

rapidly break down. Finally, we use our detector and FDR estimates to add over 64,000 new,

highly-confident edges to SeedNet.
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Chapter 1

Introduction

Gene coexpression is a powerful bioinformatics tool [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Coexpressed

genes may be involved in the same biological process, and thus coexpression networks are often

used to investigate gene function [1, 2, 3, 5, 7, 8]. Methods for detecting, analyzing and clustering

pairs of coexpressed genes are now well developed. However, conventional coexpression analysis

looks at the expression levels of pairs of genes over a diverse set of conditions [2, 11]. Although

such “condition independent” analyses provide useful generalized information, the coexpression

of a pair of genes depends on the biological context, including environmental factors and the

expression levels of other genes. Looking at gene coexpression in a “condition dependent”

fashion should more precisely identify gene interactions relevant to answering more-specific

biological questions [1].

This thesis addresses this issue in the specific context of seed germination in Arabidopsis

thaliana, the model organism of plant biology. Intact viable seeds are in a state either of

germination or of dormancy. Dormancy is an evolutionarily acquired trait that prevents germi-

nation when seeds are not under favourable conditions, and serves both to give sufficient time

for seed dispersal and to distribute germination of a seed population over time. Germination

is an irreversible developmental process that consists of complex events happening between

imbibition (i.e., absorption of water) and emergence of the radicle, and has great agronomic

and ecological significance [1, 12]. The full mechanism of seed germination and dormancy has

attracted a lot of research but still remains unclear [1, 12]. This thesis aims to enhance our un-

derstanding of it with computational approaches applied to gene expression data. Our methods

1
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are condition-dependent, taking both biological conditions and transcriptional conditions into

consideration.

We study two aspects of the problem: (i) detecting pairwise interactions, and (ii) detect-

ing three-way interactions. In the first case, we build and analyze SeedNet [1], a coexpression

network based, not on a diverse set of data, but on data gathered exclusively from imbibed

mature seeds of Arabidopsis. In SeedNet, the nodes are genes and an edge between two genes

means that their expression profiles are highly correlated, i.e., the correlation coefficient ex-

ceeds some threshold, which is chosen so that the network fits a scale-free graph as closely as

possible [13]. (Geometric random graphs [14] were also tried, but they do not fit the network

at any threshold (Section 2.3.5).) We analyze the statistical properties of the network and find,

for example, that the network consists of two main clusters, one corresponding to germination

and one to non-germination. The analysis also reveals intriguing properties in the correlation

and covariance structure of the two clusters. The thesis provides a detailed development of the

methods used to construct and analyze SeedNet, including a robust algorithm for determining

the optimum correlation threshold for approximating a scale-free graph. These methods and

analysis techniques are not limited to seed germination in Arabidopsis, but are general and can

be applied to other organisms and other condition-dependent data. SeedNet itself is available

online as a community resource (http://vseed.nottingham.ac.uk). These results are described

in Chapter 2. Material in this chapter forms the computational contribution of [1]. The chapter

itself is also being submitted for publication as a separate paper.

In our second approach, detecting three-way interactions, the coexpression of a pair of genes

can depend on the expression level of a third (unspecified) gene. That is, coexpression is condi-

tioned on the transcriptional environment. Moreover, by searching for three-way interactions,

the thesis addresses another limitation of conventional coexpression analysis: it focusses on

pairwise relationships between genes. Pairwise coexpression is clearly too simplistic to describe

the complex relationships between gene expression levels, since these relationships can involve

multiple genes [15, 16, 17, 18, 19, 20, 21]. For example, the coexpression of two genes may be

modulated by a third gene [16, 20], and in genetic regulatory networks, the expression level of

a gene can be a combinatorial function of several transcription factors [15, 17, 18]. In general,

pairwise coexpression does not capture higher-order statistical dependencies or the complex
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biological relationships they reflect [19]. Methods are therefore needed for detecting three-way

(and more generally, multi-way) interactions in gene expression data.

To this end, we develop a simple algorithm for detecting three-way interactions in gene

expression data and demonstrate its efficacy on the seed data from Arabidopsis and on data from

yeast. We also show that discoveries made by the detector exhibit the expected correspondence

between three-way interaction and transcriptionally-dependent coexpression; that is, when three

genes interact, the coexpression of two of them depends on the expression level of the third.

Finally, we develop a bootstrap method for estimating the false discovery rate (FDR) of the

discoveries made by our detector. Applying our detector to the seed data and estimating the

FDR of the discoveries, we add over 64,000 new, highly-confident edges to SeedNet. These

edges cannot be detected by traditional, pairwise coexpression analysis. This is one way in

which three-way interaction analysis extends the usability of gene expression data. These

results are described in Chapter 3.

Because of the vast number of possible three-way interactions, there is a large potential for

false positives. Thus, a crucial step in the discovery process is the accurate estimation of the

false discovery rate (FDR) [22], since only if the FDR is low can a discovery be confidently

declared. Estimating the FDR of three-way interactions in gene expression data faces two main

challenges: (i) the underlying distribution of the data is unknown, and (ii) estimating the null

distribution is considerably more subtle than for two-way interactions.

The bootstrap is a well-known solution to the first problem [23], and this thesis explores

its utility in addressing the second problem. In particular, we develop a method based on the

bootstrap for estimating the FDR of our regression-based detector. We test the method and

compare it to other methods used in the literature, including permutation tests and an analytical

t-test [20, 23, 24]. Our tests show that these methods produce widely differing estimates on

both real and simulated data, often differing by more than an order of magnitude. In particular,

the bootstrap method consistently produces by far the largest estimates. This indicates that

either the bootstrap method is overestimating or the other methods are underestimating the

number of false discoveries.

It is impossible to determine which method is more accurate without knowing all the three-

way interactions in a data set. Since this is unknown for large biological datasets, we test the
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methods on simulated data, for which all interactions are known. While the simulations are a

highly simplified approximation of biological reality, they do provide strong evidence that the

bootstrap method is the most accurate over a wide range of statistical conditions. In particular,

while all the methods give good estimates on idealized data, the bootstrap method consistently

gives the best estimates on more complex data, while the other methods rapidly break down,

consistently underestimating the true number of false discoveries, often by more than an order

of magnitude. In sum, our bootstrap method gives the best available estimates of FDR for

three-way interactions over a wide range of statistical conditions. These results are described

in Chapter 4, which, together with Chapter 3, is being submitted for publication.



Chapter 2

Two-way interactions for seed

germination

2.1 Introduction

Seed germination and dormancy are widely seen in flowering plants and have great ecologi-

cal and agricultural importance. The internal mechanism by which genes work together to

maintain dormancy and to facilitate germination, however, is still poorly understood, albeit

actively sought. Two fundamental questions remain unanswered: how is germination com-

pleted, and how is dormancy maintained? A few genes involved in seed germination have been

identified [25], but how they interact to regulate germination is still largely unknown.

Gene interaction and regulation is often investigated using coexpression networks [1, 2, 4, 7,

8], since genes that are coexpressed may be involved in the same biological process. However,

context-independent coexpression analyses based on gene expression data from diverse sources,

such as AraNet [11], are perhaps not useful in answering specific biological questions, such as

questions about the regulation of seed germination. To address this specific question, we use

gene expression data from Arabidopsis thaliana generated exclusively from samples of germi-

nating and non-germinating seeds. More complicated methods such as supervised statistical

learning do not produce useful results when classifying germinating genes and dormant genes.

Instead we use a simple but robust correlation approach to build a coexpression network, called

5
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SeedNet [1], that gives biological insight into seed germination and dormancy. Node degree

in the network approximately obeys a power-law distribution. Three previously undescribed

regions of interactions are clearly present in the network, corresponding to germination, dor-

mancy and the transition between them [1]. The formation of these distinct regions is not

due to preferential expression during germination or dormancy, but due to correlation dur-

ing germination and during dormancy. Nevertheless, the region associated with germination

is enriched with genes that are preferentially expressed during germination, while the region

associated with dormancy is enriched with genes that are preferentially expressed during non-

germination. The false discovery rates for edges in the network are estimated to be extremely

low. Results based on our network also suggest that there is more complex transcriptional

regulation during dormancy than during germination [1].

2.2 Biological background

A dry quiescent seed resumes its metabolic activities shortly after imbibing water. Imbibing

water is crucial for either germination or dormancy. The uptake of water is rapid initially,

followed by a plateau, and increases again after finishing germination. Imbibition enlarges

the seed, weakens its coat, converts the membrane from gel state to sol state, and increases

oxygen permeability. Meanwhile, respiration and protein synthesis commence, enzymes are

activated, DNA damaged during maturation drying is repaired, and mitochondria is repaired

or synthesized. Extant mRNAs and newly transcribed mRNAs encode proteins, supporting the

germination process. Under favourable environmental conditions, the radicle (a part of seed

embryo that later becomes the primary root) penetrates the seed coat, marking the completion

of germination. If, for some unknown reasons, the radicle of an imbibed seed fails to protrude

its surrounding structures, we say that the seed enters dormancy. There are two types of

dormancy, coat-enhanced dormancy and embryo dormancy. Notice that dormancy does not

mean quiescence. Conversely, dormancy is busily maintained through a complex sequence of

enzymatic and metabolic activities. A dormant seed is internally busy, both in maintaining

its dormancy state and in receiving external signals, such as chilling, to break dormancy. It

germinates when properly stimulated by environmental and/or chemical stimuli.
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Causes of dormancy. An imbibed seed becomes dormant if its radicle encounters a me-

chanical barrier (e.g., constraining endosperm and testa), or the seed embryo itself prevents the

radicle from elongating (even in the absence of constraining structures). Dormancy is thought

to be due to deficiency in required substance for completing germination, or due to blockage by

the presence of certain substance. As an analogy, a car could not move forward if it is deficient

in gasoline or blocked by some barrier. This suspension of growth not only has theoretical sig-

nificance but also has practical benefits as it allows the seed to avoid bad seasons or premature

germination.

The effects of hormones in germination and dormancy. Two plant hormones, abscisic acid

(ABA) and gibberellins (GAs), play an important role in promoting dormancy and promot-

ing germination, respectively. ABA can prevent the embryo radicle from elongating, possibly

by preventing the cell wall from loosening. Endogenous ABA is prevalent in many dormant

seeds. For instance, sunflower seeds require continuous synthesis of ABA to maintain dormancy.

Developing seeds on a parent plant deficient in and insensitive to ABA would germinate pre-

cociously. In contrast, GA promotes and maintains germination, for example, by activating

endosperm-weakening enzymes to reduce the resistance to radicle growth from the surrounding

structures, or by neutralizing the effects of ABA .

Release from dormancy usually consists of two major steps. First, the dormant seed receives

dormancy-breaking signals and forms a signal transduction chain. The chain perhaps initiates

the synthesis of GAs, or causes the seed to become sensitive to GAs, or both. Second, dormancy-

maintaining mode is switched to dormancy-breaking mode, and structures surrounding the

embryo are weakened (by enzymes) to facilitate radicle emergence.

Seed dormancy has been studied for many years but still remains mysterious. The difficulty

mainly comes from the fact that the metabolism and respiration rate of imbibed dormant seeds

are virtually indistinguishable (sometimes only subtly different) from that of germinating seeds,

and that no cause-and-effect relationship can be established between particular proteins and

dormancy/germination. Many so-called germination-specific mRNAs are actually only related

to post-germination. In addition, the decisive events for dormancy or germination perhaps only

happen in a few embryonic cells, and thus could be easily overlooked in the presence of data

from other cells. It has been suggested that studying the changes of embryo transcripts during
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dormancy and germination may unravel this mystery [12].

2.3 Results

As described in [1], the data we use contain gene expression levels for 14,088 Arabidopsis

genes (after filtering) on 138 seed samples, of which 73 are non-germinating seeds and 65 are

germinating seeds. The seeds were maintained under diverse physiological and environmental

conditions (e.g., wild-type, mutation, low temperature, nitrate, far-red light, white and red

light, abscisic acid treatment, and gibberellin acid treatment), and represent a wide range of

developmental stages (e.g., after-ripened, primary dormant, and secondary dormant). The data

forms a 14,088 by 138 matrix of gene expression levels. Figure 2.1 shows the data’s histograms.

We use log-transformed expression data as it is much more Gaussian-like than the raw data, as

seen in Figure 2.1, and is therefore more appropriate for Pearson correlation.

2.3.1 Two large clusters

Using the gene expression profiles on the 65 germinating seeds and 73 non-germinating seeds, a

simple gene regulatory network, pertaining to seed germination and non-germination, was con-

structed by putting a threshold (cutoff) on the correlation coefficients between genes. Specifi-

cally, the network has an edge between two genes if and only if r >= τ , where r is the Pearson

correlation coefficient of the two gene expression profiles and τ is a given threshold. Different

values of τ define different networks, and we chose a value for τ that makes the network as close

to scale-free as possible (Section 2.3.4.2).

Agglomerative hierarchical clustering was performed on the above network using the R

function flashClust in the WGCNA package [7]. Clusters were merged based on their average

dissimilarity, where two genes have a dissimilarity of 0 if they are connected by an edge in the

network, and a dissimilarity of 1 otherwise. The flashClust function returns an ordering of

the genes, which was used in generating heatmaps of the network. Figure 2.2 gives an example

of such a heatmap of a network with τ = 0.6. Each column and each row represents a gene,

and a dark blue dot means that the two genes in that particular row and column are highly

correlated (i.e., have a correlation coefficient at least 0.6).
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(a) Raw expression levels (b) Log-transformed expression levels

Figure 2.1: Histograms of raw and log-transformed gene expression levels for the 14,088 Ara-
bidopsis genes on 138 seed samples.

Figure 2.2: A heatmap of a network constructed from gene pairs whose correlations exceed 0.6.
Two large clusters emerge from the heatmap.
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The heatmap shows two large clusters. One cluster, extending roughly from genes 2,500 to

7,800, we call cluster D (for dormancy). The other cluster, extending roughly from genes 10,000

to 13,500, we call cluster G (for germination). It is worth noting that it is not the case that

one cluster is due to correlation, while the other is due to anti-correlation, since the edges in

our network (and the dark blue dots in the heatmap) only represent positive correlations. If we

also display anti-correlated gene pairs, then the anti-correlations give rise to two new distinct

clusters, as seen in Figure 2.3, where the upper-right and lower-left clusters show anti-correlated

gene pairs.

Figure 2.3: A heatmap of a gene network constructed from gene pairs whose correlations exceed
0.6. In addition, the gene pairs whose correlations below -0.6 are plotted on the heatmap. The
two clusters along the diagonal line are the two clusters (as those in Figure 2.2), in which
genes are correlated. The two clusters off the diagonal show gene pairs that are anti-correlated
(correlation coefficients less than -0.6). They also indicate that genes between clusters tend to
be anti-correlated.

The two large clusters are robust. That is, they continue to emerge over a wide range of
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thresholds, τ , not just a single τ . We tested several values of τ , namely, τ = 0.40, 0.50, 0.60, 0.65,

0.70, 0.75 and 0.80, and found that each version of the network bifurcated into two large clusters.

Figure 2.4 shows the heatmaps of four of these networks. Different thresholds produce different

networks with different sizes: the higher the threshold, the smaller the network. Clearly, each

network has two large clusters. It would be suspicious if this bifurcation did not happen, as

that would suggest the two clusters were an artefact of a particular parameter setting rather

than a true biological phenomenon.

(a) τ = 0.4 (b) τ = 0.5

(c) τ = 0.6 (d) τ = 0.7

Figure 2.4: The heatmaps of different networks that correspond to different thresholds, τ . The
networks consistently bifurcate into two clusters.

However, this raises the question of which value of the threshold, τ , best defines the seed-

germination network. Too small a value would include many genes and edges that have nothing

to do with germination, while too large a value would exclude many genes and edges that are
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important for germination. In Section 2.3.4.2, we show that τ = 0.7 defines a network that best-

fits a scale-free graph; and in [1], we provide experimental evidence that at this threshold, the

network explains many of the properties of seed germination in Arabidopsis and has predictive

value.

In addition to robustness, the two large clusters also have a suggestive correlation structure.

Within each cluster, genes tend to be correlated (as one might expect), but between clusters,

genes tend to be anti-correlated (and not merely uncorrelated). For example, Figure 2.5(a)

shows a histogram of the correlation coefficients of all gene pairs within cluster G. Notice that

the vast majority of gene pairs within cluster G are positively correlated, and the histogram

is strongly biased towards positive values, with a peak near 0.5. Although some genes within

cluster G are anti-correlated, since the left-hand tail of the histogram includes negative values,

some as low as -0.6, the great majority of correlations are positive. Correlation coefficients for

gene pairs within cluster D have a very similar histogram (Figure 2.5(b)).

In contrast, Figure 2.5(c) shows a histogram of correlation coefficients of all gene pairs in

which one gene comes from cluster G and the other from cluster D. Note that the histogram is

biased towards negative values, with a peak near -0.4. That the two clusters tend to be anti-

correlated, instead of merely uncorrelated, suggests that there is an antagonising relationship

between them: the genes of one cluster tend to be upregulated while those of the other cluster

are downregulated. This seems consistent with the hypotheses that cluster G is related to

germination and cluster D to non-germination, a hypothesis that we examine more closely

next.

(a) (b) (c)

Figure 2.5: Histograms of correlation coefficients for gene pairs (a) in which both genes are
from cluster G, (b) in which both genes are from cluster D, and (c) in which one gene is from
cluster G and the other is from cluster D.
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2.3.1.1 The clusters are enriched with preferentially expressed genes

A gene is said to be preferentially expressed if its expression levels tend to be high in germinating

seeds and low in non-germinating seeds. We use gene significance [7] (abbreviated as GS) to

quantify the preferential expression of a gene.

Formally, GS is the correlation coefficient between gene expression levels and binary sample

traits, so its value is between -1 and +1. Specifically, let x = [x1, x2, ..., xN ] denote a gene’s

expression profile over N samples, and let y = [y1, y2, ..., yN ] denote sample traits, where yi is

either 1 or −1. In our case, the samples are seeds, and yi = 1 if seed i is germinating, and

yi = −1 otherwise. We call x an expression vector and y a trait vector. The Pearson correlation

coefficient between x and y is the gene significance, GS. In Appendix A.2 (Corollary 4), we show

that GS is proportional to the difference between the mean expression level on germinating seeds

and the mean expression level on non-germinating seeds. In fact, GS is equivalent to a t statistic

that measures the significance of this difference (Corollary 5 and [26]).

Intuitively, a GS value is significant if it rarely arises by chance. Figure 2.6 shows a histogram

(in red) of GS values from gene profiles and a histogram (in green) of GS values from randomly

permuted gene profiles.1 The green histogram shows that a GS value between -0.1 and +0.1

could easily arise by chance, and is therefore insignificant. In contrast, a GS values smaller

than -0.3 or larger than +0.3 is unlikely to arise by chance, and is therefore significant. This

amounts to a permutation test for statistical significance. We therefore define a gene to be

preferentially expressed during germination if its GS > +0.3, and to be preferentially expressed

during non-germination if its GS < -0.3.

The two clusters in Figure 2.2 are each enriched with preferentially expressed genes. Fig-

ure 2.7 shows a heatmap of a simple correlation network with τ = 0.6. Genes that are strongly

preferentially expressed (|GS| > 0.45) are highlighted on the diagonal.2 Yellow dots repre-

sent genes that have high preferential expression during germination (GS > 0.45); red dots

represent genes that have high preferential expression during non-germination (GS < -0.45).

Notice that yellow dots are concentrated in and around one cluster (cluster G), and red dots

1Because of the large number of genes involved, the shape of the green histogram is quite stable and changes
very little if it is regenerated using different random permutations [data not shown].

20.45 was chosen because it is larger than the significance level 0.3 and because it gave enough diagonal dots
in Figure 2.7 to illustrate the trend, but not so many as to saturate the figure.
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Figure 2.6: Histograms of GS for gene profiles (red) and for randomly permuted gene profiles
(green).
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are concentrated in and around the other cluster (cluster D). This figure shows the preferential

enrichment of the two clusters: cluster G is enriched with genes that have high preferential

expression during germination, and cluster D is enriched with genes that have high preferential

expression during non-germination.

Figure 2.7: A heatmap of a network constructed from gene pairs whose correlations between
the two genes are greater than 0.6. The yellow dots represent genes that are highly expressed
in germinating seeds (GS > 0.45), and the red dots represent genes that are highly expressed
in non-germinating seeds (GS < -0.45).

Figure 2.8 provides additional evidence for this preferential enrichment. It shows two his-

tograms of GS for each of the two clusters. Notice that the histogram for cluster G is biased

towards positive values, while the histogram for cluster D is biased towards negative values,

showing the tendency for genes in cluster G to be preferentially expressed during germination,

and the tendency for genes in cluster D to be preferentially expressed during non-germination.
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(a) histogram of GS values for cluster G (b) histogram of GS values for cluster D

Figure 2.8: Histograms of GS values in cluster G and in cluster D.

2.3.2 Contributing factors to correlation

As described in Section 2.3.1, agglomerative hierarchical clustering based on correlation pro-

duces two major clusters, one closely related to genes that are preferentially expressed during

germination, and the other to genes that are preferentially expressed during non-germination.

Preferential expression itself is a contributing factor to correlation. Coexpression or interaction

during germination and during dormancy is another contributing factor.

Since the two clusters are closely associated with preferential expression, preferential ex-

pression itself might be the dominant cause of correlation and cluster formation. After all,

genes that are high during germination and low during non-germination seem, on average, to

be high at the same time and low at the same time, and therefore correlated, even though

they might not be correlated during germination or during dormancy (Figure 2.9). Similarly,

they would be anti-correlated with the genes that are low during germination and high dur-

ing non-germination, which would form a different cluster. If this were the case, then none

of the results we have presented so far would be surprising. However, this section shows that

preferential expression contributes little to correlation and cluster formation. Instead, correla-

tion during germination and during non-germination is the dominant factor. High correlation

between genes (i.e., edges in our network) therefore reflects how genes work together during

germination and during dormancy.
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(a) preferential expression (b) preferential expression removed

Figure 2.9: An example illustrating the effect of preferential expression on correlation. (a)
The green dots show one gene expression profile, and the red dots show another. The vertical
heights of the first n1 = 65 dots are 10 + ei, i = 1, 2, ..., 65. The vertical heights of the
remaining n2 = 73 dots are 2 + ei, i = 1, 2, ..., 73. Here, ei is normally distributed with mean
0 and variance 1. The correlation coefficient between the green dots and the red dots is high
(0.94) on all n1 + n2 = 138 samples, while it is low on the first n1 = 65 samples (0.15) and
on the remaining n2 = 73 samples (0.04). In this case, preferential expression is the dominant
cause of the high correlation over all samples. (b) The preferential expression of each gene
is removed by making the first 65 expression levels have the same mean as the remaining 73
expression levels. The overall correlation now plummets from 0.94 to 0.08.
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2.3.2.1 Covariance decomposition

This section shows that in our gene expression data, preferential expression is a minor con-

tributing factor to covariance. We focus on covariance here, rather than correlation, because

covariance can be decomposed into a sum of contributions from independent parts: the contribu-

tion due to preferential expression, and the contribution due to coexpression during germination

and during non-germination. (Section 2.3.2.2 focusses on correlation.)

Our decomposition of covariance uses an ANOVA-like approach. First, we divide the seeds

into two groups, with group 1 consisting of germinating seeds, and group 2 consisting of non-

germinating seeds. The seeds in group 1 are labelled with 1, 2, ..., n1, and the seeds in group 2

are labelled with 1, 2, ..., n2. Letting xij be the expression level of gene x in seed j of group i

(and likewise for yij), the following equation gives the total covariance of the profiles of genes

x and y over all seeds:

Covtotal =
1

N

2∑
i=1

ni∑
j=1

(xij − x̄••)(yij − ȳ••), (2.1)

where N = n1 + n2 is the total number of seeds, and x̄•• =
∑2

i=1

∑ni
j=1 xij/N is the mean gene

expression level of gene x over all seeds (and likewise for ȳ••). Covtotal can be decomposed

into within-group covariance and between-group covariance, which are given by the following

equations:

Covwithin =
1

N

2∑
i=1

ni∑
j=1

(xij − x̄i•)(yij − ȳi•) (2.2)

Covbetween =
1

N

2∑
i=1

ni(x̄i• − x̄••)(ȳi• − ȳ••) (2.3)

where x̄i• =
∑ni

j=1 xij/ni is the mean gene expression level of gene x over seeds in group i

(and likewise for ȳi•). That is, x̄1• is the mean gene expression level over germinating seeds,

and x̄2• is the mean gene expression level over non-germinating seeds.

It can be shown that Covtotal = Covwithin + Covbetween (Appendix A.1). Intuitively,

Covbetween is the contribution to total covariance from preferential expression, i.e., from the
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change in mean gene expression level between germinating seeds and non-germinating seeds. In

contrast, Covwithin, is the contribution to total covariance from correlations during germination

and correlations during non-germination. More specifically,

Covwithin = α1Cov1 + α2Cov2, (2.4)

where αi = ni/N , i = 1, 2, and

Covi =
1

ni

ni∑
j=1

(xij − x̄i•)(yij − ȳi•) (2.5)

is the covariance over seeds in group i. Note that α1+α2 = 1. Thus, the within-group covariance

is a weighted average of the covariance over germinating seeds, Cov1, and the covariance over

non-germinating seeds, Cov2.

Figure 2.10 shows the decomposition of total covariance, Covtotal (in black), into Covwithin

(in red) and Covbetween (in blue). Each dot represents a randomly chosen gene pair. The

horizontal axis is their total covariance. The meaning of the vertical axis depends on dot colour:

a blue dot represents their between-group covariance, a red dot represent their within-group

covariance, and a black dot represent their total covariance. The red dots are clustered near

the black diagonal line, while the blue dots are clustered near the horizontal axis, meaning that

preferential expression accounts for almost none of the total covariance between genes, while

coexpression during germination and during non-germination accounts for almost all of the

total covariance. This is the case for both positive and negative covariance (i.e., for correlated

and anti-correlated gene pairs). In other words, preferential expression is a minor contributing

factor to correlation.

2.3.2.2 Removing preferential expression

This section provides additional evidence that preferential expression contributes little to cor-

relation. We first remove preferential expression from each gene’s profile. We then show that

the correlation of the gene profiles with preferential expression removed is almost identical to

that of the original gene profiles. Preferential expression is thus a minor contributing factor to
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Figure 2.10: The decomposition of covariances for 100,000 randomly chosen gene pairs. Each
gene pair is represented by a blue dot, a red dot and a black dot. For all three dots, the horizontal
axis is the total covariance between the two genes within the pair, denoted Covtotal. The
meaning of the vertical axis depends on dot colour. The y-coordinate of a blue dot represents
their between-group covariance, Covbetween, i.e., the contribution to total covariance due to
preferential expression. The y-coordinate of a red dot represents their within-group covariance,
Covwithin, i.e., the contribution to total covariance due to coexpression during germination and
during non-germination. The y-coordinate of a black dot, equal to its x-coordinate, represents
their total covariance, Covtotal. For all gene pairs, Covtotal = Covbetween + Covwithin.
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correlation, and therefore to cluster formation.

To remove preferential expression from a gene’s profile, we adjust the expression levels so

that the mean expression levels on the germinating and non-germinating seeds are the same

(as in Figure 2.9(b)). Specifically, using the notation of Section 2.3.2.1, we let x′ij = xij − x̄i•.

Then x̄′i• = 0. That is, in the adjusted profiles, the mean expression level on the germinating

seeds, x̄′1•, and the mean expression level on the non-germinating seeds, x̄′2•, are both 0. There

is therefore no preferential expression in the adjusted profiles (GS = 0, by Corollary 4 in

Appendix A.2); however, all other sources of variation remain (as in Figure 2.9).

Let c′ denote the correlation coefficient between two adjusted gene profiles, and c denote

the correlation coefficient between the two original (unadjusted) profiles. Figure 2.11 shows c′

versus c, where each dot represents a gene pair, the vertical axis represents c′, and the horizontal

axis represents c. The linear shape of the plot with a 45 degree slope means that c′ is very close

in value to c, i.e., removing preferential expression from gene profiles results in little change to

the correlations between genes. Preferential expression is therefore a minor contributing factor

to correlation and cluster formation.

2.3.3 Changes in correlation and variance

In this section, we look for changes in the behaviour of genes between germination and non-

germination. We consider two simple measures of behaviour: variance and correlation. Perhaps

surprisingly, we find little overall change in these behaviours. For instance, for genes that are

preferentially expressed during germination, there is little tendency for correlations to go up

or down when going from germination to non-germination. Individual gene pairs may change

their correlation, but the distribution of correlations does not change. In fact, in this regard,

genes that are preferentially expressed during germination are indistinguishable from randomly

chosen genes. Likewise for genes that are preferentially expressed during non-germination.

We let set G be the set of genes that are preferentially expressed during germination (i.e.,

for which GS > 0.3), and let set D be the set of genes that are preferentially expressed during

non-germination (i.e., for which GS < −0.3). The results below describe the behaviour of genes

in these two sets. Similar results hold for genes in the two large clusters (clusters G and D)

[data not shown].
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Figure 2.11: Correlation based on the adjusted gene profiles versus correlation based on the
original (unadjusted) gene profiles. Each dot represents a gene pair. The horizontal axis, c,
is the correlation computed on the original (unadjusted) gene profiles. The vertical axis, c

′
, is

the correlation computed on the adjusted gene profiles, after preferential expression has been
removed.
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2.3.3.1 Preferential correlation

Until now, we have looked at how genes are correlated overall. Now, we look at how they

are correlated during germination, and how they are correlated during non-germination, and

we look for differences. For instance, we might expect genes that are preferentially expressed

during germination to also be preferentially correlated during germination, that is, to be more

correlated during germination than during non-germination. In the simplest case, a cluster

of genes that work together to promote germination might turn on and off together during

germination, while they might simply remain off during non-germination. More generally, the

activity levels of such genes might be high and fluctuate coordinatedly during germination,

but remain low and fluctuate randomly during non-germination. Such genes would be both

preferentially expressed and preferentially correlated during germination.

Interestingly, our results show that such genes are not the norm. Instead, genes that are

preferentially expressed during germination tend to be equally correlated during germination

and non-germination. Some gene pairs may change their correlation, but there is no overall

tendency for correlation to increase or decrease. In fact, for genes that are preferentially ex-

pressed during germination, the distribution of correlation change is almost identical to that of

randomly chosen genes. This leads to the following rather unintuitive conclusion: the tendency

for such genes to work together does not seem to depend in any special way on whether a seed

is germinating or dormant. This can perhaps be interpreted as follows: these genes tend to

work together like a machine, both during germination and during non-germination (and per-

haps at all times), but the machine is turned up during germination and turned down during

non-germination.3

The rest of this section provides evidence to support this conclusion. To this end, we let

c1 denote the correlation coefficient of two gene expression profiles on the germinating seeds,

and let c2 denote their correlation coefficient on the non-germinating seeds. We shall present

histograms of c1, c2 and c1 − c2 for various sets of genes.

Figure 2.12(a) shows a histogram of c1 for all gene pairs. Notice that the histogram is

roughly symmetric with a mean of 0. The distribution of c2 for all gene pairs is similar [data

3This interpretation applies to seed samples and may not extend, e.g., to AraNet [11].
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not shown]. Intuitively, this means that randomly chosen gene pairs have no tendency to be

either correlated or anti-correlated during germination. Likewise during non-germination [data

not shown]. Thus there is no bias in the background distributions of correlation. In contrast,

Figure 2.13(a) shows a histogram of c1 for gene pairs in which both genes are preferentially

expressed during germination (i.e., both genes are in set G). This histogram is clearly biased

towards positive values, with a peak near c1 = 0.4. These gene pairs therefore have a strong bias

towards correlation during germination, as one might expect. Figure 2.13(b) shows a histogram

of c2 for the same gene pairs. This histogram is similar to the previous one. It is clearly biased

towards positive values, with a peak just above c2 = 0.4. Thus, genes that are preferentially

expressed during germination tend to be just as correlated during non-germination as during

germination. If anything, they tend to be slightly more correlated during non-germination.

Figure 2.14(a) verifies this. It shows a histogram of c1− c2 for the same genes pairs (i.e., for

genes in set G). The histogram is roughly symmetric with a peak near 0, demonstrating that

there is no tendency for c1 to be higher than c2. If anything, there is a very slight tendency for

c1 to be lower than c2 (i.e., for c1 − c2 to be negative). Figure 2.12(b) shows that genes in set

G are very much like other genes in this respect. The figure shows a histogram of c1− c2 for all

gene pairs. Notice that the mean, variance and shape of the two histograms are very similar.

Thus, there appears to be nothing special about the change in correlation between germination

and non-germination for genes that are preferentially expressed during germination. Thus,

even though their expression levels decrease significantly during non-germination, these genes

are co-expressed just as much during non-germination as during germination. If anything, they

are co-expressed slightly more during non-germination.

Similar results hold for genes that are preferentially expressed during non-germination. This

is illustrated in Figure 2.14(b), which shows a histogram of c1 − c2 for such genes (i.e., genes

in set D). Again, the histogram is roughly symmetric with a peak near zero. In this case,

however, the peak is slightly more negative than for genes that are preferentially expressed

during germination. Thus, genes in set D tend to be slightly more correlated during non-

germination.

In sum, for genes that are preferentially expressed during germination or non-germination,

the histograms of correlation are very different from the background, while the histograms of
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correlation change are not.

(a) (b)

Figure 2.12: (a) Histogram of correlation c1 on germinating seeds for all gene pairs. It is
roughly symmetric around 0. The distribution of c2 for all gene pairs is similar. (b) Histogram
of correlation change c1 − c2 from germination to non-germination for all gene pairs.

(a) (b)

Figure 2.13: Histogram of correlation coefficients on germinating seeds for genes in set G (left),
and histogram of correlation coefficients on non-germinating seeds for genes in set G (right).

2.3.3.2 Preferential variance

In this section, we look at the variance of a gene’s expression levels during germination, and

its variance during non-germination, and we look for differences. For instance, we might ex-

pect that genes that are preferentially expressed during germination to also have preferential

variance during germination, that is, to have higher variance during germination than during
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(a) (b)

Figure 2.14: Histogram of correlation change from germination to non-germination for genes in
set G (left), and for genes in set D (right). Both histograms are roughly symmetric around 0.

non-germination. As in the case of preferential correlation, a group of genes that promote

germination might turn on and off together during germination, and simply remain off dur-

ing non-germination. More generally, the expression levels of such genes might be high and

fluctuate widely (and coordinatedly) during germination, but remain largely quiescent dur-

ing non-germination. Such genes would be both preferentially expressed and have preferential

variance during germination.

Our results, however, do not support this expectation. In fact, genes of all kinds show a

slightly higher variance during non-germination than during germination.4 To show this, let v1

be the variance of a gene expression profile on the germinating seeds, and let v2 be its variance

on the non-germinating seeds. Figure 2.15 shows histograms of log v1 − log v2. Figure 2.15(c)

shows that randomly chosen genes tend to have slightly higher variance during non-germination.

Figures 2.15(a) and 2.15(b) show the same result for genes that are preferentially expressed

during germination and non-germination, respectively. In fact, all three histograms have roughly

the same shape, with a bias towards negative values and a peak at −0.2. (v2 therefore tends to

be slightly greater than v1.) Thus, in terms of change of variance (as for change of correlation),

genes that are preferentially expressed during germination are indistinguishable from randomly

chosen genes. Likewise for genes that are preferentially expressed during non-germination.

4We are speaking here of the variance not of the raw expression data, but of the log-transformed data, which
is used throughout this thesis. This variance thus represents not the absolute change in raw expression levels,
but their proportionate change.
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(a) Genes in set G (b) Genes in set D

(c) All genes

Figure 2.15: Histograms of log10 v1 − log10 v2 for genes in set G, genes in set D, and all genes.
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2.3.4 Power-law analysis and cutoff estimation

As described in Section 2.3.1, SeedNet [1] was constructed by putting a threshold (cutoff) on

the correlation coefficients between genes. Specifically, the network has an edge between two

genes if and only if r >= τ , where r is the Pearson correlation coefficient of the two gene

expression profiles and τ is a given threshold. Different values of τ define different networks.

For SeedNet, a threshold of τ = 0.75 was used. This threshold was chosen because it gives a

network that closely fits a scale-free graph [13]. This section describes our method for fitting a

correlation network to a scale-free graph and for choosing the optimum threshold. A graph is

scale-free if its node degree has a power-law distribution, that is, if the probability that a node

has degree d is proportional to d−k, for some k.

2.3.4.1 Fitting a power law with cumulative frequencies

One way to fit a power law distribution to a graph involves using a histogram to approximate

the probability distribution of node degree, and then fit the histogram to a power law [26]. Un-

fortunately, methods based on this idea depend on the arbitrary choice of number of histogram

bins or bin width. Furthermore, grouping data points into bins can cause information loss since

points within each bin are rendered indistinguishable. Moreover, histograms can also be quite

noisy, since bin height can have a high variance. The noise can be reduced by using wider bins,

but doing so increases information loss.

To avoid these problems, the method used to construct SeedNet is based on cumulative

frequencies. Given a graph, we define the empirical cumulative frequency of degree d, denoted

empCF(d), to be the number of nodes in the network with degree at most d. Given a power law,

we define the expected cumulative frequency of degree d, denoted expCF(d), to be the expected

number of nodes with degree at most d. Empirical cumulative frequency is the cumulative

analogue of a histogram. Figure 2.16 shows a plot of empirical cumulative frequency for SeedNet.

Notice that it is a smooth curve that increases from left to right. It has more points than a

histogram, because it has one point per degree, instead of one per histogram bin. Also, there

is no information loss since nodes of different degree are not grouped into a single bin.

Our method fits empCF(d) to expCF(d) over all values of d in the network (Section 2.4.1).
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Figure 2.16: Empirical cumulative frequency versus node degree. A blue dot represent the
number of nodes with degree at most d, where d is a node degree in the network.
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If the fit is perfect, a plot of empCF(d) versus expCF(d) should be a straight line passing

through the origin. The worse the fit, the more the plot will deviate from this straight line.

This is illustrated in Figure 2.17, where empCF(d) is plotted against expCF(d) for several

different power laws, d−k. In each plot, the blue curve is a plot of empCF(d) versus expCF(d)

for SeedNet. The diagonal red line is defined by the equation empCF(d) = expCF(d), which

represents a perfect fit. The closer the blue curve is to the red line, the better the fit between

the power law and SeedNet. Each plot in Figure 2.17 also gives a value for nFit, a quantitative

measure of how well the graph fits the power law based on total squared error (Sections 2.4.1

and 2.4.2). The smaller the value of nFit, the better the fit.

In Figure 2.17, the best fit occurs at k = 0.9. A more careful analysis (below) shows that

the optimal value of k is actually 0.91, which is illustrated in Figure 2.19. As k increases above

0.91, the fit worsens: the blue curve deviates from the red line and becomes more and more

concave. As k decreases below 0.91, the fit also worsens: the blue curve deviates from the

red line and becomes more and more convex. Section 2.4.1 describes a process for finding the

optimal value of k.

2.3.4.2 The optimal network

We analyzed many different networks, each corresponding to a different correlation threshold.

For each network, we found a power law that best fits the network. For some networks, a power

law could be found that fit the network well. For other networks, no power had a good fit. We

found that a network with threshold τ = 0.695 has the best fit to a power law (Section 2.4.2).

For simplicity, we round τ to two decimal places, giving τ = 0.70. Figure 2.18 shows a heatmap

of this network.

Figure 2.19 shows the empirical CF of this network versus the expected CF of the power

law with k = 0.91. This is the power law that fits the network best. Among the 10,782 nodes

(shown as blue dots) with degree greater than 0, the first 10,500 (those with lowest degree)

closely obey a power law with k = 0.91, while the last 282 nodes (those with highest degree)

disobey the power law.

Figure 2.20 gives a different view of the fit between the network and the power law. The

blue dots represent the height of a histogram bin of node degree (with bin width 20), and the
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(a) nFit = 0.288819 (b) nFit = 0.149681 (c) nFit = 0.00974111

(d) nFit = 0.122717 (e) nFit = 0.221711 (f) nFit = 0.292304

Figure 2.17: Fitting different power laws, d−k, to a network defined by correlation cutoff τ = 0.7.
Here, k = 0.5, 0.7, 0.9, 1.1, 1.3 and 1.5. Both visually and in terms of nFit, the best fit is
achieved with k = 0.9.
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Figure 2.18: A heatmap of a network constructed from gene pairs whose correlations exceed
0.7.
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Figure 2.19: Empirical cumulative frequency versus expected cumulative frequency for node
degree in a network with threshold τ = 0.7. The red line shows the the power law fit for the
cumulative node degree distribution. The distribution approximately follows d−0.91, where d is
node degree. nFit = 0.00826538.
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red curve represents the best fitting power law (proportional to d−k, where k = 0.91). Note

that the network closely obeys the power law for nodes with degree ranging from 1 to over 1000,

that is, over more than three orders of magnitude.
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Figure 2.20: Number of nodes versus node degree for the network of Figure 2.19. The red curve
is the power law that best fits the network.

The networks generated by other correlation cutoffs, τ = 0.5, 0.6 and 0.8, are best fit by

power laws with k = 0.49, 0.72 and 1.04, respectively. Figure 2.21 shows the fits. Although each

of the blue curves represents a best fit, they are not equally good. Also, the network has an

imperfect fit to a power law for nodes of low degree (Figure 2.21(a) and Figure 2.21(c)) and/or

for nodes of high degree (all of the blue curves). Notice that for τ = 0.5, the fit is particularly

bad for nodes of high degree (Figure 2.21(b)).

Among the four networks defined by τ = 0.5, 0.6, 0.7 and 0.8, the blue curve is visually

closest to the red diagonal line in the network with threshold τ = 0.7 (Figure 2.19). This
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is also true in a least squares sense, as reflected by the fitness measure nFit (Section 2.4.2).

Moreover, nFit is equivalent to non-centered correlation (Section 2.4.2). Thus, when τ = 0.7

and k = 0.91, the empirical CF is more highly correlated with the expected CF than for any

other combination of τ and k.

2.3.5 Geometric random graphs

There is evidence that, when fitting protein-protein networks, a geometric random graph is

more appropriate than a scale-free model in terms of modelling graphlet frequency, network

diameter and clustering coefficients [14]. However, we show that geometric random graphs

are not appropriate for modelling node degree distribution in coexpression networks, such as

SeedNet. (This is also true for protein-protein networks, as noted by the same authors [14].) In

fact, the node degree distribution in geometric random graphs is very different from the node

degree distribution in coexpression networks (Appendix A.3). We conjecture that one reason

for this is that coexpression networks have a transitive property that protein-protein networks

do not. Specifically, if gene g1 is correlated with g2, and g2 is correlated with g3, then in general,

g1 will also be correlated with g3 (though to a lesser extent). This is not true of protein-protein

networks. That is, if protein p1 interacts with p2, and p2 interacts with p3, then in general p1

need not interact with p3.

2.3.6 False discovery rate

This section describes how we estimate an upper bound on the false discovery rate (FDR) for

each edge in our network.

Given a threshold τ , a discovery is a pair of genes for which ρ ≥ τ , where ρ is the Pearson

correlation coefficient of the two gene expression profiles in our data set. A discovery is intended

to be a pair of genes whose expression levels are correlated. However, because any real data

set is finite, the correlation coefficient estimated from the data will in general be different from

the true correlation coefficient (i.e., the correlation coefficient estimated from an infinite set of

data). In particular, two genes that are independent (and therefore uncorrelated) may appear

to be correlated and lead to false discoveries. More precisely, a false discovery is a pair of

genes whose expression levels are independent, but whose correlation coefficient on our data set
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(a) τ = 0.5, nF it = 0.0228881
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(b) τ = 0.5

(c) τ = 0.6, nF it = 0.0152530
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(d) τ = 0.6

(e) τ = 0.8, nF it = 0.0121066
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(f) τ = 0.8

Figure 2.21: Power law fit for degree distribution in three networks with thresholds, τ = 0.5, 0.6
and 0.8, respectively. The k value for d−k is labelled on top of each plot of empirical cumulative
frequency versus expected cumulative frequency.
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exceeds τ . The false discovery rate (FDR) is the proportion of discoveries that are expected

to be false [22]. That is, FDR = m/M , where M is the number of discoveries, and m is the

expected number of false discoveries. In general, as the threshold τ increases, the number of

discoveries and the FDR both decrease.

FDRs cannot be computed exactly, since although M is known, m is not, since we do

not know which discoveries are true and which are false. However, it is possible to estimate

an upper bound on the FDR, and a framework for doing so is developed in 2.4.3. Adapting

this framework, we developed a method for estimating an upper bound on the FDR for the

detection of coexpressed genes (i.e., genes with correlated expression levels). The details are

given in Algorithm 2.4.2 in Section 2.4.3.

As the threshold, τ , varies, the FDR also varies, tracing out a curve. Figure 2.22 shows

such a curve for our Arabidopsis data. Using this curve, we can read off the FDR for any given

threshold. For the optimal value of τ = 0.7, the estimated FDR is 0. At this value, the variance

of the estimated FDR is extremely small [data not shown].

Figure 2.22: False discovery rate (FDR) versus correlation threshold (τ). The right-hand curve
is a close up of the tail of the left-hand curve.
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2.4 Materials and Methods

2.4.1 Fitting a power law to a graph

This section describes our algorithm for finding the power law, d−k, that best fits a given graph,

G. We break the problem into two parts. First, we assume that k is given and measure how

well graph G fits the power law d−k. Second, we test many different values of k and choose the

value that best fits the graph.

To measure how well a graph fits a given power law, recall from Section 2.3.4.1 that a

good fit implies that for nodes of any degree, d, the empirical cumulative frequency, empCF(d),

is approximately equal to the expected cumulative frequency, expCF(d). To make this idea

precise, let D = {d1, ..., dn} be the set of node degrees in the graph. In addition, let yi be

the number of nodes with degree at most di in graph G. That is, yi = empCF(di). If we let

zi =
∑d=di

d=1 d
−k, then for graphs that obey the power law d−k, the expected number of nodes

of degree at most di is proportional to zi. That is, expCF(di) = αzi, for some α > 0.

If graph G obeys the power law d−k, then we should have that empCF(di) ≈ expCF(di)

for 1 ≤ i ≤ n. That is, yi ≈ αzi, for some α > 0. One way to measure the accuracy of this

approximation is with a least squares fit, that is, by finding the value of α that minimizes the

total squared error,
∑

i(yi − αzi)
2. This is a 1-dimensional regression problem and has the

solution α =
∑

i yizi/
∑

i z
2
i [27]. Using this value of α, the total squared error simplifies to

∑
i

(yi − αzi)2 =

∑
y2i
∑
z2i − (

∑
yizi)

2∑
z2i

(2.6)

This equation tells us how well a graph fits a particular power law, d−k. To find the power

law that best fits the graph, we test many different values of k within a range, e.g., from 0.5

to 1.5 in increments of 0.1. The values of zi depend on k, so for each value of k, we recompute

the zi and then recompute the total squared error using Equation 2.6. Finally, we choose the

value of k that gives the smallest total squared error. This process is illustrated in Figure 2.17.
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2.4.2 Choosing a correlation threshold

Recall that SeedNet contains an edge between two genes if and only if the correlation between

the two gene profiles exceeds a given threshold, τ . Different values of τ give different networks,

and as described in Section 2.3.4.2, τ is chosen to yield a network that fits a power law as

closely as possible. However, when judging how well different networks fit a power law, it is

inappropriate to simply compare the total squared errors as given by Equation 2.6. This is

because two networks can fit a power law equally well but have very different squared errors.

To see this, consider the three plots on the left side of Figure 2.21. Each plot represents a

different network and has a different scale on the vertical axis. If two such plots looked exactly

the same, then the two networks would fit a power law equally well, even if the vertical scales

were different. However, changing the vertical scale changes the squared error. For instance,

doubling the vertical scale would double all the errors and quadruple the total squared error.

To fix this problem, we normalize the total squared error to compensate for differences in

vertical scale. In particular, we define the normalized fit, nFit, of a graph to a given power law

as follows:

nFit2 = Total Squared Error/
∑

i y
2
i

=
∑

i(yi − αzi)2/
∑

i y
2
i

=
∑
y2i

∑
z2i−(

∑
yizi)

2∑
y2i

∑
z2i

= 1− (
∑
yizi)

2/(
∑
y2i
∑
z2i )

(2.7)

where the third equality is from Equation 2.6. Geometrically, nFit is the sine of the angle

between the vectors y = (y1, ..., yn) and z = (z1, ..., zn).

Note that since the yi’s do not depend on the power law, d−k, the same power law that

minimizes total squared error for a given graph will also minimize nFit. We can therefore use

nFit to determine which power law best fits a graph (Figure 2.17). More importantly, we can

use nFit to compare how well different graphs fit a power law (Figure 2.21).

nFit is also closely related to correlation. In particular, the last line of Equation 2.7 can be

rewritten as follows:

nFit2 = 1− corr(y, z)2

where corr(y, z) =
∑
yizi/

√∑
y2i
∑
z2i . Note that corr(y, z) can be viewed as an uncentered
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correlation coefficient of y and z, i.e., one in which the means are not subtracted from yi and

zi. Thus, nFit is minimized when uncentered correlation is maximized.

The uncenteredness of the correlation arises because in the case of a perfect fit, yi and zi are

directly proportional (yi = αzi), instead of having an arbitrary linear relationship (yi = αzi+β).

Geometrically, this means that the red lines in Figure 2.17 pass through the origin. We note

that by the Cauchy-Schwartz inequality [28], uncentered correlation takes values between +1

and −1, just as ordinary correlation does. Thus, nFit2 takes values between 0 and 1, so its

range of values is independent of the vertical scale.

Our method for computing nFit is summarized in Algorithm 2.4.1 below. Using this algo-

rithm as a subroutine, we estimate the optimal correlation threshold, τ , as follows:

1. For each value of τ in a range of values (say, 0.3 to 0.9 in increments of 0.1),

(a) Construct a coexpression network, G, with cutoff τ .

(b) For each value of k in a range of values (say, 0.5 to 1.5 in increments of 0.1), let

nFit = compute nfit(k,G).

2. Return the combination of τ and k that gives the smallest value of nFit.

Once optimal values of τ and k are returned, this procedure can be run again in a small

neighbourhood around these values to obtain more accurate values of τ and k. In this way,

we compute the optimal correlation threshold, τ , and the power law, d−k, that best fits the

resulting network.
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Algorithm 2.4.1: compute nfit(k,G)

input: k, a positive integer

G, a graph of nodes and edges

output: nFit, a measure of how well graph G fits the power law d−k

Let {d1, ..., dn} be the set of node degrees in graph G

for each i ∈ {1, 2, ..., n}

do

Let yi be the number of nodes with degree at most di

Let zi =
∑d=di

d=1 d−k

Let nFit =
√

1− (
∑
yizi)2/(

∑
y2i
∑
z2i )

Return nFit

2.4.3 Estimating the false discovery rate

As described in Section 2.3.6, gene pairs whose expression profiles have an estimated Pear-

son correlation greater than a given threshold, τ , are called discoveries. Genes pairs whose

expression levels are independent but whose estimated correlation is above τ are called false

discoveries. This section describes our method for estimating an upper bound on the false

discovery rate by using repeated permutation tests. Details are given in Algorithm 2.4.2 below.

The algorithm has two inputs, a threshold, τ , and a set of gene pairs, GP. In practice, we set

GP to be the set of all possible gene pairs, in which case the algorithm returns an estimated

upper bound on the FDR at a threshold of τ . However, to understand the algorithm, it is

helpful to consider its effect on other possible sets. In addition to its arguments, the algorithm

assumes the existence of a data set for a set of genes, G.
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Algorithm 2.4.2: estimate fdr(GP, τ)

input: GP, a set of (unordered) gene pairs

τ , a threshold on correlation coefficient

output: an upper bound on the false discovery rate at threshold τ

1. Let G be the set of all genes in the data set

% Compute the number of discoveries, M .

2. Let GP0 be the set of all (unordered) gene pairs (g1, g2) with g1 and g2 in G

3. For each pair of genes (g1, g2) in GP0,

let ρ(g1, g2) be the correlation coefficient of their expression profiles

4. Let M be the number of gene pairs (g1, g2) in GP0 for which ρ(g1, g2) ≥ τ

% Generate 1000 randomly permuted data sets and estimate a FDR for each.

5. For k from 1 to 1000, do

a. For each gene in G, randomly permute its expression profile.

% Count the number of false discoveries, m, in the permuted data set.

b. For each pair of genes (g1, g2) in GP,

let ρr(g1, g2) be the correlation coefficient of their randomly permuted profiles

c. Let m be the number of gene pairs (g1, g2) in GP for which ρr(g1, g2) ≥ τ .

d. Let fdr(k) = m/M % false discovery rate for the permuted data set

% Estimate the expected rate of false discoveries.

6. Let FDR be the average value of fdr(k) over all k.

7. Return FDR

Algorithm 2.4.2 has two important properties. First, it is monotonic in GP. That is, suppose

we run the algorithm twice, using the same threshold τ , but two different sets of gene pairs,

GP1 and GP2, to give two different FDR estimates, FDR1 and FDR2. If GP1 ⊆ GP2, then

FDR1 ≤ FDR2. Second, if GP1 is the (unknown) set of independent gene pairs, then FDR1

will be an actual estimate of the FDR (not just an upper bound). Consequently, if GP2 is the

set of all possible gene pairs, then GP1 ⊆ GP2, and so FDR1 ≤ FDR2. That is, FDR2 is an

upper bound on the FDR estimate.

To see the first property, that Algorithm 2.4.2 is monotonic in GP, it is enough to note that
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in line 5.c. of the algorithm, m can only get larger as GP gets larger.

To see the second property, suppose that GP is the set of independent gene pairs. The

algorithm uses permutation tests to estimate the number of pairs in GP that will be counted

as discoveries. These are the false discoveries. Line 5.c. of the algorithm counts the number of

such false discoveries, m, that are made when the expression profile of each gene is permuted

randomly. This is done 1000 times for 1000 different random permutations, giving 1000 different

counts, which are then averaged to give the expected number of false discoveries. This is

converted to a false discovery rate by dividing by the number of discoveries, M .

2.5 Conclusions and biological interpretation

This chapter, published in part in [1], describes the construction and analysis of SeedNet, a

coexpression network based, not on a diverse set of data, but on data gathered exclusively from

imbibed mature seeds of Arabidopsis thaliana. In SeedNet, the nodes are genes and an edge

between two genes means that their expression profiles are highly correlated, i.e., the correlation

coefficient exceeds some threshold, which is chosen so that the network fits a scale-free graph

as closely as possible [13]. The FDR of the edges at this threshold was estimated and shown to

be extremely small (i.e., effectively zero).

We analyzed the correlation and covariance properties of the network and found, firstly,

that the network consists of two main clusters, one corresponding to germination and one to

non-germination. We showed, moreover, that the correlation between two genes is not due

to preferential expression, but due to correlation during seed germination and during non-

germination. Correlation, and the clusters based on it, is therefore not a proxy for preferential

expression, but reflects other factors, specifically biological processes that operate during ger-

mination and during non-germination.

The analysis also revealed other intriguing properties in the correlation and covariance

structure of the two clusters. For example, genes that are preferentially expressed during

germination tend to be equally correlated during germination and non-germination. Thus,

genes that are “turned up” during germination seem to work together in the same way both

during germination and during non-germination. Likewise for genes that are preferentially
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expressed during non-germination.

The chapter provides a detailed development of the methods used to construct and analyze

SeedNet. The development includes mathematical proofs of results on covariance decomposition

and preferential expression, and a robust algorithm for determining the optimum correlation

threshold for approximating a scale-free graph. These methods and analysis techniques are

not limited to seed germination in Arabidopsis, but are general and can be applied to other

organisms and other condition-dependent data. SeedNet itself is available online as a community

resource (http://vseed.nottingham.ac.uk).

Figure 2.23: A visualization of SeedNet (image courtesy of George W. Bassel), reproduced
from [1]. The left part of the network represents cluster D, and the right part represents cluster
G. The red and blue dots represent genes that are significantly associated with non-germination
and germination, respectively [1].

Figure 2.23 shows a visualization of SeedNet, in which the two large clusters are clearly

present. [1] provides additional biological evidence that cluster D is associated with dormancy,

and cluster G is associated with germination. For instance, it examines the distribution of
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ABA5 up/down-regulated genes and GA6 up/down-regulated genes throughout the network.

It also provides evidence suggesting seed dormancy evolved by incorporating older, existing

pathways that regulate abiotic stress, since cluster D is enriched with vegetative abiotic stress

response genes. Analysis of the network also suggests that staying in dormancy requires more

transcriptional regulation than completing germination. Finally, [1] investigates substructure

within the two large clusters. For instance, Figure 2.2 suggests the existence of a sub-cluster

in the upper left corner of cluster D. [1] shows that this region corresponds to the top of the

network in Figure 2.23. More importantly, it is shown to correspond to the biological transition

between dormancy and germination.

In terms of SeedNet’s predictive power, first, the condition-dependent approach used for

SeedNet enabled us (in [1]) to capture more known interactions unique to seed germination than

condition-independent approaches (such as AraNet [11]). SeedNet is therefore a richer source

of new hypotheses about functional interactions between regulators of seed germination. In

SeedNet, positive regulators and negative regulators of seed germination interact, and their net

combined strength determines whether a seed remains dormant or completes germination [1].

Second, uncharacterized hub genes, i.e., the genes with the highest degree of transcriptional

coordination in the network, are good candidates for predicted regulators of seed germination.

In [1], 8 such hub genes are experimentally characterized, with a 50% success rate, much

higher than the 22% success rate achieved by merely looking at genes with high preferential

expression [1].

5Abscisic acid, which inhibits seed germination.
6Gibberellic acid, which promotes seed germination.



Chapter 3

Three-way interactions and

bootstrap estimation of FDR

3.1 Introduction

In Chapter 2, we looked at gene coexpression in Arabidopsis under specific biological conditions,

namely seed germination and non-germination. The idea was that although two genes may

not be coexpressed in general, they might be under these specific conditions. That is, their

coexpression may be condition dependent. In this chapter, we look at how coexpression depends

on specific transcriptional conditions. In particular, we ask how the coexpression of a pair of

genes depends on the expression level of a third gene. However, the third gene is not specified

in advance. Instead, we search for triples of genes in which the expression level of one gene

affects the coexpression of the other two. Such genes have a 3-way interaction. Discovering

such interactions is more difficult, computationally and statistically, than discovering 2-way

interactions, as we did in Chapter 2.

3.1.1 Three-way interactions

In general, a gene’s expression level quantifies its activity level in a cell. Different gene expression

results in different cell sizes, shapes and functions [29]. Activated or inhibited, silenced or

induced, strong or weak, gene expression is regulated in an invisible manner to create visible

46
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varieties in living organisms. Moreover, genes that are coexpressed may be involved in the

same biological process, and thus, coexpression networks are often used to investigate gene

function and regulation [1, 2, 4, 7, 8]. Methods for detecting, analyzing and clustering pairs

of coexpressed genes are now well-developed. However, pairwise coexpression is clearly too

simplistic to describe the complex relationships between gene expression levels, since these

relationships can involve multiple genes and can vary depending on the biological context. In

general, pairwise coexpression does not capture higher-order statistical dependencies or the

complex biological relationships they reflect [19].

One way of viewing such higher-order dependencies is in terms of change in correlation. In

general, the presence or absence of correlation between two genes depends on intrinsic cellular

states. Two plant genes that are correlated during flowering may be uncorrelated during germi-

nation. Two human genes that are uncorrelated in normal tissues may be correlated in tumor

tissues. With increasing amounts of transcriptome data, it becomes even more important to be

able to compute correlations in a condition-relevant fashion. For example, Chapter 2 computed

correlations under conditions of seed germination and non-germination.

But in many situations the relevant conditions are unknown or such conditions are not

easily interpretable, so it can be difficult to automatically detect correlation from two gene

profiles alone. For example, two genes may be correlated or anti-correlated, depending on the

hormone level (determined by another gene) in the cell. The net correlation between these

two genes may be close to zero if the hormone level varies randomly. More generally, the

correlation between two genes can be affected by a third gene, usually called a modulator

or controller gene [24]. This phenomenon is an example of three-way interaction, and can

happen in post-translational regulation through post-translational modifications [20], where

the activity level of a transcription factor can be modified by modulator proteins. For example,

the MYB transcription factor PHR1, involved in plant response to phosphate starvation and

an activator of IPS1, is controlled by a third gene SUMO E3 ligase SIZ1 through sumoylation,

a post-translational modification process carried out by Small Ubiquitin-like Modifier (SUMO)

proteins [30]. As a possible consequence, when SIZ1 is highly expressed, the transcription factor

PHR1 and its downstream target gene IPS1 are highly correlated, but when the SIZ1 is lowly

expressed, this correlation may disappear.
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Three-way interactions can also happen in combinatorial regulation of target gene expres-

sion [31]. To illustrate, let g1 and g2 be two transcription factors of target gene g3. Some

combinatorial regulation can be modeled by a logical AND gate: g3 = g1 ∧ g2 [32]. If g2 is 1,

then g3 and g1 have the same value. But if g2 is 0, then g3 is always 0, regardless of what the

value g1 takes. Likewise, some combinatorial regulation can be modeled by a logical OR gate:

g3 = g1∨ g2. If g2 is 0, then g3 and g1 assume the same value, but if g2 is 1, then g3 is always 1,

regardless of what the value g1 takes. So the output (g3’s expression) depends on a non-linear

combination of the inputs (the expression levels of g1 and g2). In fact, combinatorial control of

gene expression regulation through multiple transcriptional activators acting on several binding

sites on the promoter of a target gene is prevalent in eukaryotic transcription, and this is a

major level at which gene expression is controlled [29]. As a concrete example, in Arabidopsis

thaliana, the synergistic interaction between protein rd22BP1 and protein AtMYB2 is required,

along with other environmental signals, for the transcription of rd22 gene [33]. The binding

sites for the two proteins are about 40 nucleotides apart in the rd22 promoter. This can be

thought of as a typical three-way interaction and is one motivation for the present work.

For computational tractability, we primarily consider three-way interactions, although higher-

order interactions that involve more than three genes exist in eukaryotic cells. We also do not

address other gene expression regulation mechanisms such as RNA splicing, translation, degra-

dation of mRNA or chromatin unwinding [29], since we focus on gene expression data, which

is abundant and easily generated. Finally, our method generalizes coexpression analysis from

pairs of genes to triples of genes. As such, it detects statistical dependencies in gene expression

data, not physical interactions. (We shall often refer to these as indirect three-way interactions.)

Sometimes, however, direct interaction is strongly suggested. For instance, if genes g1 and g2

are known transcription factors for gene g3, then a three-way statistical dependence between

the expression levels of g1, g2 and g3 is likely to be the result of a direct three-way interaction

between the genes (i.e., combinatorial regulation).

3.1.2 False Discovery Rate

One of the main challenges in detecting three-way interactions is the vast number of potential

interactions, especially when carried out on a genome-wide scale. Given N genes, there are
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O(N2) potential two-way interactions, but O(N3) potential three-way interactions, a much

larger number when N is large. Any method for finding three-way interactions must deal with

the computational and statistical problems posed by such large numbers of hypotheses.

Because of the vast number of possible three-way interactions, false positives can easily

arise. It is therefore crucial to estimate the false discovery rate (FDR) [22, 34]. The FDR is

the fraction of predicted interactions (“discoveries”) that are not real interactions, but simply

occur by chance, because of noisy or insufficient data. To estimate FDR, the usual first step is

to estimate a p-value for each possible discovery [22]. One could do this analytically if the data

were, say, Gaussian, but this is not generally the case for interactions in gene expression data,

whose distributions are complex and unknown. Permutation tests are often used to overcome

these problems [1, 20, 35]. This effectively tests a set of predictions under the null hypothesis

that there are no dependencies between the genes. This is fine for two-way interactions, but

for three-way interactions, this null hypothesis is too strong. For instance, to estimate the

FDR for three-way dependencies, the correct null hypothesis is that there are no three-way

dependencies, though pairwise dependencies may still exist. Permutation tests do not capture

this more-complex null hypothesis, since they eliminate all dependencies. As we shall see, using

permutation tests can seriously underestimate the FDR of three-way interactions, sometimes

by several orders of magnitude.

To overcome these problems, we develop methods for estimating FDR based on the boot-

strap [23]. The main advantage of the bootstrap is that it does not depend on the distribution

of the data, which in the biological context is often complex and unknown. The bootstrap is

most straightforward in estimating variance. Bootstrap techniques for estimating p-values and

confidence intervals are more subtle, but can be applied in many situations [23]. We adapt

these techniques to estimating the FDR of three-way interactions.

Because this is an initial study in using the bootstrap to estimate FDR for three-way

interactions in gene expression data, we use a relatively simple model of three-way interaction

based on regression, for which FDR estimates are relatively straightforward by a variety of

methods, thus facilitating comparison. In addition, the vast number of possible three-way

interactions greatly increases the computational complexity of the problem. To carry out a

large number of computational experiments in reasonable time requires a model of relatively
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low complexity. We show, however, that our model is robust in that it detects three-way

interactions and accurately estimates FDR even when the data comes from more complex

models including real biological systems.

3.1.3 Validation

We validate the model in two ways. First we show that it detects three-way interactions in

real data, specifically in expression data from yeast and Arabidopsis thaliana. We provide

both direct and circumstantial validation. For circumstantial validation, we use the putative

three-way interactions detected by our model to infer related biological properties, such as gene

function, protein-protein interactions, transcription factor-target pairs and potential combina-

torial regulation. These inferences are readily testable using existing biological databases. For

direct validation, we show that the putative three-way interactions detected by our model are

significantly enriched with known three-way interactions from a curated dataset.

Second, we validate the FDR estimates. This is much harder, since we need to know all

the three-way interactions in a data set. Since this is impossible for real biological data, we

test the method on simulated data, for which all interactions are known. In this way, we can

compare the FDR estimates of the bootstrap approach to those of other approaches under a

wide range of statistical conditions. We show, for example, that all approaches produce accurate

FDR estimates under ideal conditions. As the data becomes more complex and realistic (e.g.,

non-Gaussian, dependent noise samples, correlated predictors, non-linear dependencies, multi-

modal, etc), the bootstrap approach continues to give reasonable FDR estimates, while the

other approaches rapidly break down.

Finally, we show that in addition to detecting three-way interactions, our method also

detects new two-way interactions that cannot be detected by conventional means. The usual

way to detect two-way interactions in gene expression data is to look for pairs of genes that are

highly correlated. However, many of the three-way interactions detected by our method involve

genes that are not correlated. Any two such genes interact in a way that cannot be detected by

correlation-based methods. To illustrate the potential utility of the method, we use it to add

over 64,000 edges to SeedNet (Section 2.3.4).
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3.2 Background and related work

Section 3.2.1 briefly describes previous work on detecting three-way interactions in gene expres-

sion data. Section 3.2.2 gives an overview of the bootstrap [23].

3.2.1 Previous works and their limitations

A few works have looked at the problem of detecting three-way interactions in gene expression

data [20, 21, 24], and several approaches can be discerned. The discretization approach parti-

tions the samples into three groups based on the expression level of a controller gene [20, 21].

The High Group contains those samples in which the expression level of the controller gene is

highest (e.g., in the top 35% of its values). The Low Group contains those samples in which

the expression level of the controller gene is lowest (e.g., bottom 35%). The remaining samples

(e.g., 30%) are ignored. The coexpression of two genes using the samples in High Group is

then compared with the coexpression of the two genes using the samples in Low Group. If

a great discrepancy in coexpression is seen between the two groups (as measured by correla-

tion or mutual information, for example), a three-way interaction is declared. A drawback to

this approach is that choosing the partition size can be quite arbitrary. There is also a loss

of information due to discretization. Firstly, the continuous gene expression levels are totally

lost for the controller gene. Secondly, for the other two genes, samples not in High Group and

Low Group are ignored. The discretization approach also puts constraints on data, limiting its

general applicability. For example, the controller gene must respect a range constraint and the

other two genes must respect an independence constraint [20]. The gene expression of the con-

troller gene must have a bimodal distribution and only genes with highest variance of expression

levels are used [21]. The Liquid-Association approach [24] quantifies the correlation change of

two genes conditioned on the increase or decrease of the gene expression level of a third gene,

without explicitly partitioning the samples. However, its conversion of gene expression levels

to ranks does lead to some information loss.

Another important question is how to assess the statistical significance of discoveries, a

question not adequately addressed in most studies of three-way interaction. In [20], p-values

obtained by permutation tests are Bonferroni corrected to measure the significance of discoveries
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(putative three-way interactions), which is overly conservative. The permutation is done by

choosing the partitions (High Group and Low Group) at random. This amounts to permuting

the gene expression levels of the controller gene. FDR is briefly mentioned in [20], but variance of

FDR estimates is not considered. The Liquid-Association approach adopts similar permutation

tests to assign discoveries with p-values. Because there are so many triples, the expression

profile of one gene within a triple is permuted as many as 106 times to obtain a distinguishable

p-value. The permutation approach is not only computationally very expensive, but also tends

to underestimate the false discovery rate (as we shall see). To circumvent this, some authors

set aside a test dataset to validate their discoveries [21]. That is, some samples are first used

to select triples of genes that are likely to interact. The remaining samples are then used to

estimate a p-value for these putative interactions. Unfortunately, this approach is statistically

inefficient since it uses only half the available samples to estimate p-values. Moreover, it makes

two unrealistic assumptions about the null distribution: it assumes that all gene triples have

the same null distribution, and it assumes that this null distribution is the same as the observed

distribution, which is actually a mixture of null and non-null distributions. It is not hard to

construct examples in which the first assumption is false. Moreover, the second assumption leads

to overestimates of p-values and false discovery rates, sometimes by many orders of magnitude,

especially when the number of non-null hypotheses (i.e., three-way interactions) is large.1

3.2.2 The bootstrap

The bootstrap is a computationally intensive statistical inference method that has found many

applications since its birth in 1979 [23]. Statistical inference is used to draw conclusions about

a population based on a sample from the population. There are two modes of bootstrap: para-

metric and nonparametric. In the parametric mode, we need to make restrictive assumptions

about the underlying population [36]. The resulting inference can be erroneous if these assump-

tions do not meet reality. In fact, we observed that the parametric bootstrap method produces

severely underestimated false discovery rates when the data disagree with the assumed model

[data not shown]. In the nonparametric mode, however, we do not have to make such prior

1This is certainly the case for two-way interactions, in which the observed distribution of correlation coefficients
is much wider than the null distribution of correlation coefficients derived by permutation tests.
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assumptions. Since we have little knowledge about the underlying distributions in our study,

we focus on the nonparametric bootstrap.

We denote a dataset as x = (x1, x2, ..., xn), containing n data points, and denote a statistic

on the dataset as s(x). Note that because x is random, so is s(x). We wish to perform inference

on s(x), such as estimating its variance, confidence intervals, etc. To do this, the bootstrap

mimics sampling from a population by sampling from a dataset. Each bootstrap sample consists

of n data points that are drawn with replacement n times from x = (x1, x2, ..., xn). Roughly

speaking, the bootstrap method for inference works as follows. First, B bootstrap samples

x∗b, b = 1, 2, ..., B, are generated from the original dataset, x. Second, for each b, a bootstrap

replicate of the statistic, s(x∗b), is computed using the bth bootstrap sample. Finally, the B

bootstrap replicates of the statistic, s(x∗1), s(x∗2), ..., s(x∗B), are used to do inference on the

statistic, e.g., compute standard errors, confidence intervals and so on. For example, to estimate

the standard error for a statistic θ̂ = s(x), let θ̂∗(b) = s(x∗b) be the estimate of θ̂ on bootstrap

sample x∗b, and let θ̂∗(·) =
B∑
b=1

θ̂∗(b)/B be the average of these estimates. Then the bootstrap

estimate of standard error for θ̂ is ŝe(θ̂) =

√∑B
b=1[θ̂

∗(b)− θ̂∗(·)]2
B − 1

.

Confidence intervals. θ̂ is a point estimate for the true parameter of a population, θ. θ̂’s

bootstrap standard error ŝe is a way to say how accurate this estimate is. Another way is to

construct a 1− 2α confidence interval for θ, meaning that 100 · (1− 2α)% of the time θ would

be in the interval. As the number of bootstrap samples increases, the variance of bootstrap

estimates decreases (Section 19.3 in [23]). As the data size tends to infinity, the bootstrap

interval converges to the standard interval that is based on the normal distribution assumption

for θ̂ (Section 12.1 in [23]). However, in most small-sample problems the bootstrap interval is

more accurate than the standard interval [23].

The standard interval is constructed as follows. Suppose θ̂ is normally distributed with

mean θ and variance se2, then Z =
θ̂ − θ
se

∼ N (0, 1). Let z(α) be the 100 · αth percentile of

N (0, 1), i.e., z(α) is a value below which 100 ·α percent of data points in the N (0, 1) distribution

fall. Likewise, let z(1−α) be the 100 · (1 − α)th percentile of N (0, 1). The probability that Z

would fall between z(α) and z(1−α) is P (z(α) ≤ θ̂ − θ
se

≤ z(1−α)) = 1 − 2α, which is equivalent
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to P (θ̂ − z(1−α) · se ≤ θ ≤ θ̂ − z(α) · se) = 1− 2α. The interval (θ̂ − z(1−α) · se, θ̂ − z(α) · se) is

called a 1− 2α standard interval. In reality, we do not know se, but we can use the bootstrap

estimate of it, ŝe. In addition, θ̂ usually does not strictly follow a normal distribution, so the

standard interval is an approximation.

The bootstrap-t interval is (θ̂− t̂(1−α) · ŝe, θ̂− t̂(α) · ŝe). In contrast to the standard interval,

z(1−α) is replaced by t̂(1−α), and z(α) is replaced by t̂(α). Rather than assuming that Z =
θ̂ − θ
ŝe

follows a standard normal distribution (or a Student’s t distribution), the distribution of Z is

estimated empirically from the data at hand. t̂(1−α) and t̂(α) are the empirical 1 − α and α

quantiles of B bootstrap Z values, respectively. The bth bootstrap Z value is

Z∗(b) =
θ̂∗(b)− θ̂
ŝe∗(b)

,

where ŝe∗(b) = ŝe(θ̂∗(b)) is the estimated standard error of θ̂∗(b), which can be computed

using bootstrap standard error estimate on x∗b (note: not on x). The bootstrap-t method is

not very reliable in practice for more general problems such as computing an interval for a

correlation coefficient (see the last paragraph in Section 12.5 in [23]). In addition, it requires

expensive nested bootstrapping (for estimating ŝe∗(b)) and sophisticated variance stabilization

(see Algorithm 12.1 in [23]).

The percentile method, on the other hand, is more straightforward, more robust and easier

for computing. The 1− 2α percentile interval is

(θ̂∗(α), θ̂∗(1−α)),

where θ̂∗(α) is the 100 · αth percentile of θ̂∗’s distribution, and θ̂∗(1−α) is the 100 · (1 − α)th

percentile. The percentile interval is range-preserving: it is within the allowable range of any

statistic. For example, the percentile interval for a correlation coefficient is always within

[−1, 1], whereas bootstrap-t intervals (or standard intervals) could contain values outside the

[−1, 1] range. Improved versions of the percentile method, namely, the BCa and ABC method

(Chapter 14 in [23]), have been developed, but we do not discuss them here.

Larger B (i.e., more bootstrap samples) produces more accurate bootstrap estimates, but
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also takes more time to compute (which can be a particular problem when the statistic itself is

expensive to compute). So there is a trade-off between accuracy and time. In general, B = 200

is usually good enough for estimating standard errors, but larger B is required for constructing

confidence intervals [23].

The bootstrap is automatic, requires few distributional assumptions and can handle both

easy inference problems (e.g., estimating standard errors) and complicated inference problems

(e.g., estimating standard errors of regression coefficients, estimating confidence intervals, and

hypothesis testing). With the bootstrap we can easily generate data-driven sampling distribu-

tions of a statistic (such as the sample correlation coefficient), rather than rely on complicated

mathematical derivations or unrealistic assumptions on the data distribution.

Regression coefficients. Our interest will be mainly on the bootstrap applied to linear

regression models. We wish to do hypothesis testing on regression coefficients, compute their

standard errors, and perhaps also construct their confidence intervals. For ease of discussion,

we first introduce some notation. The regression model is

y = β0 + β1c1 + β2c2 + · · ·+ βpcp + ε,

where y is a response variable, c1 to cp are predictor variables, β1 to βp are regression coefficients,

and ε is noise. The regression coefficients are estimated from a sample data set. Let yi be the

ith observation for the response variable y, and let ci = (ci1, ci2, ..., cip) be the ith observation

for the predictor variables c1, c2, ..., cp, respectively. Let xi = (yi, ci), and let our sample data

set x = (x1,x2, ...,xn), as shown in the following table:

y c1 c2 · · · cp

x1 y1 c11 c12 · · · c1p

x2 y2 c21 c22 · · · c2p
...

...
...

...
...

...

xn yn cn1 cn2 · · · cnp
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In regression, the bootstrap can be done in two ways. We can either bootstrap the data or

bootstrap the residuals. To bootstrap the data, a bootstrap sample x∗b is formed by drawing

n elements from x = (x1,x2, ...,xn) with replacement. This is also called bootstrapping pairs

((yi, ci) is called the ith pair). To bootstrap the residuals, we fit the regression model on x,

estimate regression coefficients β̂ = (β̂1, ..., β̂p), and compute residuals εi = yi − ciβ̂ = yi − ŷi.

A bootstrap sample x∗b is formed by bootstrapping n residuals and adding each of them to

ŷi. Bootstrapping residuals makes stronger assumptions about the model and distribution of

errors than bootstrapping pairs does, i.e., it assumes that the regression model is correct and

that the errors are identically distributed and in particular that all the errors have the same

variance [37]. With either method, we can obtain bootstrap estimates of regression coefficients,

β̂∗(b), by fitting the regression model on x∗b. Standard errors for the regression coefficient(s)

can be computed in exactly the same way as outlined above in this section.

Hypothesis testing. Another important use of the bootstrap, especially in this chapter, is

hypothesis testing, which is closely related to confidence intervals [23, 38]. In general, bootstrap

hypothesis testing is carried out as follows. Suppose our null hypothesis is H0 : θ = θ0, and the

alternative hypothesis is H1 : θ 6= θ0. Let the test statistic be

t =

∣∣θ̂ − θ0∣∣
ŝe(θ̂)

,

where, as above, θ̂ is an estimate of θ, and ŝe(θ̂) is an estimate of the standard error of θ̂.

This statistic is analogous to a t-statistic and to the statistic used in constructing studentized

bootstrap confidence intervals [23]. Let B bootstrap replicates of this test statistic (under the

null hypothesis) be

t∗b =

∣∣θ̂∗(b)− θ̂∣∣
ŝe(θ̂∗(b))

, b = 1, 2, ..., B.

These replicates approximate a sampling null distribution for t [38]. The p-value for a particular

value of t is the proportion of t∗b that are no less than t, i.e.,

#{t∗b ≥ t}
B

.
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In the regression setting, testing the null hypothesis that a regression coefficient βp is zero

(H0 : βp = 0; H1 : βp 6= 0) simply amounts to replacing θ with βp and replacing θ0 with 0

in the above procedure. The standard error in the denominator of the formula for computing

t or t∗b also has an explicit mathematical formula and is therefore easy to compute [27]. The

formula is an approximation assuming i.i.d. noise.2 One contribution of this and next chapter

is to show that this approximation is more than adequate for detecting three-way interactions

in gene expression data and estimating their false discovery rates.

This chapter is organized as follows. Section 3.3 describes our regression-based detector

for three-way interaction and our approach to estimating FDR. Section 3.4 demonstrates that

the detected three-way interactions are biologically meaningful and useful. It describes FDR

estimates of our bootstrap approach as well as other methods. The next chapter, Chapter 4,

evaluates our bootstrap approach to estimating FDR over a wide range of statistical conditions.

3.3 Methods

3.3.1 Detecting three-way interactions in expression data using regression

Consider a triple of interacting genes, (g1, g2, g3). For example, g1 could be a transcription

factor and g2 a co-transcription factor in combinatorial regulation for the target gene g3, or g1

could be a transcription factor and g2 could be g1’s modulator in post-translational regulation

for the target gene g3. We don’t know how the predictor genes g1 and g2 are related to the

target gene g3. Nevertheless, we want to model their relationship.

A natural way to do this is with a regression model. The simplest is a first-order model,

Y = β0 + β1X1 + β2X2 + ε, where X1, X2 and Y are the expression levels of genes g1, g2

and g3, respectively, and ε is independent random noise. This model captures linear, pairwise

interactions between g1, g2 and g3, but does not capture more-complex interactions, such as

three-way interactions. To capture these, we can use a partial second-order model, Y = β0 +

β1X1 + β2X2 + β3X1X2 + ε. This model includes a quadratic interaction term, X1X2, in

addition to the linear non-interaction terms, X1 and X2. We found that FDR estimates based

on this model are accurate when X1 and X2 are uncorrelated, but they rapidly become overly

2Independent and identically distributed noise.
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optimistic as correlation increases [data not shown].3 We have found that this problem can be

substantially alleviated by introducing quadratic non-interaction terms, giving a full second-

order model, Y = β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 + ε. In this model, the X2

1

term captures any quadratic dependence of Y on X1. Without this term, any such dependence

will show up in the interaction term, X1X2, if X1 and X2 are correlated (since X1X2 will then

be correlated with X2
1 ), leading to false positives. (Likewise for X2

2 .) Using a full second-order

model prevents this.4

The second-order model is an approximation to some unknown relationship between the

target gene and predictor genes since it can be considered as a Taylor series expansion of an

unknown function Y (X1, X2) [39]. The interaction term tells us how different levels of X2

modify the effect of X1 on Y (or symmetrically, how different levels of X1 modify the effect of

X2 on Y ). That is, the second-order term β5X1X2 can be viewed as a first-order term β6X2

where β6 = β5X1, i.e., β6 is a coefficient whose value depends on X1. In this way, X1 modifies

the interaction between X2 and Y .

As we shall see, this second-order model works well in detecting three-way interactions and

estimating FDR even when the data is generated by more-complex models. Also, as a special

case, the second-order model includes the following model:

Y = a+ b(X1 − c)(X2 − d) + ε,

where β0 = a+ bcd, β1 = −bd, β2 = −bc, β3 = β4 = 0 and β5 = b. This model implies that the

correlation between Y and X2 is proportional to the value of X1 − c.5 In particular, Y and X2

are correlated when X1 > c, and anti-correlated when X1 < c (assuming b is positive).

In the second-order model, the highest power of the predictor variables is two. Although

the response surface is curvilinear (because Y is non-linear in X1 and X2), it is still a linear

regression problem (because Y is linear in the coefficients, βi). To estimate the coefficients, we

3The problem does not arise when the data is generated by the partial second-order model itself, but when it
is generated by more complex models.

4Of course, the X2
1 term also provides a more complex model of the pairwise dependency between X1 and Y ,

which in turn improves the FDR estimate, even when X1 and X2 are uncorrelated. (Likewise for X2
2 .) However,

this improvement turns out to be quite minor, especially compared to the large improvement due to removing
the effect of correlations between X1 and X2. [Data not shown]

5This is because the correlation between Y and X2 is equal to the correlation between Y and X2 − d, which
is proportional to b(X1 − c), according to the regression model above.
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fit the model to gene expression data (yi, xi1, xi2), i = 1, ..., N . Let

yi = β0 + β1xi1 + β2xi2 + β3x
2
i1 + β4x

2
i2 + β5xi1xi2 + εi, i = 1, ..., N (3.1)

where yi, xi1 and xi2 are (in our case) the ith gene expression levels for the target gene g3,

predictor gene g1 and predictor gene g2, respectively, and εi represents noise. Equation 3.1 can

be conveniently expressed in a matrix form as follows:

y = Xβ + ε,

where y = (y1, y2, ..., yN )T is a column vector, ε = (ε1, ε2, ..., εN )T is also a column vector, and

X is an N ×6 matrix with the ith row equal to (1, xi1, xi2, x
2
i1, x

2
i2, xi1xi2). It is well known that

if we fit Equation 3.1 to the data, then β̂ = (β̂0, β̂1, ..., β̂5)
T = (XTX)−1XTy is the optimal

estimate of the coefficients by the least squares method, which minimizes the residual sum of

squares, ||y −Xβ||2 [27]. The fitted values ŷ = (ŷ1, ŷ2, ..., ŷN )T = Xβ̂.

If the noise, ε, is i.i.d. and Gaussian, then the significance of the coefficient for the interaction

term, β5, can be tested using the following test statistic,

z =
β̂5

s.e.{β̂5}
=

β̂5
σ̂
√
ν5
,

where σ̂ =

√√√√ 1

N − 6

N∑
i=1

(yi − ŷi)2 and ν5 is the last diagonal element of matrix (XTX)
−1

[27].

z has a t-distribution assuming the null hypothesis H0 : β5 = 0 is true [27]. A large observed

value of |z| will lead to rejection of the null hypothesis. Intuitively, a large value of |z| indicates

a strong three-way interaction. We shall show empirically that this statistic can be used to

detect three-way interactions in gene expression data, even under non-Gaussian and non-i.i.d.

assumptions, though care is needed to accurately estimate false discovery rates.

Like correlation coefficients, z can be positive or negative. Its sign also has a simple interpre-

tation. Suppose (g1, g2, g3) is a gene triple. If its associated z is non-zero, then the correlation

between g2 and g3 depends on the expression level of g1. In particular, if z is positive, then the

correlation increases as the expression level of g1 increases. Likewise, if z is negative, then the
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correlation increases as the expression level of g1 decreases. (These statements remain true if

we swap g1 and g2, since values of z are symmetric in g1 and g2.)

In most of this chapter, we will not care about the sign of z, and we will detect three-

way interactions by looking for triples with large values of |z| (corresponding to a two-sided

hypothesis test). This is not essential, however, and one might look for triples with a large,

positive (or negative) value of z (Section 3.4.3.4).

3.3.2 Estimating FDR

This section describes different approaches to estimating FDR. FDR is a convenient measure of

the statistical significance of the large number of discoveries made in genome-wide analyses. It is

the proportion of discoveries expected to be false. For example, an FDR of 0.2 for ten discoveries

says that we expect only two false discoveries among the ten. It might therefore be worthwhile

to carry out (relatively expensive) targeted experiments to confirm these discoveries. So an

accurate FDR estimate is of practical importance. Either underestimated or overestimated

FDR can mislead us in our decision-making process. Recall that FDR is the (usually unknown)

number of false discoveries divided by the (known) number of discoveries. In our application,

to estimate the unknown number of false discoveries, we need to construct a null distribution

of the test statistic, z (Section 3.3.1). Different ways of doing this amount to different ways

of estimating FDR. The null distribution is the distribution of the test statistic assuming that

there is no interaction effect, i.e., assuming that the null hypothesis H0 : β5 = 0 is true, where

β5 is the coefficient of the interaction term, X1X2, in our regression model (Equation 3.1).

Estimating the number of false discoveries also requires an estimate of the number of true

negatives. This is often approximated by the total number of possible discoveries, which leads

to an overestimate of FDR [22]. We will use this approximation for the time being, and will

correct for it later. To simplify further description, we let FD denote the expected number of

false discoveries.

3.3.2.1 The analytical approach and permutation approaches

To estimate FD, we could use an analytical approach or an approach based on permutation

tests. Both approaches are widely used in the literature, and both require estimating p-values.
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The analytical approach assumes the null distribution has a particular mathematical form,

from which p-values can be computed. For example, in the context of our regression model, the

analytical approach assumes that the null distribution of z values follows Student’s t distribu-

tion. So the analytical FD estimate for a particular z value is equal to its two-tailed p-value

times the number of true negatives. The two-tailed p-value is equal to the area under the

t-distribution curve to the right of |z| and to the left of −|z|.

The permutation approach differs in using permutation tests to estimate p-values. This has

the virtue of not making assumptions about the form of the null distribution. Because we are

dealing with three-way interactions, two types of permutation test can be distinguished, which

we call total and partial permutation. The total permutation approach constructs a sampling

null distribution of z values by independently permuting all gene expression profiles. This tests

the null hypothesis that there are no interactions between genes g1, g2 and g3. It works as

follows. (1) For each gene triple (g1, g2, g3), randomly permute the gene expression profiles of

genes g1, g2 and g3; (2) Fit the second-order model (Equation 3.1) to the permuted data to

obtain a z value for that triple, denoted by znull; (3) Repeat steps (1) and (2) P times so that

for each triple we get P values of znull. The P values of znull form a sampling null distribution

of znull; (4) For each gene triple, the estimated p-value at threshold τ is the proportion of znull

values whose magnitudes are greater than τ , i.e.,
#{|znull| > τ}

P
. Finally, the estimated FD

is the sum of these p-values over all possible gene triples. Note that this approach, unlike the

analytical approach, can generate a different null distribution for each gene triple (i.e., different

gene triples are not assumed to have the same null distribution.)

The partial permutation approach is similar to the total permutation approach, but it only

permutes the gene expression profile of g1, effectively removing all interactions involving g1.

This removes any three-way interaction, but preserves any two-way interaction between g2 and

g3. Likewise if we only permute the expression profile of g2. The partial permutation approach

differs from the total permutation approach only in step (1). As an added note, permuting g3

removes all interactions involving the target gene. This would test the null hypothesis that the

target gene has no interaction with g1 and g2. Since this is similar to the total permutation

approach (and has many of the same problems explained below), we do not permute g3.
6

6One could also permute the expression profiles of g1 and g2, but this removes all interactions between g1, g2
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Both the analytical and the permutation approaches have serious weaknesses. As mentioned

above, the analytical approach assumes that the true null distribution of z values follows Stu-

dent’s t distribution. More specifically, z =
β̂5

s.e.{β̂5}
follows a Student’s t distribution with

N −p−1 degrees of freedom, where N is number of observations and p is the number of predic-

tor variables in the regression model [27]. Thus, the FD at threshold τ is n ·pvalue(τ), where n is

total number of true negatives, and pvalue(τ) is the two-tailed p-value for τ under the Student’s

t distribution. This assumption is quite strong, for it implies that the second-order model is

exactly correct for the data and that the noise εi is independent and normally distributed with

mean 0 and constant variance. In reality, we don’t know how g1, g2 and g3 are related, so the

second-order model is at best an approximation to their true relationship. Moreover, the noise

εi is not Gaussian, nor has mean 0, nor has constant variance. The accuracy of analytical FD

estimates depends heavily on how well the real data satisfy these rather strong assumptions.

The permutation approaches do not assume i.i.d. unbiased Gaussian noise. However, the

total permutation approach destroys all interactions, both two-way and three-way. The sam-

pling null distribution of z values generated in this manner thus assumes no interaction effect

and no main effect. That is, the null hypothesis implies that β1 = β2 = β3 = β4 = β5 = 0

in Equation 3.1, which is too strong. Consequently, this approach underestimates the false

discovery rate, sometimes by several orders of magnitude, as we shall see. The partial permu-

tation approach destroys all interactions involving g1. Thus, the null hypothesis implies that

β1 = β3 = β5 = 0. This is a weaker null hypothesis, but still too strong. In reality, we only

want to remove the interaction effect but keep all the main effects. That is, our desired null

hypothesis is β5 = 0.

3.3.2.2 The bootstrap approach

The bootstrap approach makes fewer assumptions. It does not assume Gaussian noise, and

does not destroy two-way interactions (main effects). It works as follows.

1. For each gene triple (g1, g2, g3), do the following:

and g3 and is equivalent to permuting all three profiles. Likewise for any other pair of genes.
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(a) Construct the following table,

Y X1 X2

y1 x11 x12

y2 x21 x22

y3 x31 x32
...

...
...

yn xn1 xn2

where each entry (yi or xij) is a gene expression level. Each row corresponds to

one experimental condition, and each column corresponds to one gene. Thus, each

column is a gene expression profile. As before, Xi is the expression level of gene gi

(i = 1, 2), and Y is the expression level of gene g3. The above table is our original

sample.

(b) Fit the second-order model (Equation 3.1) to this original sample to obtain β̂5, σ̂

and ν5, as described in Section 3.3.1. Compute the following test statistic:

z =
β̂5

σ̂
√
ν5
.

(c) Draw n rows at random with replacement from the above table and make a new

table. This amounts to taking a bootstrap sample.

(d) Fit the second-order model to the bootstrap sample to obtain β̂∗5 , σ̂∗ and ν∗5 , which

are the bootstrap replicates of β̂5, σ̂ and ν5, respectively. The null z value from the

current bootstrap sample, z∗null, is defined as [37]

z∗null =
β̂∗5 − β̂5
σ̂∗
√
ν∗5
.

(e) Repeat steps (c) and (d) B times to obtain B values of z∗null, which are used to form

the sampling null distribution of z values.

2. For each gene triple, the estimated p-value at threshold τ is the proportion of z∗null values
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whose magnitudes exceed τ , i.e.,
#{|z∗null| > τ}

B
. The estimated FD is the sum of these

p-values over all possible gene triples.

Note that like the permutation approaches, the bootstrap approach will in general form a

different null distribution for each gene triple. Also, since the number of triples is vast, the

total number of z∗null values used to estimate an FDR can be very large, even when the number

bootstrap samples, B, is small. It is therefore possible to obtain accurate FD estimates with a

relatively small number of bootstrap samples. This is reflected in Figure 3.12, which shows the

variance of the FD estimates.

3.3.2.3 Estimating the number of true negatives

As mentioned above, the number of possible discoveries is often used as an approximation for the

number of true negatives, which leads to an overestimate of FD and FDR. This overestimate is

small when the total number of true positives is relatively small. However, it can be arbitrarily

large when the number of true positives is large, as is often the case in the analysis of high-

throughput genome data [34].

We therefore need to adjust the above FD estimates by the proportion of all true negatives,

which we do not know but again can estimate. Let pi be the p-value of triple i, as estimated in

step 2 of the procedure in Section 3.3.2.2. The estimated number of true negatives is given by

#{pi > λ}
1− λ

,

where λ is an adjustable parameter between 0 and 1 [34]. This formula is based on the obser-

vation that the distribution of p-values comprises two parts: p-values clustered around zero,

which are from true positives, and p-values uniformly distributed on the interval [0, 1], which

are from true negatives. To illustrate, Figure 3.1 shows a histogram of p-values for 10,000

randomly chosen triples from a sample of seed germination/dormancy data of Chapter 2. True

positives are above the red line, and true negatives are below the red line. λ is a threshold for

the p-values that are considered to be predominantly from true negatives, so we usually choose

a value of λ such that beyond this value the distribution of pi’s is almost uniform. Let A be
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the total area under the red line, and let B be the total area under the red line and right of

the yellow bar. Note that A = #true negatives, B = #{pi > λ} and B = (1− λ)A. Therefore,

A =
B

1− λ
=

#{pi > λ}
1− λ

. To adjust the FD and FDR estimates, we simply multiply them by

the proportion of true negatives,
A

m
, where m is the total number of possible discoveries.
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Figure 3.1: The distribution of 10,000 p-values for 10,000 randomly picked triples from the seed
germination/dormancy data. This histogram shows a peaky uniform distribution, peaked near
0. The vertical yellow bar represents the value of λ.

3.4 Results and discussion

3.4.1 Correlation change

To illustrate our method, we construct a set of gene triples that are potentially involved in

combinatorial regulation of seed germination and dormancy. The gene expression data used in

this example is from germinating and dormant seeds of Arabidopsis thaliana as described in
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Section 2.3.

A triple (g1, g2, g3) is formed by choosing two predictor genes, g1 and g2, from a set of 882

transcription factors7 of Arabidopsis and choosing a target gene, g3, from a set of 74 target

genes that are known to promote germination or dormancy. We have

(
882

2

)
combinations for

the two predictor genes, and

(
74

1

)
combinations for the target gene, for a total of 28,750,554

triples. We use X1, X2 and Y to represent the expression levels of g1, g2 and g3, respectively.

For each triple, the second-order model in Equation 3.1 is fit to the germination/dormancy

gene expression data and the value of z for the interaction term β5X1X2 is estimated. (Recall

that z is a test statistic for testing the null hypothesis H0 : β5 = 0, as described in Section 3.3.)

The triples are sorted in descending order of |z|. So the triple estimated to have the strongest

three-way interaction is on top.

As described in Section 3.3.1, three-way interactions can be viewed as condition-dependent

correlations. That is, the correlation between Y and X1 (X2) depends on X2 (X1). We illustrate

this using the Arabidopsis triples with strong |z| values.

Specifically, let the High/Low Group of samples for X2 be the 50 samples on which X2 has

the highest/lowest expression levels.8 Let Ca be the Pearson correlation coefficient of Y and X1

on the High Group, and let Cb be their correlation on the Low Group. Table 3.1 shows triples

with the highest |z| values, along with the values of Ca, Cb and |Ca − Cb|. This table provides

a biologically meaningful interpretation for the |z| values. The triples with strong three-way

interactions (i.e., large |z| values) also exhibit large correlation change (i.e., large |Ca − Cb|

value), from High Group to Low Group. In other words, the correlation between X1 and Y

when X2 is low is significantly different from the correlation when X2 is high. Moreover, the

correlation coefficients in most cases change sign between column Ca and column Cb, going from

correlation to anti-correlation, or vice versa, showing that the direction of correlation between

X1 and Y is controlled by X2, the expression level of g2.

For example, consider the third row in the table. Here, g1 = AT2G23740 is strongly cor-

related with g3 = AT2G32460 (r = 0.87) when g2 = AT4G18390 is highly expressed, but

becomes strongly anti-correlated (r = −0.81) when g2 is lowly expressed. The absolute cor-

7We downloaded 1,515 TFs from AtTFDB [40], 882 of which are included in our seed data.
8The division of samples into High Group and Low Group is different for each gene triple.
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relation change is 1.68. With a different controller gene, g2 = AT5G63750, the direction of

correlation change is reversed (see the second row), i.e., the correlation between the same g1

and same g3 is changed from negative (r = −0.79) to positive (r = 0.89). Such an interesting

relationship between g1 and g3 is hardly detectable by pairwise correlation analysis. To see this,

let C1 be the Pearson correlation coefficient of X1 and Y , and let C2 be the Pearson correlation

coefficient of X2 and Y , on all samples. Notice that C1 is only 0.21 in the second and third

row, usually deemed insignificant, thus the relationship between g1 and g3 is undetectable by

pairwise correlation analysis.

g1 g2 g3 Ca Cb |Ca − Cb| |z| C1 C2

AT5G01960 AT2G23740 AT2G32460 -0.43 0.57 1.00 17.20 0.21 0.21
AT2G23740 AT5G63750 AT2G32460 -0.79 0.89 1.69 15.09 0.21 0.27
AT2G23740 AT4G18390 AT2G32460 0.87 -0.81 1.68 14.01 0.21 -0.36
AT2G45190 AT2G23740 AT2G32460 0.65 -0.44 1.10 13.73 -0.06 0.21
AT5G18830 AT5G01960 AT2G32460 -0.73 0.85 1.58 13.57 0.19 0.21
AT5G18830 AT5G63750 AT2G32460 -0.69 0.77 1.45 13.49 0.19 0.27
AT5G01960 AT4G32730 AT2G32460 -0.58 0.48 1.06 13.33 0.21 0.29
AT5G18830 AT2G28510 AT2G32460 -0.59 0.86 1.45 13.27 0.19 0.62
AT2G01650 AT4G18390 AT2G32460 -0.83 0.77 1.61 13.26 -0.05 -0.36
AT5G12840 AT2G28510 AT2G32460 -0.70 0.81 1.51 13.25 -0.00 0.62
AT4G14410 AT5G63750 AT2G32460 0.74 -0.69 1.42 13.24 -0.18 0.27
AT5G18830 AT4G18390 AT2G32460 0.82 -0.76 1.58 13.17 0.19 -0.36
AT4G18390 AT1G14685 AT2G32460 0.45 -0.79 1.24 13.13 -0.36 0.22
AT4G21750 AT4G18390 AT2G32460 0.90 -0.66 1.56 13.09 0.38 -0.36
AT2G20400 AT5G07680 AT2G32460 -0.71 0.89 1.60 13.07 0.02 0.66
AT5G63750 AT2G46530 AT2G32460 -0.63 0.71 1.34 12.94 0.27 0.24
AT2G02470 AT5G52510 AT2G32460 -0.75 0.79 1.53 12.89 0.03 0.39
AT1G08320 AT4G30080 AT1G31970 0.82 -0.14 0.96 12.82 0.27 0.07
AT1G14580 AT5G63750 AT2G32460 -0.78 0.76 1.54 12.80 0.09 0.27
AT4G21750 AT1G62300 AT2G32460 -0.59 0.86 1.45 12.80 0.38 0.30
AT1G14510 AT1G63900 AT3G47620 0.86 0.02 0.84 12.79 0.62 -0.18
AT2G20400 AT4G28890 AT2G32460 -0.68 0.88 1.56 12.75 0.02 0.66
AT5G01960 AT1G14685 AT2G32460 -0.47 0.73 1.21 12.74 0.21 0.22
AT4G04890 AT5G01960 AT2G32460 -0.65 0.84 1.49 12.72 0.24 0.21
AT2G28510 AT2G20400 AT2G32460 0.04 0.83 0.79 12.70 0.62 0.02
AT3G60030 AT2G23740 AT2G32460 -0.45 0.46 0.91 12.68 0.09 0.21
AT3G02790 AT2G23740 AT2G32460 0.50 -0.42 0.91 12.65 -0.06 0.21
AT2G23740 AT5G65510 AT2G32460 -0.60 0.85 1.45 12.63 0.21 0.42
AT5G51230 AT5G63750 AT2G32460 -0.72 0.79 1.51 12.60 0.13 0.27
AT5G52510 AT2G20400 AT2G32460 0.08 0.65 0.57 12.56 0.39 0.02
AT5G01960 AT4G36780 AT2G32460 -0.55 0.66 1.21 12.52 0.21 0.36
AT3G11200 AT5G01960 AT2G32460 -0.47 0.89 1.36 12.50 0.35 0.21
AT5G01960 AT3G16857 AT2G32460 -0.57 0.62 1.19 12.44 0.21 0.22
AT1G22985 AT3G04070 AT3G47620 -0.71 -0.22 0.49 12.43 -0.46 -0.21
AT1G14510 AT1G62300 AT2G32460 -0.74 0.79 1.53 12.42 0.25 0.30
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AT5G52510 AT2G30470 AT2G32460 0.22 0.70 0.48 12.36 0.39 0.23
AT1G63840 AT4G21750 AT2G32460 -0.20 0.83 1.03 12.35 0.61 0.38
AT1G43850 AT5G52510 AT2G32460 -0.75 0.83 1.59 12.35 0.21 0.39
AT3G47600 AT5G63750 AT2G32460 -0.74 0.70 1.44 12.33 0.03 0.27
AT4G21750 AT5G01960 AT2G32460 -0.55 0.92 1.47 12.29 0.38 0.21
AT4G04890 AT1G62300 AT2G32460 -0.63 0.87 1.50 12.27 0.24 0.30
AT5G20910 AT3G04070 AT3G47620 -0.83 0.06 0.88 12.27 -0.45 -0.21
AT3G16770 AT3G62090 AT1G69260 0.70 -0.64 1.34 12.20 0.35 0.60
AT4G21750 AT5G63750 AT2G32460 -0.59 0.91 1.50 12.18 0.38 0.27
AT2G28510 AT5G55970 AT2G32460 0.11 0.84 0.73 12.18 0.62 0.16
AT2G23780 AT5G63750 AT2G32460 -0.67 0.73 1.39 12.15 0.07 0.27
AT5G65510 AT1G14580 AT2G32460 0.10 0.65 0.54 12.13 0.42 0.09
AT3G18290 AT2G28510 AT2G32460 -0.48 0.90 1.38 12.12 0.16 0.62
AT3G16770 AT3G60530 AT3G50500 0.67 -0.80 1.47 12.11 -0.24 0.17
AT3G18290 AT5G63750 AT2G32460 -0.75 0.78 1.54 12.10 0.16 0.27

Table 3.1: Correlation properties of the top 50 discoveries

on the seed germination/dormancy data from Arabidopsis

thaliana (i.e., the 50 three-way interactions with the high-

est values of |z|). The FDR for these discoveries is 0.006 (as

estimated by the bootstrap method). g1, g2 and g3 form a

gene triple, where g3 is the target gene, and g1 and g2 are

predictor genes. Ca and Cb are the Pearson correlation be-

tween the profiles of g1 and g3 on the 50 High Group samples

and the 50 Low Group samples, respectively. C1 and C2 are

the correlation on all samples between the profiles of g1 and

g3 and between the profiles of g2 and g3, respectively.

Table 3.2 shows full gene names and their current annotations for the gene IDs in Ta-

ble 3.1 [41].

Figure 3.2 is a graphical representation of the relationships listed in Table 3.1. Target

genes g3 are shown in dark grey, and predictor genes g1 and g2 are shown in light grey. Each

triple has three nodes and the three nodes are linked by two edges, g1 − g3 and g2 − g3. The

triples are clustered with various degrees. The target gene AT2G32460 has the highest degree

(i.e., is contained in many triples), suggesting that it participates in many distinct three-way

interactions. Since it is affected by so many predictor genes, AT2G32460 might play a central
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role in seed germination. A simple three-way interaction is depicted as an isolated triple, such

as the one whose target gene is AT1G31970. Gene AT3G16770 affects two different target

genes, in combination with two other predictor genes, AT3G60530 and AT3G62090 (see the

chain of 5 nodes in the lower left corner). This is also the case for gene AT1G14510 (see the

node bridging the two circular clusters).

Locus name full gene name gene annotations

AT1G08320 bZIP21 calcium-mediated signaling, response to mechanical stim-

ulus [42]

AT1G14510 AL7/Alfin-like 7 methylated histone binding [43]

AT1G14580 C2H2-like zinc finger

protein

sequence-specific DNA binding transcription factor activ-

ity [44]; zinc ion binding, nucleic acid binding (Commu-

nication:501714663)

AT1G14685 BPC2/Basic Pentacys-

teine 2

regulation of developmental process, response to ethy-

lene [45]

AT1G22985 CRF7/Cytokinin re-

sponse factor 7

protein binding [46]; DNA binding (Communica-

tion:501714663)

AT1G31970 STRS1/Stress response

suppressor 1

RNA methylation [42]; ATP-dependent helicase activity

(Communication:501714663)

AT1G43850 SEU/SEUSS hydrogen peroxide catabolic process [42]; transcription

cofactor activity, multicellular organismal development,

ovule development [47]; protein binding, protein het-

erodimerization activity [48]; regulation of flower devel-

opment [49]; gynoecium development [50]
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AT1G62300 ATWRKY6 cellular response to boron-containing substance depriva-

tion [51]; intracellular signal transduction, amino acid im-

port, respiratory burst involved in defense response, toxin

catabolic process [42]; response to chitin [52]; cellular re-

sponse to phosphate starvation, protein binding [53]

AT1G63840 RING/U-box super-

family protein

abscisic acid-activated signaling pathway, response to

ethylene, hyperosmotic salinity response, signal trans-

duction, response to auxin, response to jasmonic acid,

response to water deprivation [42]; response to abscisic

acid [54]

AT1G63900 DAL1/DIAP1-like pro-

tein 1

protein import into chloroplast stroma, ubiquitin-protein

transferase activity, chloroplast organization [55]

AT1G69260 AFP1/ABI five binding

protein

response to water deprivation, negative regulation of pro-

grammed cell death, salicylic acid mediated signaling

pathway, response to ethylene, jasmonic acid mediated

signaling pathway, hyperosmotic salinity response, sig-

nal transduction, response to auxin [42]; abscisic acid-

activated signaling pathway [56]

AT2G01650 PUX2/Plant UBX

domain-containing

protein 2

N-terminal protein myristoylation [42]; zinc ion binding,

nucleic acid binding (Communication:501714663)

AT2G02470 AL6/Alfin-like 6 cellular response to phosphate starvation, root hair elon-

gation, metal ion homeostasis [57]; methylated histone

binding [43]

AT2G20400 MYB-like HTH tran-

scriptional regulator

family protein

pollen development [58]
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AT2G23740 SUVR5/SU(VAR)3-9-

related protein 5

chromatin silencing, regulation of histone H3-K9

dimethylation [59]; zinc ion binding (Communica-

tion:501714663)

AT2G23780 RING/U-box super-

family protein

zinc ion binding (Communication:501714663); phos-

phatidylinositol biosynthetic process [42]

AT2G28510 Dof-type zinc finger

DNA-binding family

protein

sequence-specific DNA binding transcription factor activ-

ity [44]

AT2G32460 MYB101/MYB domain

protein 101

gibberellin biosynthetic process, gibberellic acid medi-

ated signaling pathway [42]; positive regulation of pro-

grammed cell death [60]; positive regulation of abscisic

acid-activated signaling pathway [61]; pollen develop-

ment [58]

AT2G45190 AFO/Abnormal

Floral Organs,

FIL/FILAMENTOUS

FLOWER, YAB1

embryo development ending in seed dormancy, stomatal

complex morphogenesis, seed germination, chromatin as-

sembly or disassembly, vegetative to reproductive phase

transition of meristem, ovule development, seed dor-

mancy process, response to abscisic acid, iron-sulfur clus-

ter assembly [42]; meristem structural organization, cell

fate commitment [62]; protein binding [63]; inflorescence

meristem growth [64]

AT2G46530 ARF11/Auxin response

factor 11

sequence-specific DNA binding transcription factor activ-

ity (Communication:501714663)

AT3G02790 MBS1/Methylene blue

sensitivity 1

cellular response to singlet oxygen [65]
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AT3G04070 NAC047/NAC domain

containing protein 47

multicellular organismal development (Communica-

tion:501714663); organ senescence, amino acid trans-

port [42]

AT3G11200 AL2/Alfin-like 2 mitotic nuclear division [42]; methylated histone bind-

ing [43]

AT3G16770 ERF72/Ethylene re-

sponse factor 72

ethylene-activated signaling pathway, response to ethy-

lene, protein binding [66]; response to cytokinin [67]; re-

sponse to jasmonic acid [68]

AT3G16857 ARR1/Response regu-

lator 1

protein N-linked glycosylation, cytokinin-activated sig-

naling pathway, fatty acid beta-oxidation, regulation of

seed germination, protein import into peroxisome matrix,

regulation of shoot system development [42]; regulation

of seed growth, regulation of root meristem growth [69];

phosphorelay response regulator activity [70]; regulation

of anthocyanin metabolic process, regulation of chloro-

phyll biosynthetic process, primary root development [71]

AT3G18290 BTS/BRUTUS,

EMB2454/Embryo

defective 2454

cellular response to iron ion starvation [72]; em-

bryo development ending in seed dormancy (Com-

munication:501718471); zinc ion binding (Communica-

tion:501714663)

AT3G47600 ATMYB94/MYB

domain protein 94

response to jasmonic acid, response to ethylene, re-

sponse to salt stress, response to salicylic acid, response

to cadmium ion, response to abscisic acid, response to

auxin [73]; response to karrikin [74]
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AT3G47620 TCP14/TEOSINTE

branched, cycloidea

and PCF (TCP) 14

inflorescence development, cell proliferation [75]; response

to abscisic acid, regulation of seed germination, response

to gibberellin [76]; regulation of defense response [77];

response to cytokinin [78]; protein binding [79]

AT3G50500 SNRK2-2/SNF1-

related protein kinase

2-2

Golgi organization, glycolytic process, hyperosmotic re-

sponse, water transport [42]; regulation of seed germi-

nation, response to gibberellin [80]; protein kinase ac-

tivity, positive regulation of abscisic acid-activated sig-

naling pathway [81]; protein binding [82]; response to

abscisic acid [83]; protein phosphorylation [84]; protein

binding [85]

AT3G60030 SPL12/Squamosa

promoter-binding

protein-like 12

xylan biosynthetic process, glucuronoxylan metabolic

process [42]

AT3G60530 GATA4/GATA tran-

scription factor 4

response to light stimulus [86]

AT3G62090 PIL2/Phytochrome in-

teracting factor 3-like 2

xylem development, cell wall macromolecule metabolic

process [42]; red or far-red light signaling pathway [87];

protein binding [88]

AT4G04890 PDF2/Protodermal

factor 2

embryo development ending in seed dormancy, protein

acetylation, vegetative to reproductive phase transition of

meristem, ovule development, iron-sulfur cluster assem-

bly, thylakoid membrane organization [42]; cotyledon de-

velopment [89]; epidermal cell differentiation [90]; main-

tenance of floral organ identity [91]

AT4G14410 bHLH104/basic Helix-

Loop-Helix 104

sequence-specific DNA binding transcription factor activ-

ity [44]
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AT4G18390 TCP2/Teosinte

branched 1

regulation of translation, leaf morphogenesis, plastid or-

ganization, cell differentiation, positive regulation of het-

erochronic development [92]

AT4G21750 ATML1/Meristem

layer 1

vegetative to reproductive phase transition of meristem,

thylakoid membrane organization, iron-sulfur cluster as-

sembly, embryo development ending in seed dormancy,

ovule development, regulation of meristem growth, pro-

tein acetylation [42]; cotyledon development [89]; epider-

mal cell differentiation [90]

AT4G28890 RING/U-box super-

family protein

developmental growth, root hair elongation, lateral root

development, root hair cell differentiation [42]; protein

ubiquitination, ubiquitin-protein transferase activity [93]

AT4G30080 ARF16/Auxin response

factor 16

cell division, response to auxin, root cap develop-

ment [94]; miRNA binding [95]

AT4G32730 MYB3R1/C-MYB-Like

transcription factor

3R-1

cytokinesis by cell plate formation [42]; transcription

coactivator activity [96]

AT4G36780 BEH2 BES1/BZR1 ho-

molog 2

regulation of transcription [97]

AT5G01960 RING/U-box super-

family protein

zinc ion binding (Communication:501714663)9

AT5G07680 NAC4 multicellular organismal development (Communica-

tion:501714663)

9Annotated by TIGR Arabidopsis annotation team when no external reference is available.
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AT5G12840 EMB2220/Embryo

defective 2220,

NFYA1/Nuclear factor

Y, subunit A1

embryo development ending in seed dormancy (Commu-

nication:501718471) [41]; microgametogenesis, somatic

embryogenesis, seed development [98]; CCAAT-binding

factor complex [99]; regulation of timing of transition

from vegetative to reproductive phase [100]

AT5G18830 SPL7/Squamosa Pro-

moter binding protein-

like 7

actin nucleation, Golgi vesicle transport, tissue develop-

ment, protein desumoylation, organ morphogenesis, tri-

chome morphogenesis, root hair cell differentiation, hy-

drogen peroxide biosynthetic process, vegetative to re-

productive phase transition of meristem, glucuronoxylan

metabolic process, xylan biosynthetic process, cell wall

organization, cell growth, positive regulation of organelle

organization [42]

AT5G20910 AIP2/ABI3-interacting

protein 2

amino acid transport [42]; ubiquitin-protein transferase

activity, protein ubiquitination [93]; negative regulation

of abscisic acid-activated signaling pathway, protein bind-

ing [101]

AT5G52510 SCL8/Scarecrow-like 8 sequence-specific DNA binding transcription factor activ-

ity [44]

AT5G55970 RING/U-box super-

family protein

zinc ion binding (Communication:501714663)
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AT5G63750 ARI13/Arabidopsis

Ariadne 13

protein ubiquitination (AnalysisReference:501757242)10;

ligase activity (AnalysisReference:501756968)11; zinc ion

binding (AnalysisReference:501756966)12; expressed dur-

ing flowering stage, petal differentiation and expansion

stage [102]

AT5G65510 AIL7/Aintegumenta-

like 7

organ morphogenesis [103]; auxin mediated signaling

pathway involved in phyllotactic patterning [104]; main-

tenance of shoot apical meristem identity [105]

At5G51230 EMF2/Embryonic

flower 2

histone methylation, vernalization response, regulation of

gene expression by genetic imprinting [42]; protein bind-

ing [106]; negative regulation of flower development [107]

Table 3.2: Gene annotations for the genes in Table 3.1.

3.4.2 Extending SeedNet

In this section we look at three-way interactions in Arabidopsis thaliana using the seed ger-

mination/dormancy data of Chapter 2. The data, as described in Section 2.3, contain gene

expression levels for 14,088 Arabidopsis genes (after filtering) on 138 seed samples, of which 73

are non-germinating seeds and 65 are germinating seeds, maintained in diverse physiological

and environmental conditions and representing a wide range of developmental stages. We wish

to extend the coexpression network, SeedNet, constructed in Chapter 2 using exactly the same

data but taking account of three-way interactions. As we will see, many new edges, ignored by

pairwise correlation analysis, emerge as a result of three-way interactions.

SeedNet has about 500,000 edges. We applied our second-order model to about 29 million

triples made from all of the 882 Arabidopsis transcription factors in the seed dataset (used as

predictor genes) and all of the 74 target genes used in [1] (known to promote germination or

10Transitive UniPathway annotation
11Transitive UniProtKB annotation
12Transitive UniProtKB annotation
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Figure 3.2: The graphical representation of three-way interactions from Table 3.1. The dark
grey nodes represent target genes (g3). The light grey nodes represent predictor genes (g1 or
g2).
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dormancy). We detected 1,912,656 significant triples with an estimated false discovery rate

less than 0.05 (estimated by our bootstrap method), from which 64,698 distinct edges were

extracted.

When we infer that triple (g1, g2, g3) is significant, it implies that transcription factors g1

and g2 are involved in a (direct or indirect) three-way interaction with target gene g3. We then

create edges g1 − g3 and g2 − g3, and add them to SeedNet.13 An edge g1 − g3 in SeedNet now

means that genes g1 and g3 interact, possibly in combination with others genes. Likewise for

edge g2 − g3. Interestingly, 99% of these distinct edges are new and not previously included

in SeedNet. They are undetectable by pairwise correlation analysis alone, and thus serve as a

potentially valuable augmentation to SeedNet.

3.4.3 Enrichment tests

We described our regression-based detector for three-way interactions (Section 3.3.1) and saw

interesting patterns of correlation change among the top-ranked triples (Section 3.4.1). How-

ever, the question remains as to whether these putative three-way interactions are statistically

significant, that is, whether they reflect biological reality within cells or are mere statistical

anomalies. This question is particularly important in the present study because the vast num-

ber of possible three-way interactions means that a large number of anomalies can be expected.

To answer this question, we carried out a preliminary exploration by performing enrich-

ment tests on two organisms, Arabidopsis thaliana and Saccharomyces cerevisiae (yeast). For

Arabidopsis thaliana, we do not have many curated three-way interactions, so we use inferred

ones from other resources (e.g., protein-protein interactions, transcription factor-target pairs).

For yeast, we have a limited set of 519 curated three-way interactions, and we use them. We

show that our detected three-way interactions are enriched in terms of gene function, known

protein-protein interactions, known transcription factor-target gene pairs, potential combina-

torial regulation, and known three-way interactions.

In the remainder of this section, the first three subsections are about enrichment tests on

Arabidopsis thaliana, and the last subsection is about yeast. To simplify further discussion,

13If triples (g1, g2, g3) and (g′1, g2, g3) are both significant, then they both imply that edge g2−g3 is significant.
However, the edge is added to SeedNet only once.
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we define a triple as three distinct genes (g1, g2, g3). Let SA be the set of all triples under

consideration, and let SI be a set of interesting triples (e.g., triples known to have three-

way interactions). Obviously, SI ⊂ SA. We will look at a number of different criteria for

interestingness, but in all cases, a positive result means that the detected triples are enriched

with interesting triples.

More precisely, recall that each triple has a z score, measuring the confidence that the

genes in the triple are involved in a three-way interaction (Section 3.3.1). We define the top

N detections to be the N triples in SA with the highest values of |z|. For each value of N, we

define the number of interesting detections, X, to be the number of interesting triples amongst

the top N detections. Enrichment means that X is significantly larger than expected by random

chance. To demonstrate enrichment, we will compare plots of X vs. N for our detector against

those for a random detector (e.g., Figure 3.3). We will also compute p-values of X for various

values of N.

The gene expression data used in Sections 3.4.3.1, 3.4.3.2 and 3.4.3.3 are from Arabidopsis

seeds as described in Section 2.3.

3.4.3.1 Gene function

In this section we ask the following question: are the detected three-way interactions enriched

with genes promoting seed germination/dormancy? In other words, are the triples with higher

|z| scores more likely to contain genes promoting seed germination/dormancy? If we are de-

tecting biological three-way interactions, then we would expect the detected triples to exhibit

functional enrichment, just like the enrichment seen in significantly coexpressed gene pairs [1, 7].

This section shows that this is indeed the case.

Formally, let STF be the set of 882 transcription factors for Arabidopsis thaliana in the seed

dataset. Let Sfunc = Sgerm ∪ Sdorm, where Sgerm is a set of 39 genes known to promote seed

germination, and Sdorm is a set of 35 genes known to promote seed dormancy.14 Let the set of

14Data courtesy of George W. Bassel. These genes are collated from the literature by him (see the references
in [1] for details).
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all triples be:

SA = {(g1, g2, g3) : g1 ∈ STF , g2 ∈ STF , g3 ∈ Sfunc, g1 6= g2, g2 6= g3, g1 6= g3}.

That is, SA consists of triples of distinct genes where the predictor genes (g1 and g2) are

transcription factors and the target gene promotes germination/dormancy. The total number

of triples in SA is 28,734,696. Furthermore, we define two sets of interesting triples, S1
I and S2

I .

S1
I = {(g1, g2, g3) : (g1, g2, g3) ∈ SA, g1 ∈ Sfunc or g2 ∈ Sfunc},

i.e., those triples in which at least one predictor gene promotes germination or dormancy. The

total number of triples in S1
I is 1,146,312. Similarly,

S2
I = {(g1, g2, g3) : (g1, g2, g3) ∈ SA, g1 ∈ Sfunc and g2 ∈ Sfunc},

i.e., those triples in which both predictor genes promote germination or dormancy. The total

number of triples in S2
I is 11,016.

Figure 3.3 shows the result of the enrichment test based on SA and S1
I . This figure plots

X vs. N, where X is the number of interesting triples amongst the top N detections. The blue

curve traces the values of X for our three-way interaction detector, whereas the red line traces

the expected values of X for a random detector.15 Suppose the total number of triples is M ,

K of which are interesting (i.e., size(SA) = M and size(SI) = K). The slope of the red line

is K/M . Figure 3.4 shows the result of the enrichment test based on SA and S2
I . In both

figures, the blue curve lies above the red curve, demonstrating that the top 100,000 triples are

more likely to contain germination/dormancy promoting genes than by random chance. It also

means that triples with a high value of |z| have a higher density of such genes than triples with

a low value of |z|. Thus, genes in triples with a high |z| score exhibit functional enrichment,

exactly as we would expect if we are detecting real three-way interactions.

In addition, p-values for gene function enrichment are extremely significant (as shown in

15In a random detector, we flip a coin in which the probability of heads is K/M (so that the expected proportion
of predicted discoveries is equal to the proportion of true discoveries in the data).
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Figure 3.3: Gene-function enrichment curve (X vs. N). X is the number of interesting triples
among the top N detections. A triple is interesting if it is in S1

I (i.e., at least one of its predictor
genes promotes germination/dormancy). The blue line is the plot for our detector. The red
line is the plot for a random detector of three-way interactions. P -values at 0.1%, 1%, 10% and
50% of all triples are 1.097E-13, 0, 0 and 0, respectively.
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Figure 3.4: Gene-function enrichment curve. A triple is interesting if it is in S2
I (i.e., both

predictor genes in the triple promote germination/dormancy). P -values at 0.1%, 1%, 10% and
50% of all triples are 0.017, 2.506E-13, 0 and 0, respectively.
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the caption of both figures). To compute p-values, we used the hypergeometric test, which can

be used to test for over-representation of interesting triples in the top N detections [108]. The

hypergeometric p-value is

p = 1−
X−1∑
i=0

(
K
i

)(
M−K
N−i

)(
M
N

) . (3.2)

Each figure gives p-values for several values of N. For example, Figure 3.3 says that when N is

0.1% of the total number of triples in SA (i.e., N = 28,735), the p-value is 1.097× 10−13, which

is extremely significant. For higher values of N, the p-values are essentially 0, so enrichment is

virtually guaranteed.

3.4.3.2 Protein-protein interactions

This section shows that the detected triples are enriched with known protein-protein interac-

tions. (That is, the gene triples are enriched with gene pairs whose protein products interact.)

These results are understandable if we are detecting real three-way interactions, but not if we

are detecting random triples. This is because three-way gene interactions may be associated

with protein-protein interactions. For instance, the interaction between two proteins may affect

the expression of a third gene, as in post-translational modification of transcription factors [20].

Similarly, two proteins that interact may have coexpressed genes, and this coexpression may be

controlled by a third gene. If we are detecting real three-way interactions between genes, then

such protein-protein interactions would appear in our detected triples.

To show that this does indeed happen, we construct interesting triples using protein-protein

interaction (PPI) data [109, 110].16 This PPI database contains 35,939 confirmed protein-

protein interactions in Arabidopsis.

SA is defined in the same way as in Section 3.4.3.1. SI , the set of interesting triples,

now consists of triples from SA in which at least one edge is a known PPI interaction. Here

one edge means any pair of genes within a triple (g1, g2, g3). Figure 3.5 shows the result of the

enrichment test based on SI . The top one million triples are clearly enriched with the confirmed

protein-protein interactions.

16Data courtesy of Nicholas Provart.
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Figure 3.5: PPI enrichment curve. A triple is interesting if at least one pair of genes from the
triple is a known protein-protein interaction. P -values at 1%, 10% and 50% of all triples are
all 0.
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3.4.3.3 Combinatorial regulation

This section shows that our discoveries are enriched with triples in which two transcription

factors (TFs) regulate a common target gene, that is, triples of the form (g1, g2, g3) in which

g1 and g2 are known transcription factors for g3. Such triples represent potential combinatorial

regulation, which is a form of three-way interaction.

We define interesting triples using the TF-target database from the Arabidopsis Gene Reg-

ulatory Information Server (AGRIS) [111], which contains 11,483 direct interactions between

TFs and target genes. For convenience of exposition, we call the database agris. SA is the

same as described in Section 3.4.3.1. SI now consists of those triples (g1, g2, g3) in SA in which

both (g1, g3) and (g2, g3) are in agris. Figure 3.6 shows that the top one million discoveries are

enriched with interesting triples, as the blue curve is well above the red line. Moreover, because

g1 and g2 directly interact with g3,
17 it is likely that the detected three-way interactions are

direct interactions, not indirect interactions, like those of earlier sections.

3.4.3.4 Transcription-factor modulation

Sections 3.4.3.1 to 3.4.3.3 provide circumstantial validation for our detector. In this section, we

provide direct validation. The enrichment test is based on PTM-Switchboard [112], a curated

dataset of known three-way interactions in yeast. Each of the 519 entries in PTM-Switchboard

is a confident modulator-TF-target triple, representing a type of three-way interaction called

post-translational modulation [20, 30, 112], in which the effect of a transcription factor on a

target gene is modulated by a third gene. The detector is run on the yeast gene expression

data, cogrim, which contain the gene expression levels for 6,026 yeast genes across 314 experi-

ments [113], and have been used by the authors of PTM-Switchboard to test their modulator-

detecting method on yeast [16].

We consider triples (g1, g2, g3) in which g2 is a transcription factor, g3 is a potential target

of g2, and g1 is a potential modulator of g2. All possible targets and modulators are considered.

That is, the set of all triples is

SA = {(g1, g2, g3) : g1 ∈ Smod, g2 ∈ STF , g3 ∈ ST , g1 6= g2, g2 6= g3, g1 6= g3},
17That is, the transcription factors produced by g1 and g2 physically interact with the promoter region of g3.
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Figure 3.6: TF-target enrichment curve. A triple (g1, g2, g3) is interesting if both (g1, g3) and
(g2, g3) are in agris. P -values at 1%, 10% and 50% of all triples are 0.0025, 0.000196 and
0.0002, respectively.
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where Smod = ST is the set of all yeast genes, and STF is the set of Yeast transcription factors.

SA contains 11 billion triples. The set of interesting triples, SI , consists of the 519 triples from

PTM-Switchboard.

Figure 3.7 shows that the detected triples are enriched with the three-way interactions.

Because the signal is weak (only 519 positives out of 11 billion triples), we have plotted the

curve for all possible values of N. (The blue curve must therefore meet the red line at the top

right of the figure, since at this point, all possible triples are deemed to be “detections”.)

Recall that our three-way interaction detector computes a z value for each triple, reflect-

ing the detector’s confidence in the interaction. As described in Section 3.3.1, most of this

chapter is focussed on triples with large values of |z|, indicating a strong three-way interaction.

For the PTM-Switchboard triples, however, the z values have a significant positive bias [see

Figure 3.8].18 This may be a result of biologists focussing on testing for positive three-way

interactions. In such cases, it can be more appropriate to look for triples with large, positive

values of z, instead of |z| (which also improves the signal-to-noise ratio). The blue curve in

Figure 3.7 is based on a detector that looks for large values of z.

It is worth noting that the p-values will only decrease if new 3-way interactions are exper-

imentally discovered and added to our dataset (i.e., if K increases in formula 3.2). In other

words, the enrichment will become even more significant, and the blue curve will rise even fur-

ther above the red line in Figure 3.7. A similar statement can be made for all of the enrichment

tests in Section 3.4.3.

3.4.4 False Discovery Rate

The results of Section 3.4.3 show that the triples we detect are enriched with real three-way

interactions. However, it is impossible for results of this kind to say exactly how many three-

way interactions have been detected. For example, Section 3.4.3.4 tells us only how many

PTM-Switchboard triples have been detected. However, these are just a tiny fraction of all the

three-way interactions (direct and indirect) in yeast. How many of these unknown interactions

have we detected? What is needed is a good estimate of the false discovery rate of our detector.

18In contrast, for all other data sources in this chapter, the z values have no such bias and their histograms
are symmetric about 0 [data not shown].
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Figure 3.7: 3-way-interaction enrichment curve. A triple (g1, g2, g3) is interesting if it is in
PTM-Switchboard. P -values at 10%, 20% and 50% of all triples are 0.0086, 1.06E-05 and
1.89E-14, respectively.
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Figure 3.8: Histogram of z for the interesting triples, i.e., the triples in PTM-Switchboard.
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This is the subject of the rest of this chapter.

The FDR is defined as “the expected proportion of errors among the rejected hypothe-

ses” [22]. In our case, this is the expected proportion of discoveries that are false, where a

“discovery” is a triple of genes predicted to have a three-way interaction. Recall that each gene

triple is assigned a z value, reflecting the detector’s confidence that there is a three-way inter-

action between the genes (Section 3.3.1). Formally, given a threshold, τ , we say that a triple is

a discovery if and only if |z| >= τ . If the triple does indeed represent a three-way interaction,

then we say the discovery is true; otherwise, we say it is false. If we have R discoveries, V of

which are false, then the FDR is formally and simply defined as E(V/R), the expected value of

V/R, where the value of V in most cases is unknown and needs to be estimated.

3.4.4.1 FDD curves

As the threshold, τ , varies, the number of discoveries (R) and the estimated number of false

discoveries (V ) vary, tracing out a curve. We call this curve an FDD curve. To generate such

a curve, we simply need to choose a large set of thresholds and plot a point (x, y) for each one,

where x is the number of discoveries at threshold τ , and y is the estimated number of false

discoveries. It is convenient to use the values of |z| for all the triples as the set of thresholds.

Details are given in the following procedure, genFDD (Figure 3.9).

We plot FDD curves instead FDR curves for ease of comparison and interpretation. In

contrast to FDR curves, FDD curves are smooth and monotonic. Figure 3.10, for example,

shows four FDD curves corresponding to four approaches to estimating false discoveries, the

bootstrap (green), partial permutation (pink), total permutation (blue) and analytical t (black).

3.4.4.2 Which estimate to use?

Figures 3.10 and 3.11 show a number of such curves for our Arabidopsis data and the yeast data

(cogrim), respectively. Each curve corresponds to a different method of estimating the number

of false discoveries. We have discussed these methods in Section 3.3.2. The main thing to note

however is that they give widely varying estimates of the number of false discoveries. First,

we see a clear separation of the green curve from the other three curves. In Figure 3.10, the
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PROCEDURE genFDD(z, znull)

1. The input vector z = (z1, z2, ..., zn) is a list of values of z for gene triples, where zi is
the value of z for the ith triple.

2. The input znull = (ẑ1, ẑ2, ..., ẑn) is a list of null values of z for gene triples, where ẑi
is estimated by an FD estimation method (Section 3.3.2).

3. Estimate the number of true negatives (Section 3.3.2.3).

4. Let z← |z| = (|z1|, |z2|, ..., |zn|), and let znull ← |znull| = (|ẑ1|, |ẑ2|, ..., |ẑn|).

5. Let zsorted be the set z sorted in descending order.

6. For each element, t, in zsorted,

(a) Let x be its position in the list. (For example, if t is the first element in zsorted,
then x = 1.) This is the number of discoveries at threshold t.

(b) Let y = #{znull > t}, the number of elements in znull greater than t. This is
an initial estimate of the number of false discoveries at threshold t.

(c) Reduce y to account for the number of true negatives (Section 3.3.2.3). This is
the final estimate of the number of false discoveries.

(d) Plot a dot at position (x, y).

7. Connecting all dots above traces an FDD curve.

Figure 3.9: Generate an FDD curve.
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total permutation and analytical t approaches give similar and the most optimistic estimates

of false discoveries. In contrast, the bootstrap approach gives much higher estimates: about 3

times as many as that given by the partial permutation approach, and 9 times as many as that

given by the total permutation and analytical t approaches. The partial permutation approach

gives an estimate in between: the pink curve is clearly above the blue and black ones, but is

well below the green curve. A similar pattern of separation can be seen in Figure 3.11. The

practical question is: which curve (if any) is accurate? In Chapter 4, we provide evidence

strongly suggesting that the bootstrap estimate is the most accurate. We also show that the

permutation and analytical t approaches can grossly underestimate the true number of false

discoveries, sometimes by several orders of magnitude.
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Figure 3.10: Number of False Discoveries versus number of Discoveries for the FD estimation
methods on the seed germination/dormancy data from Arabidopsis thaliana. The green curve
is estimated by the bootstrap, the blue by total permutation, the pink by partial permutation,
and the black by analytical t.
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Figure 3.11: Number of False Discoveries versus number of Discoveries for the FD estimation
methods on the yeast cogrim data. The green curve is estimated by the bootstrap, the blue by
total permutation, the pink by partial permutation, and the black by analytical t.
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3.4.4.3 Variance of FDD curves

In this section we look at the variance of the bootstrap FDD curve, and note that it is reason-

ably small. To do this, we repeat the bootstrap method and curve generation procedure ten

times. The variance is illustrated in Figure 3.12. Each green curve represents one bootstrap

estimate of false discoveries with B = 1000. Visually, the bootstrap FDD curves tend to cluster

together, indicating a small variance. This is because the curves are based on a large number

of discoveries. In general, the coefficient of variation [114] for the estimate of false discoveries

decreases as number of discoveries increases. For instance, the coefficients of variation for the

top 100, 1,000, 1,000,000 and 2,000,000 discoveries are 12.4, 8.5, 2.8 and 2.4, respectively. The

coefficient of variation, defined as 100 times the ratio of standard deviation σ to mean µ (i.e.,

100 · σ
µ

), measures the dispersion of the distribution of a random variable. Here, our random

variable is the bootstrap estimate of false discoveries. Fewer bootstrap samples (smaller B) are

needed to give a stable estimate of false discoveries when the number of discoveries is large, and

more bootstrap samples (larger B) are needed when the number of discoveries is small (i.e.,

when we only consider the most confident discoveries). The total computation time increases

linearly with B but this increase results in decreased variance of the estimate of false discov-

eries, a worthwhile trade-off between time and accuracy. Also, computation on each bootstrap

sample is independent, allowing us to parallelize it.

3.4.5 Correlated predictors

As before, let X1, X2 and Y be the gene expression profiles of genes g1, g2 and g3, where g1 and

g2 are predictor genes for target gene g3. In general, the more correlated X1 and X2 become,

the more difficult it is to distinguish the effects of X1 and X2 on Y . It therefore becomes more

difficult to detect three-way interactions, and the false discovery rate rises. This is true for any

method of detecting three-way interactions from gene expression profiles.

This section illustrates the difficulty by applying our second-order detector to simulated data

(described in Section 4.1.2). Because the data is simulated, we can control the correlations.

Moreover, we know which discoveries are true and which are false, so we can plot the true FDR.

Figure 3.13 shows true FDD curves for four different values of correlation, ρ, between X1
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Figure 3.12: Variance of the bootstrap FDD curve on the germination/dormancy data. The ten
green curves are generated by repeating the bootstrap method ten times, each with a different
randomization. The FDD curves for top two million discoveries are shown.
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and X2. The high curves correspond to higher correlations, showing that FD increases with

correlation. Note that these curves show true FD, not estimated FD, so they are not an anomaly

of any particular FD estimation method.
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Figure 3.13: True FDD curves under different correlations, ρ, between two predictor genes.
ρ = 0, 0.3, 0.6 and 0.9. Higher curves correspond to larger values of ρ.

To gain more insight into this phenomenon, Figures 3.14 to 3.16 show histograms of z for

interacting and non-interacing triples for ρ = 0, 0.5 and ρ = 0.99, respectively. When the

predictor genes are uncorrelated, the z values for interacting triples are distributed in a totally

different manner from the z values for non-interacting triples (Figure 3.14). In particular, the

majority of the z values for the interacting triples are larger (in magnitude) than the z values

for the non-interacting triples. This results in low p-values and low FDR. In contrast, when

the predictor genes are highly correlated, the predictor variables in the second-order model also

become highly correlated, a phenomenon called multicollinearity [39]. In this situation, the
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second-order model can barely distinguish the non-interacting triples from interacting triples.

With multicollinearity, the estimated regression coefficient of the interaction term, β̂5, becomes

highly inaccurate. This can be seen in Figure 3.16, which shows that the distributions of z for

interacting and non-interacting triples are very similar. Recall that the distribution of z is the

null distribution when testing for three-way interactions. Thus, Figure 3.14 (no correlation)

results in low p-values and low FDR, while Figure 3.16 (high correlation) results in high p-values

and high FDR.
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Figure 3.14: Two distributions of z values of the interaction term in the second-order model,
when the predictor genes are uncorrelated (ρ = 0). The red curve is the histogram of 10,000 z
values obtained from regressing 10,000 non-interacting triples. The blue curve is the histogram
of 10,000 z values obtained from regressing 10,000 interacting triples.
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Figure 3.15: Two distributions of z values of the interaction term in the second-order model,
when the predictor genes are moderately correlated (ρ = 0.8). The red curve is the histogram
of 10,000 z values obtained from regressing 10,000 non-interacting triples. The blue curve is
the histogram of 10,000 z values obtained from regressing 10,000 interacting triples.
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Figure 3.16: Two distributions of z values of the interaction term in the second-order model,
when the predictor genes are highly correlated (ρ = 0.99). The red curve is the histogram of
10,000 z values obtained from regressing 10,000 non-interacting triples. The blue curve is the
histogram of 10,000 z values obtained from regressing 10,000 interacting triples.



Chapter 4

Validating FDR estimates

To validate FDR estimates, we need to know all the three-way interactions in a data set.

Unfortunately, large-scale, well-curated sets of interacting and non-interacting gene triples are

unavailable. Instead, we test our method on simulated data, for which all interactions are

known. In this way, we can compare the FDR estimates of the bootstrap approach to those

of other approaches under a wide range of statistical conditions. We show, for example, that

all approaches produce accurate FDR estimates under ideal conditions. As the data becomes

more complex and realistic (e.g., non-Gaussian, dependent noise samples, correlated predictors,

non-linear dependencies, multi-modal, etc), the bootstrap approach continues to give reasonable

FDR estimates, while the other approaches rapidly break down. Typically, the other approaches

give estimates that underestimate the true FDR by a considerable amount, often by several

orders of magnitude. For example, an FDR estimate near zero may be given, when the true

FDR is in fact quite large (say 50% or 90%), rendering the estimate useless. When the true

FDR is near zero, the bootstrap method may sometimes give an overestimate, but it is still

small, and therefore useful.

4.1 Results on simulated data

As in Section 3.3.1, let X1 and X2 be the expression levels of two predictor genes, g1 and g2, and

let Y be the expression level of a target gene, g3. Our general framework for data simulation

is as follows. For a non-interacting triple, Y is modeled as an additive function of X1, X2 and

100
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noise, that is, Y = f(X1) + g(X2) + ε, where f(X1) and g(X2) describe the main effects of

X1 and X2 on Y , respectively, and ε is random noise. For an interacting triple, we add an

interaction term, h(X1, X2), to the sum, so that Y = f(X1) + g(X2) + h(X1, X2) + ε. By using

different functions, f , g and h, we simulate a range of data models, from simple to complex. In

section 4.1.6, we consider more-complex, non-additive models. The simulations are intended to

be extensive rather than exhaustive. To get stable results, we use 500 bootstrap samples for the

bootstrap method, and 100 permutations for the permutation methods. Note that, although

random, the noise need not be Gaussian, need not be i.i.d., need not be independent of X1 and

X2, need not have constant variance or zero bias, etc. Our simulations include examples of all

these cases. Likewise for the distributions of X1 and X2.

Our procedures for generating simulated data are given in Figures 4.1, 4.6, 4.10, 4.12, 4.14, 4.17

and 4.19. The procedures generate data that is more complex than the quadratic model used in

our regression-based detector (Section 3.3.1), as is almost certainly the case for biological data.

However, although some of the procedures are biologically inspired, they do not attempt to be

biologically realistic. Instead, the goal is to test the various FDR estimation methods over a

wide range of well-defined statistical conditions.

Each procedure creates a set of gene names, creates gene triples from these names, and then

generates expression data for each gene. In Figure 4.12, the procedure assigns each gene to

many different triples. Thus the expression data of different triples can be mutually dependent.

In all other figures, the procedures assign each gene to exactly one triple, so the data from

different triples is mutually independent.

Each simulation procedure generates M1 non-interacting triples and M2 interacting triples.

For all triples, the parameter N specifies the length of each gene expression profile, and nl1

controls the amount of additive noise, ε, in the model above. We call this “biological noise”,

since it represents biological influences on the target gene that we do not model. The correlation

between the two predictor genes, X1 and X2, is usually determined by the parameter ρ, but

sometimes by other parameters, depending on the procedure. At this point, the values of X1,

X2 and Y represent expression levels in the cell. As a final step, we add (or multiply) noise

to each of them, to represent measurement error. The parameter nl2 controls the amount of

this measurement noise. All simulated data in this section use M1 = 15, 000, M2 = 5, 000, and
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N = 100. The values of other parameters are shown in individual figures. In general, parameter

values were chosen with several criteria in mind: (i) to be roughly similar in all simulations (so

as not to be arbitrary), (ii) to give true FDR values that are not almost 0 or almost 1, (iii)

to give true FDR values that are similar in all plots, and (iv) to produce FD curves that are

similar in form to those of the real data in Figures 3.10 and 3.11.

4.1.1 Quadratic data

First, we look at a simple case of interacting and non-interacting gene triples, where two predic-

tor genes have a quadratic relationship with a target gene. We consider this case first because

it is the model our detector uses, so we expect the performance of the detector to be good and

the estimates of FDR to be accurate. For an interacting triple, the data is generated using the

full second-order model (Section 3.3.1), i.e., Y = a+ bX1 + cX2 +dX2
1 + eX2

2 +fX1X2 +ε. The

coefficients a, b, . . . , f are randomly chosen and are different for each gene triple. For a non-

interacting triple, f = 0, thus removing the interaction term. The noise, ε, is i.i.d. Gaussian.1

Simulation details are given in Figure 4.1. We call this simulated data DataQuad.

To avoid dominance by any one variable, when generating Y , each predictor (i.e., X1, X2,

X2
1 , X2

2 and X1X2) is normalized to have variance 1. Formally, Y = a + b̂X1 + ĉX2 + d̂X2
1 +

êX2
2 + f̂X1X2 + ε, where a hat above a coefficient means that it has been scaled to normalize

the predictor. For example, f̂ = f/sd(X1X2), where sd denotes standard deviation (see steps

1(d) and 2(b) in Figure 4.1). To model systematic measurement errors, measurement noise is

incorporated in each simulated gene expression level (see step 3). ρ is the correlation between

X1 and X2.

Ideal data. The ideal data is generated using PROCEDURE genDataQuad in Figure 4.1

with nl2 = 0, i.e., no measurement noise is added. It is ideal because it is exactly the model

used by our detector, so we expect all methods of estimating FD to work well. Figure 4.2 shows

the FDD curves of the FD estimation methods described in Section 3.3.2. The red curve is

the true FDD curve. Each of the other colors corresponds to one estimation method: green

- bootstrap, blue - total permutation, pink - partial permutation, black - analytical t. Each

1In this and other simulations throughout this thesis, non-Gaussian noise was also tried (e.g., exponential and
beta-distributed noise) but had very little effect on the results.
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PROCEDURE genDataQuad(M1,M2, N, ρ, nl1, nl2)

1. Generate data for M1 non-interacting triples (true negatives), as follows. First, gen-
erate 3M1 gene names. From these names, create M1 triples, with each name assigned
to one triple. For each triple, (g1, g2, g3), generate expression profiles for g1, g2 and
g3 as follows:

(a) Let µ = [µ1, µ2], where µ1 and µ2 are randomly chosen from a uniform distri-
bution on [-0.5,0.5]. µ1 and µ2 represent the mean expression levels of the two
predictor genes, g1 and g2, respectively.

(b) Let r be a random number from a uniform distribution on [0,1]. r represents

the variance in the expression levels of g1 and g2. Let Σ = r ·
[
1 ρ
ρ 1

]
.

(c) Generate N bivariate Gaussian data points x1, ..., xN , where xi = (xi1, xi2) ∼
N (µ,Σ). The resulting data form an N × 2 matrix. The first column
(x11, x21, ..., xN1)

T is the expression profile for gene g1. The second column
(x12, x22, ..., xN2)

T is the expression profile for gene g2.

(d) Let a, b, c, d and e be randomly chosen from a uniform distribution on [-0.5,0.5].
Let s be randomly chosen from a uniform distribution on [0,1]. Let

yi = a+ b̂xi1 + ĉxi2 + d̂x2i1 + êx2i2 + εi, i = 1, ..., N,

where εi is Gaussian random noise with mean 0 and standard deviation s·nl1. A
hat above a coefficient indicates that it has been scaled to normalize its predictor
(Section 4.1.1). The column vector (y1, y2, ..., yN )T is the expression profile for
the target gene, g3.

2. Generate data for M2 interacting triples (true positives), as follows. First, generate
3M2 gene names. From these names, create M2 triples, with each name assigned to
one triple. For each triple, (g1, g2, g3), generate expression profiles for g1, g2 and g3
as follows:

(a) Repeat steps 1(a) to 1(c).

(b) Let a, b, c d, e and f be randomly chosen from a uniform distribution on
[-0.5,0.5]. Let s be randomly chosen from a uniform distribution on [0,1]. Let

yi = a+ b̂xi1 + ĉxi2 + d̂x2i1 + êx2i2 + f̂xi1xi2 + εi, i = 1, ..., N,

where εi is Gaussian random noise with mean 0 and standard deviation s · nl1.
The column vector (y1, y2, ..., yN )T is the expression profile for the target gene,
g3.

3. For each of xi1, xi2 and yi, add a different ε (or multiply by a different eε), where ε
is random Gaussian noise with mean 0 and standard deviation nl2.

Figure 4.1: Generate data in which two predictor genes have a quadratic relationship with a
target gene. Note that the coefficients of the quadratic (a through f) can be arbitrarily close
to 0, thus allowing for arbitrarily-weak interactions.
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estimation method gives an estimated FDD curve that is close to the true FDD, consistent with

our expectation. Figure 4.2 also provides a sanity check. If our implementations of the various

FDR estimation methods are correct, then all the curves should agree on ideal data, which they

do. In addition, if we were over- or under-estimating the true FDR, we would not expect the

true FDR curve to agree with all the FDR estimates, especially the analytical estimate, which

can be regarded as the best estimate in this case.
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Figure 4.2: FDD curves of the FD estimation methods on DataQuad: ρ = 0, nl1 = 2, nl2 = 0 (no
measurement noise). Bootstrap (green), partial permutation (pink), total permutation (blue),
analytical t (black), true FD (red).

Additive measurement noise. On top of this ideal data, we add a small amount of Gaus-

sian measurement noise (ε) to each simulated expression level (see step 3 in PROCEDURE

genDataQuad). The FDD curves of the FD estimation methods begin to separate, with the

bootstrap curve remaining closest to the true curve (Figure 4.3).
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Figure 4.3: FDD curves of the FD estimation methods on DataQuad: ρ = 0, nl1 = 0.5, nl2 = 0.5
(additive measurement noise). Bootstrap (green), partial permutation (pink), total permutation
(blue), analytical t (black), true FD (red).
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Multiplicative measurement noise. Another kind of measurement noise is multiplicative,

which scales each simulated expression level by a random amount. Specifically, each expression

level is multiplied by log-normal noise, that is, by noise whose logarithm has a normal distribu-

tion [115] (see step 3 in PROCEDURE genDataQuad). This multiplicative measurement noise

causes much greater separation of the FDD curves than does the additive noise (Figures 4.4

and 4.5). The bootstrap method still gives good FD estimates, but the other methods under-

estimate the true FD to various extents, and sometimes by an order of magnitude (Figure 4.5).
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Figure 4.4: FDD curves of the FD estimation methods on DataQuad: ρ = 0, nl1 = 0.5, nl2 =
0.5 (multiplicative measurement noise). Bootstrap (green), partial permutation (pink), total
permutation (blue), analytical t (black), true FD (red).

4.1.2 Cubic data

The purpose of this section and succeeding sections is to study the performance of our detector

and of the methods of estimating FDR when the data model is different from the model used in
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Figure 4.5: Same as Figure 4.4 but showing only the top 2,000 discoveries. Bootstrap (green),
partial permutation (pink), total permutation (blue), analytical t (black), true FD (red).
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the detector (as is the case for real data). The previous section began the study by looking at

multiplicative noise (the detector assumes additive noise). This section continues the study by

using data based on a cubic data model. Although cubic data is a simple and natural extension

of the quadratic model used in the detector, we shall see that the various FDR estimates

already diverge substantially, even with additive measurement noise. For an interacting triple,

Y = a+ bX1 + cX2 + dX2
1 + eX2

2 + fX3
1 + gX3

2 + hX1X2 + iX1X
2
2 + jX2X

2
1 + ε, where hX1X2,

iX1X
2
2 and jX2X

2
1 are interaction terms. As with quadratic data, the coefficients a, b, c, . . . ,

j are randomly chosen and are different for each gene triple. Also, to avoid dominance by any

one variable, each predictor is normalized to have variance 1. The model for non-interacting

triples is the same except that h = i = j = 0. Simulation details are given in Figure 4.6, and

we call the simulated data DataCubic.

The effect of correlation. Figures 4.7 to 4.9 show FDD curves for cubic data with various

amounts of correlation between the predictor variables (ρ = 0, 0.3, 0.6). Most noticeably, the

pink curve, corresponding to the partial permutation estimate used in [24], is highly sensitive

to correlation, moving from an underestimate at low correlation, to an overestimate at high

correlation. In contrast, the green curve, corresponding to our bootstrap estimate, remains

close to the true FDD curve regardless of correlation. In other words, the partial permutation

estimate is much less stable and accurate than the bootstrap estimate. The curves for the other

two methods, total permutation and analytical t, are well below the true FDD curve for all

values of ρ. More details on the effect of correlated predictors can be found in Section 3.4.5.

4.1.3 Many predictor genes

In our simulations so far, a target gene has had exactly two predictor genes. We now consider

the more-realistic case in which a target gene can have many predictor genes. Of course our

detector and all the FD estimation methods are based on two predictor genes, and the goal is

to see how well they perform on data generated by this more-complex model. We note that

with many predictor genes, gene interactions can be much more complex and can include not

just 3-way, but 4-way and other higher-order interactions.

In general, when there are P predictor genes, we call the combination of target gene and
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PROCEDURE genDataCubic(M1,M2, N, ρ, nl1, nl2)

1. Generate data for M1 non-interacting triples (true negatives), as follows. First, gen-
erate 3M1 gene names. From these names, create M1 triples, with each name assigned
to one triple. For each triple, (g1, g2, g3), generate expression profiles for g1, g2 and
g3 as follows:

(a) Let µ = [µ1, µ2], where µ1 and µ2 are randomly chosen from a uniform distri-
bution on [-0.5,0.5]. µ1 and µ2 represent the mean expression levels of the two
predictor genes, g1 and g2, respectively.

(b) Let r be a random number from a uniform distribution on [0,1]. r represents

the variance in the expression levels of g1 and g2. Let Σ = r·
[
1 ρ
ρ 1

]
.

(c) Generate N bivariate Gaussian data points x1, ..., xN , where xi = (xi1, xi2) ∼
N (µ,Σ). The resulting data form an N × 2 matrix. The first column
(x11, x21, ..., xN1)

T is the expression profile for gene g1. The second column
(x12, x22, ..., xN2)

T is the expression profile for gene g2.

(d) Let a, b, c, d, e, f and g be randomly chosen from a uniform distribution on
[-0.5,0.5]. Let s be randomly chosen from a uniform distribution on [0,1]. Let

yi = a+ b̂xi1 + ĉxi2 + d̂x2i1 + êx2i2 + f̂x3i1 + ĝx3i2 + εi, i = 1, ..., N,

where εi is Gaussian random noise with mean 0 and standard deviation s · nl1.
A hat above a coefficient indicates normalization (Section 4.1.1). The column
vector (y1, y2, ..., yN )T is the expression profile for the target gene, g3.

2. Generate data for M2 interacting triples (true positives), as follows. First, generate
3M2 gene names. From these names, create M2 triples, with each name assigned to
one triple. For each triple, (g1, g2, g3), generate expression profiles for g1, g2 and g3
as follows:

(a) Repeat steps 1(a) to 1(c).

(b) Let a, b, c d, e, f , g, h, i and j be randomly chosen from a uniform distribution
on [-0.5,0.5]. Let s be randomly chosen from a uniform distribution on [0,1].
Let

yi = a+ b̂xi1 + ĉxi2 + d̂x2i1 + êx2i2 + f̂x3i1 + ĝx3i2

+ ĥxi1xi2 + îxi1x
2
i2 + ĵxi2x

2
i1 + εi, i = 1, ..., N,

where εi is Gaussian random noise with mean 0 and standard deviation s · nl1.
The column vector (y1, y2, ..., yN )T is the expression profile for the target gene,
g3.

3. For each of xi1, xi2 and yi, add a different ε (or multiply by a different eε), where ε
is random Gaussian noise with mean 0 and standard deviation nl2.

Figure 4.6: Generate data in which two predictor genes have a cubic relationship with a target
gene.
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Figure 4.7: FDD curves of the FD estimation methods on DataCubic: ρ = 0, nl1 = 1, nl2 = 0.2
(additive measurement noise). Bootstrap (green), partial permutation (pink), total permutation
(blue), analytical t (black), true FD (red).
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Figure 4.8: FDD curves of the FD estimation methods on DataCubic: ρ = 0.3, nl1 = 1,
nl2 = 0.2 (additive measurement noise). Bootstrap (green), partial permutation (pink), total
permutation (blue), analytical t (black), true FD (red).
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Figure 4.9: FDD curves of the FD estimation methods on DataCubic: ρ = 0.6, nl1 = 1,
nl2 = 0.2 (additive measurement noise). Bootstrap (green), partial permutation (pink), total
permutation (blue), analytical t (black), true FD (red).
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predictor genes a P -way unit. Each P -way unit has an associated P ×P matrix to describe the

correlations between predictor genes. Note that P -way units are used during data simulation,

but 2-way units (i.e., one target gene and two predictor genes) are still used during detection.

In each P -way unit, the extra predictor gene X3 (if P = 3) or extra predictor genes X3, ..., Xp

(if P > 3) can be thought of as additive noise, since the model used for detecting three-way

interactions includes only two predictor genes, g1 and g2. This is a form of non-Gaussian

biological noise.

For the target gene, we use a cubic data model. Thus, for a non-interacting P -way unit,

Y = a + b1X1 + · · ·+ bpXp + c1X
2
1 + · · ·+ cpX

2
p + d1X

3
1 + · · ·+ dpX

3
p + ε. For an interacting

P -way unit, Y = a+ b(b1X1 + · · ·+ bpXp) + c(c1X1 + · · ·+ cpXp)
2 +d(d1X1 + · · ·+dpXp)

3 + ε.2

The noise, ε, is i.i.d. Gaussian. Note that when the cubic term is expanded, it includes terms

of the form X1X2X3, which means the simulated data includes 4-way interactions. Simulation

details are given in Figure 4.10, and we call the simulated data DataMany. When P = 2, i.e.,

when there are no extra predictor genes, DataMany is similar to DataCubic. As usual, to avoid

dominance by any one predictor, each predictor is normalized to have variance 1. Formally,

Y = a + b̂(b1X1 + · · · + bpXp) + ĉ(c1X1 + · · · + cpXp)
2 + d̂(d1X1 + · · · + dpXp)

3 + ε, where a

hat above a coefficient means that it has been scaled to normalize the corresponding predictor.

For example, ĉ = c/sd((c1X1 + · · ·+ cpXp)
2), where sd denotes standard deviation.

To provide a simple way of specifying the amount of correlation between predictor genes,

we allow arbitrary covariance matrices, Σ, but provide a single parameter for adjusting the

intensity of the off-diagonal elements. Specifically, we let Σ = λB+ (1−λ)diag(B), where B is

a symmetric, positive-definite matrix (randomly chosen) and λ is a real number between 0 and

1. (See step 1(b) in Figure 4.10.) Here, diag(B) is a diagonal matrix (representing uncorrelated

predictors) whose diagonal is the diagonal of B. When λ = 1, B is the covariance matrix, and

when λ = 0, diag(B) is the covariance matrix. When 0 < λ < 1, the covariance matrix is a

weighted sum of B and diag(B). Note that the diagonal of Σ is always equal to the diagonal of

B. Thus, λ controls the amount of correlation between predictor genes while maintaining the

variance in gene expression levels.

2For a p-way unit, the number of possible terms is O(p3), which requires specifying O(p3) coefficients. The
approach taken here simplifies the specification by requiring only O(p) coefficients.
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PROCEDURE genDataMany (M1,M2, N, P, λ, nl1, nl2)

1. Generate data for M1 non-interacting P -way units, as follows. First, generate 3M1

gene names. From these names, create M1 triples, with each name assigned to one
triple. For each triple, (g1, g2, g3), generate expression profiles for g1, g2 and g3 as
follows:

(a) Let µ = [µ1, ..., µp], where µ1, ..., µp are randomly chosen from a uniform distri-
bution on [−0.5, 0, 5]. µ1, ..., µp represent the mean expression levels of the P
predictor genes. Here, p = P .

(b) Let A be a P × P matrix whose elements are randomly chosen from a uniform
distribution on [−0.5, 0, 5]. Let B = ATA (thus B is symmetric and positive
definite). Let Σ = λB + (1 − λ)diag(B), where diag(B) is a diagonal matrix
whose main diagonal consists of the diagonal elements in B.

(c) Generate N data points x1, ..., xN , where xi = (xi1, ..., xip) ∼ N (µ,Σ). The
resulting data form an N ×P matrix. The jth column (x1j , x2j , ..., xNj)

T is the
expression profile for the jth predictor gene, where j = 1, ..., P . In particular,
the first column is the expression profile for gene g1, and the second column is
the expression profile for gene g2.

(d) Let a, b1, ..., bp, c1, ..., cp and d1, ..., dp be randomly chosen from a uniform dis-
tribution on [−0.5, 0.5]. Let s be randomly chosen from a uniform distribution
on [0, 1]. Let yi = a+ b̂1xi1 + · · ·+ b̂pxip
+ ĉ1x

2
i1 + · · ·+ ĉpx

2
ip+ d̂1x

3
i1 + · · ·+ d̂px

3
ip+εi, i = 1, ..., N, where εi is Gaussian

random noise with mean 0 and standard deviation s · nl1. A hat above a coeffi-
cient indicates normalization (Section 4.1.1). The column vector (y1, y2, ..., yN )T

is the expression profile for the target gene, g3.

2. Generate data for M2 interacting P -way units, as follows. First, generate 3M2 gene
names. From these names, create M2 triples, with each name assigned to one triple.
For each triple, (g1, g2, g3), generate expression profiles for g1, g2 and g3 as follows:

(a) Repeat steps 1(a) to 1(c).

(b) Let a, b, b1, ..., bp, c, c1, ..., cp, d and d1, ..., dp be randomly chosen from a uniform
distribution on [−0.5, 0.5]. Let s be randomly chosen from a uniform distribution
on [0, 1]. Let yi = a+ b̂(b1xi1+· · ·+bpxip)+ ĉ(c1xi1+· · ·+cpxip)2+d̂(d1xi1+· · ·+
dpxip)

3 + εi, i = 1, ..., N, where εi is Gaussian random noise with mean 0 and
standard deviation s · nl1. A hat above a coefficient indicates normalization as
described in Section 4.1.3. The column vector (y1, y2, ..., yN )T is the expression
profile for the target gene, g3.

3. For each of xi1, xi2 and yi, add a different ε (or multiply by a different eε), where ε
is random Gaussian noise with mean 0 and standard deviation nl2.

Figure 4.10: Generate data in which each target gene has more than two predictor genes. Here,
P > 2 is the number of predictor genes for each target gene, and λ is in [0, 1] and determines
the average correlation between the P predictor genes. This generates multi-way interactions
between P + 1 genes.
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Figure 4.11 shows FDD curves for DataMany data with P = 3. The curve produced by the

bootstrap method (in green) is closest to the true FDD curve (in red). The bootstrap method

is therefore the most robust to the extra biological noise introduced by the extra predictor gene.
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Figure 4.11: FDD curves of the FD estimation methods on DataMany: P = 3, λ = 0.2, nl1 = 0.1,
nl2 = 0.1 (additive measurement noise). Bootstrap (green), partial permutation (pink), total
permutation (blue), analytical t (black), true FD (red).

4.1.4 Dependent data

In the previous sections, we assumed that all gene triples are independent. This section in-

troduces dependencies between triples, which is more typical of real expression data. That is,

we generate data in which the expression levels in different triples are dependent. We do this

in two ways: (i) by having triples share genes, and (ii) by introducing additional correlations

between genes in different triples. Simulation details are given in Figure 4.12, and we call the

simulated data DataDependent.
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PROCEDURE genDataDependent (M1,M2, N, L, λ, nl1, nl2)

1. Generate data for a pool of L predictor genes, as follows. Let µ = [µ1, ..., µL], where
µi, i = 1, ..., L, is randomly chosen from a uniform distribution on [−0.5, 0.5]. These
L values represent the mean expression levels of the L predictor genes. Let A be
an L × L matrix whose elements are randomly chosen from a uniform distribution
on [−0.5, 0.5]. As in Figure 4.10, let Σ = λATA + (1 − λ)diag(ATA). Generate N
multivariate Gaussian data points x1, ..., xN , where xi = (xi1, ..., xiL) ∼ N (µ,Σ).
The resulting data form an N × L matrix, each column representing an expression
profile for one predictor gene. Generate L gene names and associate each one with
one of these expression profiles.

2. Generate data for M1 non-interacting triples (true negatives), as follows. First, gen-
erate M1 target gene names. For each target gene, g3, randomly choose two different
genes, g1 and g2, from the pool of L predictor genes. Form the triple (g1, g2, g3). For
each such triple, generate data for g3 as follows:

Let a, b, c, d, e, f and g be randomly chosen from a uniform distribution on
[−0.5, 0.5]. Let s be randomly chosen from a uniform distribution on [0, 1].
Let

yi = a+ b̂xi1 + ĉxi2 + d̂x2i1 + êx2i2 + f̂x3i1 + ĝx3i2 + εi, i = 1, ..., N,

where εi is Gaussian random noise with mean 0 and standard deviation s · nl1.
A hat above a coefficient indicates normalization (Section 4.1.1). The column
vector (y1, y2, ..., yN )T is the expression profile for the target gene, g3.

3. Generate data for M2 interacting triples (true positives), as follows. First, generate
M2 target gene names. For each target gene, g3, randomly choose two different genes,
g1 and g2, from the pool of L predictor genes. Form the triple (g1, g2, g3). For each
such triple, generate data for g3 as follows:

Let a, b, c, d, e, f, g, h, i and j be randomly chosen from a uniform distribution
on [−0.5, 0.5]. Let s be randomly chosen from a uniform distribution on [0, 1].
Let

yi = a+ b̂xi1 + ĉxi2 + d̂x2i1 + êx2i2 + f̂x3i1 + ĝx3i2

+ ĥxi1xi2 + îxi1x
2
i2 + ĵxi2x

2
i1 + εi, i = 1, ..., N,

where εi is Gaussian random noise with mean 0 and standard deviation s · nl1.
The column vector (y1, y2, ..., yN )T is the expression profile for the target gene,
g3.

4. For each of xi1, xi2 and yi, add a different ε (or multiply by a different eε), where ε
is random Gaussian noise with mean 0 and standard deviation nl2.

Figure 4.12: Generate dependent data where triples can share genes and genes can be correlated
across triples. Here, L is the size of the pool of shared genes, and λ is in [0, 1] and determines
the average correlation between genes in the pool.



Chapter 4. Validating FDR estimates 117

Step 1 in PROCEDURE genDataDependent produces expression profiles for a pool of L

genes. The expression levels of these L genes follows a multivariate Gaussian distribution,

N (µ,Σ). Here, Σ is the covariance matrix of the L genes, and µ is the mean of the L gene

expression profiles. As in section 4.1.3, we allow arbitrary covariance matrices, but provide a

single parameter, λ, for adjusting the intensity of the off-diagonal elements. Gene sharing is

achieved in steps 2 and 3, where predictor genes are chosen from this pool of L genes. Two

predictor genes are chosen for each triple, and the target gene depends on them through a cubic

data model. When the number of triples is greater than L, there is significant gene sharing

among the triples.

Figure 4.13 shows the FDD curves of the FD estimation methods. The expression data used

for this example was generated from a pool of 1,000 predictor genes shared by 20,000 triples,

so each predictor gene belongs to 40 triples on average. Overall, the bootstrap curve (in green)

is much closer to the correct FDD curve (in red) than the other curves are.

4.1.5 Multi-modal data

Until now we have only considered gene expression levels that are Gaussian, whereas real

expression levels are often non-Gaussian and sometimes multi-modal. This section looks at

data from Gaussian mixture models, which are both non-Gaussian and multi-modal and are a

standard statistical model [27, 116]. (Section 4.3 looks at other forms of non-Gaussian data.)

Simulation details are given in Figure 4.14, and we call the simulated data DataMixture. In

PROCEDURE genDataMixture, the parameter K specifies the number of Gaussian components

in the mixture, and µsize determines the average distance between these components. In each

gene triple, the expression levels of predictor genes have a Gaussian mixture model, and the

target gene depends on them through a cubic model. Each gene triple has a different, randomly

chosen mixture model and a different, randomly chosen cubic model.

Figure 4.16 gives an example of the data for two predictor genes, from which we can clearly

see three distinct modes, or Gaussian components, both in the joint distribution and in the

marginals. Figure 4.15 shows that, on the DataMixture data, although all the methods under-

estimate the true FD, the bootstrap method does so the least. Moreover, the bootstrap method

gives very accurate FD estimates up to the top 2,000 discoveries, whereas the other methods
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Figure 4.13: FDD curves of the FD estimation methods on DataDependent: L = 1000, λ = 0.2,
nl1 = 0.3, nl2 = 0.3 (additive measurement noise). Bootstrap (green), partial permutation
(pink), total permutation (blue), analytical t (black), true FD (red).
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PROCEDURE genDataMixture (M1,M2, N, nl1, nl2,K, µsize)

1. Generate data for M1 non-interacting triples (true negatives), as follows. First, gen-
erate 3M1 gene names. From these names, create M1 triples, with each name assigned
to one triple. For each triple, (g1, g2, g3), generate expression profiles for the three
genes as follows:

(a) Let µk = (µk1, µk2), where µk1 and µk2 are random numbers from a uniform
distribution on [−0.5 · µsize, 0.5 · µsize]. k = 1, 2, ..,K. µk is the mean of the kth
mixture component.

(b) Let Σk =
[
r1 0
0 r2

]
·
[
1 ρ
ρ 1

]
·
[
r1 0
0 r2

]
, where r1 and r2 are random numbers from a

uniform distribution on [0, 1], and ρ is a random number from a uniform distri-
bution on [−1, 1]. Σk is the covariance matrix for the kth mixture component.
Within this component, ρ is the correlation of g1 and g2, and ri is the standard
deviation of gi.

(c) Let pk∑K
i=1 pi

be the probability of the kth mixture component, where p1, ..., pK

are random numbers from a uniform distribution on [0, 1].

(d) Generate N bivariate data points drawn from the mixture of K Gaussian
components. The resulting data form an N × 2 matrix. The first column
(x11, x21, ..., xN1)

T is the expression profile for gene g1. The second column
(x12, x22, ..., xN2)

T is the expression profile for gene g2.

(e) Let a, b, c, d, e, f and g be randomly chosen from a uniform distribution on
[−0.5, 0.5]. Let s be randomly chosen from a uniform distribution on [0, 1].
Let yi = a + b̂xi1 + ĉxi2 + d̂x2i1 + êx2i2 + f̂x3i1 + ĝx3i2 + εi, i = 1, ..., N , where εi
is Gaussian random noise with mean 0 and standard deviation s · nl1. A hat
above a coefficient indicates normalization (Section 4.1.1). The column vector
(y1, y2, ..., yN )T is the expression profile for the target gene, g3.

2. Generate data for M2 interacting triples (true positives), as follows. First, generate
3M2 gene names. From these names, create M2 triples, with each name assigned to
one triple. For each triple, generate expression profiles for g1, g2 and g3 as follows:

(a) Repeat steps 1(a) to 1(d).

(b) Let a, b, c, d, e, f, g, h, i and j be randomly chosen from a uniform distribution on
[−0.5, 0.5]. Let s be randomly chosen from a uniform distribution on [0, 1]. Let
yi = a+ b̂xi1+ ĉxi2+ d̂x2i1+ êx2i2+ f̂x3i1+ ĝx3i2+ĥxi1xi2+ îxi1x

2
i2+ ĵxi2x

2
i1+εi, i =

1, ..., N , where εi is Gaussian random noise with mean 0 and standard deviation
s ·nl1. The column vector (y1, y2, ..., yN )T is the expression profile for the target
gene, g3.

3. For each of xi1, xi2 and yi, add a different ε (or multiply by a different eε), where ε
is random Gaussian noise with mean 0 and standard deviation nl2.

Figure 4.14: Generate data in which the expression levels of predictor genes have a Gaussian
mixture model. Here, K specifies the number of mixture components, and µsize determines the
average distance between the components. Since each target gene has two predictor genes, the
mixture models are two-dimensional.
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underestimate the true FD by at least an order of magnitude..
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Figure 4.15: FDD curves of the FD estimation methods on DataMixture: K = 3, µsize = 0.5,
nl1 = 0.1, nl2 = 0.1 (additive measurement noise). Bootstrap (green), partial permutation
(pink), total permutation (blue), analytical t (black), true FD (red).

4.1.6 More-complex non-linearities

The above sections describe three-way gene interactions in terms of smooth, low-order polyno-

mials, e.g., quadratic functions and cubic functions. The bootstrap method works well in these

cases. In reality, the interaction is likely to be more complex and less smooth. In this section,

we look at two forms of interaction that are more biologically inspired. In these data models,

three-way interactions are described in terms of discontinuous and non-differentiable functions,

in order to demonstrate the robustness of the bootstrap method in the face of non-smoothness.

As usual, X1, X2 and Y represent the expression levels of two predictor genes and a target

gene, respectively, and ε represents biological noise.



Chapter 4. Validating FDR estimates 121

Figure 4.16: Representative multi-modal data for two predictor genes, x and y, generated using
a Gaussian mixture model with three components. N = 10, 000,K = 3, µsize = 1.
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Max data. Here we consider a non-differentiable data model. Specifically, for an inter-

acting triple, Y = max(f(X1), g(X2)) + ε, for some functions f and g. In our simulations,

we use quadratic polynomials for f and g, and i.i.d. Gaussian noise for ε. Note that the

max function is an extension of the OR logic in combinatorial regulation, since OR logic can

be rewritten as max(a, b), where a and b are binary numbers. For a non-interacting triple,

Y = a+ bX1 + cX2 + dX2
1 + eX2

2 + ε, as before, where ε is i.i.d. Gaussian random noise. Sim-

ulation details for max data are given in Figure 4.17, and we call the simulated data DataMax.

Notice that this max model of three-way interactions goes beyond the additive model of earlier

sections, in which Y = f(X1) + g(X2) +h(X1, X2) + ε, where h(X1, X2) is a smooth interaction

term.

Figure 4.18 shows the FDD curves of the FD estimation methods. Clearly, the bootstrap

curve (in green) is much closer to the correct FDD curve (in red) than the other curves are.

Moreover, the green curve almost coincides with the red curve for the top 1,000 discoveries,

whereas the other curves underestimate the true FD by at least an order of magnitude.

Switch data. Here we consider a discontinuous data model, in which the interaction between

genes g1 and g3 switches between two modes, depending on the level of gene g2. Specifically,

given a threshold, τ , if X2 > τ , then Y = f(X1) + ε; otherwise, Y = g(X1) + ε. In this

way, g2 controls the interaction between g1 and g3. In our simulations, f and g are distinct

quadratic polynomials. This form of three-way interaction can be viewed as an idealization of

TF modulation, in which the interaction between a transcription factor and a target gene is

modulated by a third gene [20, 24, 30, 112]. Simulation details for switch data are given in

Figure 4.19, and we call the simulated data DataSwitch.

Figure 4.20 shows the FDD curves of the FD estimation methods on DataSwitch. The

bootstrap method gives the most accurate FDD curve, whereas the other methods give signifi-

cantly underestimated FDD curves (underestimated by at least an order of magnitude for the

top 2,000 discoveries).
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PROCEDURE genDataMax(M1,M2, N, ρ, nl1, nl2)

1. Generate data for M1 non-interacting triples (true negatives), as follows. First, gen-
erate 3M1 gene names. From these names, create M1 triples, with each name assigned
to one triple. For each triple, (g1, g2, g3), generate expression profiles for g1, g2 and
g3 as follows:

(a) Let µ = [µ1, µ2], where µ1 and µ2 are randomly chosen from a uniform distri-
bution on [-0.5,0.5]. µ1 and µ2 represent the mean expression levels of the two
predictor genes, g1 and g2, respectively.

(b) Let r be a random number from a uniform distribution on [0,1]. r represents

the variance in the expression levels of g1 and g2. Let Σ = r ·
[
1 ρ
ρ 1

]
.

(c) Generate N bivariate Gaussian data points drawn from N (µ,Σ). The resulting
data form an N×2 matrix. The first column (x11, x21, ..., xN1)

T is the expression
profile for gene g1. The second column (x12, x22, ..., xN2)

T is the expression
profile for gene g2.

(d) Let a, b, c, d and e be randomly chosen from a uniform distribution on
[-0.5,0.5]. Let s be randomly chosen from a uniform distribution on [0,1]. Let
yi = a+b̂xi1+ĉxi2+d̂x2i1+êx2i2+εi, where εi is Gaussian random noise with mean
0 and standard deviation s·nl1. A hat above a coefficient indicates normalization
(Section 4.1.1). The column vector (y1, y2, ..., yN )T is the expression profile for
the target gene, g3.

2. Generate data for M2 interacting triples (true positives), as follows. First, generate
3M2 gene names. From these names, create M2 triples, with each name assigned to
one triple. For each triple, (g1, g2, g3), generate expression profiles for g1, g2 and g3
as follows:

(a) Repeat steps 1(a) to 1(c).

(b) Let a1, a2, b1, b2, c1 and c2 be randomly chosen from a uniform distribution on
[-0.5,0.5]. Let s be randomly chosen from a uniform distribution on [0,1]. Let
yi = max(a1 + b̂1xi1 + ĉ1x

2
i1, a2 + b̂2xi2 + ĉ2x

2
i2) + εi, where εi is Gaussian

random noise with mean 0 and standard deviation s · nl1. The column vector
(y1, y2, ..., yN )T is the expression profile for the target gene, g3.

3. For each of xi1, xi2 and yi, add a different ε (or multiply by a different eε), where ε
is random Gaussian noise with mean 0 and standard deviation nl2.

Figure 4.17: Generate data for which, in an interacting triple, the target gene is controlled by
the stronger of the two predictor genes.
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Figure 4.18: FDD curves of the FD estimation methods on DataMax: ρ = 0, nl1 = 0.1, nl2 =
0.1 (multiplicative measurement noise). Bootstrap (green), partial permutation (pink), total
permutation (blue), analytical t (black), true FD (red).
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PROCEDURE genDataSwitch (M1,M2, N, ρ, nl1, nl2)

1. Generate data for M1 non-interacting triples (true negatives), as follows. First, gen-
erate 3M1 gene names. From these names, create M1 triples, with each name assigned
to one triple. For each triple, (g1, g2, g3), generate expression profiles for g1, g2 and
g3 as follows:

(a) Let µ = [µ1, µ2], where µ1 and µ2 are randomly chosen from a uniform distri-
bution on [-0.5,0.5]. µ1 and µ2 represent the mean expression levels of the two
predictor genes, g1 and g2, respectively.

(b) Let r be a random number from a uniform distribution on [0,1]. r represents

the variance in the expression levels of g1 and g2. Let Σ = r·
[
1 ρ
ρ 1

]
.

(c) Generate N bivariate Gaussian data points drawn from N (µ,Σ). The resulting
data form an N×2 matrix. The first column (x11, x21, ..., xN1)

T is the expression
profile for gene g1. The second column (x12, x22, ..., xN2)

T is the expression
profile for gene g2.

(d) Let a, b, c, d and e be randomly chosen from a uniform distribution on [−0.5, 0.5].
Let s be randomly chosen from a uniform distribution on [0,1]. Let yi = a +
bxi1+cxi2+dx2i1+ex2i2+εi, where εi is Gaussian random noise with mean 0 and
standard deviation s · nl1. The column vector (y1, y2, ..., yN )T is the expression
profile for the target gene, g3.

2. Generate data for M2 interacting triples (true positives), as follows. First, generate
3M2 gene names. From these names, create M2 triples, with each name assigned to
one triple. For each triple, (g1, g2, g3), generate expression profiles for g1, g2 and g3
as follows:

(a) Repeat steps 1(a) to 1(c).

(b) Let τ , a1, b1, c1, a2, b2 and c2 be randomly chosen from a uniform distribution
on [−0.5, 0.5]. Let s be randomly chosen from a uniform distribution on [0,1].

(c) If xi2 ≥ τ , let
yi = a1 + b1xi1 + c1x

2
i1 + εi,

otherwise, let
yi = a2 + b2xi1 + c2x

2
i1 + εi,

where εi is Gaussian random noise with mean 0 and standard deviation s · nl1.
The column vector (y1, y2, ..., yN )T is the expression profile for the target gene,
g3.

3. For each of xi1, xi2 and yi, add a different ε (or multiply by a different eε), where ε
is random Gaussian noise with mean 0 and standard deviation nl2.

Figure 4.19: Generate data for which, in an interacting triple, the interaction between genes g1
and g3 switches between two modes, depending on the expression level of gene g2.
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Figure 4.20: FDD curves of the FD estimation methods on DataSwitch: ρ = 0, nl1 = 0.1,
nl2 = 0.1 (multiplicative measurement noise). Bootstrap (green), partial permutation (pink),
total permutation (blue), analytical t (black), true FD (red).
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4.2 Results on real/simulated data

Using simulated gene expression based on relatively simple statistical models, Section 4.1

demonstrates the superiority of the bootstrap method for estimating the number of false discov-

eries under a variety of statistical conditions, and demonstrates that other estimation methods

underestimate the number of false discoveries, often by more than an order of magnitude. In

this section we use real data, i.e., the log-transformed germination/dormancy gene expression

data of Chapter 2, as the data for predictor genes. In this way, we can test the FD estimation

methods under the specific, and real conditions of this data set. Of course, although the ex-

pression levels of some genes are now real, others must be simulated in order to have known

three-way interactions. To this end, data for the target genes are generated from the predictor

genes as in Section 4.1. Since the expression data is now half real and half simulated (for

predictor genes, the expression data is real, whereas for target genes, it is simulated), we call

it real/simulated data.

In this section, we look at four types of real/simulated data and the estimates of false

discoveries for them. All figures in this section use M1 = M2 = 10, 000, and the length of each

expression profile is N = 138, the same as that for the seed germination/dormancy data of

Chapter 2. The procedures below all assume that the real data is stored in a matrix, X, whose

ijth entry is the expression level of gene j in experiment i. That is, the columns of X are gene

expression profiles.

We shall show that the bootstrap method of estimating false discoveries outperforms the

other methods on this data, and that the other methods often underestimate FD by more than

an order of magnitude.

4.2.1 Cubic data

In this section, we look at how the FD estimation methods perform on the real/simulated

version of cubic data. The data generation procedure, genRealCubic (Figure 4.21), is similar

to genDataCubic in Section 4.1.2, except that now expression data for the predictor genes are

sampled from real expression data. We call the simulated data RealCubic.
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PROCEDURE genRealCubic(M1,M2, nl1, nl2)

1. Generate data for M1 non-interacting triples (true negatives), as follows:

First, generate 3M1 gene names. From these names, create M1 triples, with each
gene name assigned to one triple. For each triple, (g1, g2, g3), generate expression
profiles for genes g1, g2 and g3 as follows:

(a) Randomly choose two columns, (x11, x21, ..., xN1)
T and (x12, x22, ..., xN2)

T , from
the real data matrix, X. These are the expression profiles for predictor genes
g1 and g2, respectively. N is the length of each profile.

(b) Let a, b, c, d, e, f and g be random numbers from a uniform distribution on
[−0.5, 0.5]. Let s be a random number from a uniform distribution on [0, 1].

(c) Let the ith gene expression level for target gene g3 be

yi = a+ b̂xi1 + ĉxi2 + d̂x2i1 + êx2i2 + f̂x3i1 + ĝx3i2 + εi, i = 1, ..., N,

where εi is Gaussian random noise with mean 0 and standard deviation s·nl1. A
hat above a coefficient indicates that it has been scaled to normalize its predictor
(Section 4.1.1). The column vector (y1, y2, ..., yN )T is the expression profile for
the target gene, g3.

2. Generate data for M2 interacting triples (true positives), as follows:

First, generate 3M2 gene names. From these names, create M2 triples, with each
gene name assigned to one triple. For each triple, (g1, g2, g3), generate expression
profiles for genes g1, g2 and g3 as follows:

(a) Repeat step 1(a).

(b) Let a, b, c, d, e, f, g, h, i and j be random numbers from a uniform distribution
on [−0.5, 0.5]. Let s be a random number from a uniform distribution on [0, 1].

(c) Let the ith expression level for target gene g3 be

yi = a+ b̂xi1 + ĉxi2 + d̂x2i1 + êx2i2 + f̂x3i1 + ĝx3i2

+ ĥxi1xi2 + îxi1x
2
i2 + ĵxi2x

2
i1 + εi, i = 1, ..., N,

where εi is Gaussian random noise with mean 0 and standard deviation s · nl1.
The column vector (y1, y2, ..., yN )T is the expression profile for the target gene,
g3.

3. For each xi1, xi2 and yi, add a different ε (or multiply by a different eε), where ε is
random Gaussian noise with mean 0 and standard deviation nl2.

Figure 4.21: Generate cubic data where two predictor genes have a cubic relationship with a
target gene. The expression profiles for the two predictor genes are from real data.
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The FDD curves of the FD estimation methods are shown in Figure 4.22 (multiplicative

measurement noise) and in Figure 4.23 (additive measurement noise). In both cases, the boot-

strap curve is closest to the true FDD curve. The total permutation method and analytical t

method give almost zero FD estimates for top 5,000 discoveries. While clearly above zero, the

partial permutation method significantly underestimates the true FDD curve.
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Figure 4.22: FDD curves of the FD estimation methods on RealCubic: nl1 = 0.4, nl2 =
0.4 (multiplicative measurement noise). Bootstrap (green), partial permutation (pink), total
permutation (blue), analytical t (black), true FD (red).

4.2.2 Many predictor genes

The procedure for simulating data when target genes have many predictor genes is similar

to PROCEDURE genDataMany in Section 4.1.3. However, instead of being sampled from a

multivariate Gaussian distribution, the gene expression profiles of each P -way unit are sampled

from real expression data (as in step 1(a) of PROCEDURE genRealCubic in Section 4.2.1).
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Figure 4.23: FDD curves of the FD estimation methods on RealCubic: nl1 = 1, nl2 = 0.2
(additive measurement noise). Bootstrap (green), partial permutation (pink), total permutation
(blue), analytical t (black), true FD (red).
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We call the simulated data RealMany. Figure 4.24 shows the FDD curves of the FD estimation

methods on RealMany, from which we can see that the bootstrap method performs significantly

better than the other methods.
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Figure 4.24: FDD curves of the FD estimation methods on RealMany data: nl1 = 0.5, nl2 =
0.5 (multiplicative measurement noise). Bootstrap (green), partial permutation (pink), total
permutation (blue), analytical t (black), true FD (red).

4.2.3 Max data

The simulation procedure for real max data is similar to PROCEDURE genDataMax in Sec-

tion 4.1.6, except that now expression levels for predictor genes are sampled from real expression

data (as in step 1(a) in PROCEDURE genRealCubic in Section 4.2.1). We call the simulated

data RealMax. The FDD curves of the FD estimation methods on RealMax are shown in Fig-

ure 4.25. The bootstrap method gives a very accurate FDD curve, whereas the other methods

significantly underestimate the true FDD curve.
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Figure 4.25: FDD curves of the FD estimation methods on RealMax: nl1 = 0.1, nl1 = 0.1 (multi-
plicative measurement noise). Bootstrap (green), partial permutation (pink), total permutation
(blue), analytical t (black), true FD (red).
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4.2.4 Switch data

The simulation procedure for real switch data is similar to PROCEDURE genDataSwitch in

Section 4.1.6, except that now expression levels for predictor genes are sampled from real

expression data (as in step 1(a) in PROCEDURE genRealCubic in Section 4.2.1). We call the

simulated data RealSwitch. Figures 4.26 and 4.27 show FDD curves of the FD estimation

methods on RealSwitch. The bootstrap method gives the best FDD curve, while the other

methods significantly underestimate the true curve.
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Figure 4.26: FDD curves of the FD estimation methods on RealSwitch: nl1 = 0.2, nl2 =
0.2 (multiplicative measurement noise). Bootstrap (green), partial permutation (pink), total
permutation (blue), analytical t (black), true FD (red).
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Figure 4.27: FDD curves of the FD estimation methods on RealSwitch: nl1 = 0.5, nl2 = 0.5
(additive measurement noise). Bootstrap (green), partial permutation (pink), total permutation
(blue), analytical t (black), true FD (red).
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4.3 Results on other non-Gaussian data

Section 4.1.5 looked at a particular form of non-Gaussian gene expression data (Gaussian mix-

ture models). This section considers other forms of non-Gaussian data. Specifically, we look

at data from Laplacian distributions (which have longer tails) and beta distributions (which

are skewed and have shorter tails). While it is easy to simulate data for correlated Gaussian

variables, correlations between non-Gaussian variables are much harder to simulate. One way

to do this is with copulas [117].

4.3.1 Copulas

A copula is a multivariate distribution for which the marginal probability of each variable is

uniform [117]. There are a number of ways of constructing copulas. One popular method is to

start with a multivariate Gaussian distribution and then transform each variable so that it has

a uniform distribution. Specifically, if (x1, ..., xn) are the variables of a multivariate Gaussian,

and if we let yi = φi(xi), where φi is the marginal CDF of xi, then each yi has a uniform

distribution on [0, 1] [117]. Because each φi is strictly monotonic, Spearman correlation among

the variables is preserved by this transformation (though Pearson correlation is not). The

distribution of (y1, ..., yn) is known as a Gaussian copula [117].

In a similar fashion, we can transform the yi. For instance, let zi = F−1(yi), where F−1 is

the inverse CDF of a univariate distribution, f . Then each zi has distribution f . Again, because

F−1 is strictly monotonic, the Spearman correlation among the zi is the same as among the yi

and the xi. In this way, we can generate multivariate distributions with a given (Spearman)

correlation structure and with any marginal distributions we like.

For example, applying the inverse CDF of the beta distribution to a copula transforms the

variables so they have a beta distribution with dependence preserved among variables. This

process is illustrated in Figures 4.28, 4.29 and 4.30. First, bivariate Gaussian data is converted

to copula data through the CDF of a Gaussian distribution, then the copula data is converted

to bivariate beta-distributed data through the inverse CDF of the beta distribution.
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Figure 4.28: The scatter plot and marginal distribution of 10,000 2-dimensional normally dis-
tributed data points with mean µ = (0, 0) and covariance Σ = [1.0, 0.8; 0.8, 1.0]. Notice that
the two variables, x and y, are strongly correlated, and each follows a Gaussian distribution.
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Figure 4.29: The scatter plot and marginal distribution of 10,000 2-dimensional uniform data
points from a Gaussian copula (constructed using the data points in Figure 4.28). Notice that
the two variables, x and y, are still correlated, but now each has a uniform distribution.
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Figure 4.30: The scatter plot and marginal distribution of 10,000 2-dimensional data points
following a beta distribution. The data points are generated by applying the inverse CDF of a
beta distribution (with parameters A = 2 and B = 5) to the data in Figure 4.29. Notice that
the two variables, x and y, are still correlated, and each follows a beta distribution.



Chapter 4. Validating FDR estimates 139

4.3.2 Multivariate beta distributions

The expression levels for predictor genes in Section 4.1.2 are Gaussian, and therefore symmetric.

In this section, we examine how well the FD estimation methods work on beta-distributed data,

which is skewed and has shorter tails than Gaussians (as seen in the marginal distributions of

Figure 4.30).

A random variable x ∈ [0, 1] follows a beta distribution if its density function is f(x;A,B) =

1

B(A,B)
xA−1(1− x)B−1, where A > 0 and B > 0 control the shape of the distribution. At the

start of Section 4.3, we outlined how to generate bivariate beta-distributed data. The details are

given in PROCEDURE genBetaData (Figure 4.31). The procedure returns an N×2 matrix, D,

representing two gene expression profiles of length N . To generate this data, the procedure first

draws N pairs of values independently from a bivariate Gaussian distribution with correlation

ρ. These values are then transformed to values from a bivariate uniform distribution, and then

to values from a bivariate beta distribution. Finally, the N pairs are scaled and shifted, so that

each gene has a different range of expression levels. The scaling factor is chosen randomly from

a uniform distribution on [0, σmax], and the amount of shift is chosen randomly from a uniform

distribution on [−µmax, µmax].

The method for generating the simulated data is the same as PROCEDURE genDataCubic

(Section 4.1.2), except that the data for predictor genes, g1 and g2, is now bivariate beta

distributed (with A = 2 and B = 6). Moreover, the correlation, ρ, is not fixed but is different for

each gene pair, and is randomly chosen from a compressed Gaussian distribution, as described

in Section 4.4 (with σu = 0.3). We call the simulated data DataBetaRandomRho. The FDD

curves of the FD estimation methods are shown in Figure 4.32. It can be seen that the bootstrap

estimate of FD is much larger than the others, does not underestimate the true FD at small

numbers of discoveries, and is more accurate at higher numbers of discoveries.

4.3.3 Multivariate Laplacian distributions

In this section, we examine how well the FD estimation methods work on Laplacian data, which

has longer tails than Gaussians and is not smooth at the origin.
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PROCEDURE genBetaData (N, ρ,A,B, σmax, µmax)

1. Let D be an N × 2 matrix in which each row is drawn randomly from a bivariate

Gaussian copula with underlying covariance
[
1 ρ
ρ 1

]
. The entries of D are therefore

uniformly distributed on [0, 1], and the columns of D are correlated.

2. Replace each entry, dij , of D by F−1(dij), where F−1 is the inverse CDF of a beta
distribution with parameters A and B. The entries of D are now beta distributed,
and the columns have the same Spearman correlation.

3. Randomly choose two values, a and b, from a uniform distribution on [0, σmax].
Multiply the first column of D by a, and multiply the second column by b.

4. Randomly choose two values, c and d, from a uniform distribution on [−µmax, µmax].
Add c to the first column of D, and add d to the second column.

5. Return D.

Figure 4.31: Generate bivariate beta-distributed data.

A random variable x has a Laplacian distribution if its density function is f(x) =
1

2b
exp

(
−|x− µ|

b

)
,

where b ≥ 0 is a scale parameter (larger b producing longer tails) and µ is a location parameter.

Note that the Laplacian distribution is an exponential distribution in which negative values

are possible. It has longer tails than the Gaussian since exp(−|x|) decreases much more slowly

than exp(−x2). The procedure for generating Laplacian data, genLaplacianData, is given in

Figure 4.33. It is similar to genBetaData except that it uses a standard Laplacian distribu-

tion (with density function f(y) =
1

2
exp(−|y|)) in step 2. In this case, the inverse CDF is

F−1(y) = sign(y − 0.5)G−1(2|y − 0.5|), where G−1 is the inverse CDF of an exponential dis-

tribution with unit variance (i.e., with density function g(y) = exp(−y)). As in genBetaData,

the data is finally scaled and shifted to give each gene a different range of expression levels.

Figure 4.34 illustrates correlated bivariate Laplacian data, with the following parameters for

genLaplacianData: N = 10, 000, ρ = 0.6, σmax = 5, µmax = 5, where σmax and µmax have the

same meaning as in Section 4.3.2.

The method for generating the simulated data is the same as PROCEDURE genDataCubic,

except that now the data for predictor genes, g1 and g2, is Laplacian. Moreover, the correlation,

ρ, is not fixed but is different for each gene pair, and is randomly chosen from a compressed

Gaussian distribution, as described in Section 4.4 (with σu = 0.3). We call the simulated
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Figure 4.32: FDD curves of the FD estimation methods on DataBetaRandomRho: M1 =
15000,M2 = 5000, N = 100, σu = 0.3, nl1 = 0.1, nl2 = 0.1 (multiplicative measurement noise).
Bootstrap (green), partial permutation (pink), total permutation (blue), analytical t (black),
true FD (red).
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PROCEDURE genLaplacianData (N, ρ, σmax, µmax)

1. Let D be an N × 2 matrix in which each row is drawn randomly from a bivariate

Gaussian copula with underlying covariance
[
1 ρ
ρ 1

]
. The entries of D are therefore

uniformly distributed on [0, 1], and the columns of D are correlated.

2. Replace each element, dij , of D by F−1(dij), where F−1 is the inverse CDF of a
Laplacian distribution with parameters b = 1 and µ = 0. The entries of D are now
Laplacian distributed, and the Spearman correlation of the columns is unchanged.

3. Randomly choose two values, a and b, from a uniform distribution on [0, σmax].
Multiply the first column of D by a, and multiply the second column by b.

4. Randomly choose two values, c and d, from a uniform distribution on [−µmax, µmax].
Add c to the first column of D, and add d to the second column.

5. Return D.

Figure 4.33: Generate bivariate Laplacian data.

data DataLaplaceRandomRho. The FDD curves of the FD estimation methods are shown in

Figure 4.35. Again, the bootstrap method gives the most accurate FD estimate overall.

4.4 Results on mixtures of correlations

The above data generation procedures, e.g., genDataCubic, fix the correlation parameter, ρ,

for all interacting and non-interacting triples. That is, for each gene triple, (g1, g2, g3), the

correlation between the predictor genes, g1 and g2, is the same. In this section, we generate data

in which the predictor genes have many different correlations. Besides being more realistic, this

allows us to test the performance of the FD estimation methods on data containing a mixture

of many different correlations, not just a single correlation. For each gene triple, we choose

the correlation of the predictor genes randomly from a probability distribution. We consider

two distributions: (i) a compressed Gaussian distribution, and (ii) an empirical distribution of

correlations in real expression data.

Compressed Gaussian distributions (e.g., Figure 4.36) are commonly seen in the correlation

distributions of real data (e.g., Figure 4.38), where higher correlation arises with lower prob-

ability and lower correlation arises with higher probability. To simulate this, we let ρ be the
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Figure 4.34: The scatter plot and marginal distribution of 10,000 2-dimensional data points
following a Laplacian distribution. The data points are generated by applying the inverse CDF
of the Laplacian distribution to the data from Figure 4.29. The two variables, x and y, are
correlated (r = 0.57), and each follows a Laplacian distribution.
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Figure 4.35: FDD curves of the FD estimation methods on DataLaplaceRandomRho: M1 =
15000, M2 = 5000, N = 100, σu = 0.3, nl1 = 0.1, nl2 = 0.1 (multiplicative measurement noise).
Bootstrap (green), partial permutation (pink), total permutation (blue), analytical t (black),
true FD (red).
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inverse Fisher transformation of u:

ρ =
e2u − 1

e2u + 1
,

where u is normally distributed with mean zero and standard deviation σu. In this way, ρ is

bounded within [-1, 1], the valid range for correlation coefficients.

We generate simulated data, called DataCubicRandomRho, by incorporating this ρ into PRO-

CEDURE genDataCubic. Specifically, in step 1(b) in Figure 4.6, ρ is chosen randomly as just

described, so that it has a different value for each gene triple. Figure 4.37 shows the FDD

curves of the FD estimation methods applied to this data. The bootstrap curve (green) is clos-

est to the true FD curve (red), while the other curves deviate downward from the true curve

considerably.

In our second approach, we choose ρ randomly from a population of real correlation coef-

ficients. This population consists of all pairwise correlation coefficients of expression profiles

(from the seed germination/dormancy data of Chapter 2) of all the 882 transcription factors in

our seed dataset for Arabidopsis. This population of real ρ’s has a similar distribution to the

population of simulated ρ’s, as shown in Figures 4.36 and 4.38. Figure 4.39 shows the FDD

curves when real ρ’s are used. Not surprisingly, the bootstrap curve is again the most accurate.
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Figure 4.36: Distribution of 20,000 simulated correlation coefficients, ρ, where
ρ = (e2u − 1)/(e2u + 1), and u ∼ N (0, σu) for σu = 0.3.
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Figure 4.37: FDD curves of the FD estimation methods on DataCubicRandomRho: M1 = 15000,
M2 = 5000, N = 100, σu = 0.3, nl1 = 0.1, nl2 = 0.1 (multiplicative measurement noise).
Bootstrap (green), partial permutation (pink), total permutation (blue), analytical t (black),
true FD (red).
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Figure 4.38: Distribution of 20,000 real correlation coefficients in the seed germina-
tion/dormancy data for Arabidopsis.
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Figure 4.39: FDD curves of the FD estimation methods on DataCubicRealRho: M1 = 15000,
M2 = 5000, N = 100, nl1 = 0.1, nl2 = 0.1 (multiplicative measurement noise). Bootstrap
(green), partial permutation (pink), total permutation (blue), analytical t (black), true FD
(red).



Chapter 5

Summary and future work

Conventional coexpression analysis looks at the expression levels of pairs of genes over a diverse

set of conditions. Although such “condition independent” analyses provide useful generalized

information, the coexpression of a pair of genes depends on the biological context, including

environmental factors and the expression levels of other genes. Looking at gene coexpression

in a “condition dependent” fashion should more precisely identify gene interactions relevant to

answering more-specific biological questions [1]. This thesis addressed this issue in the specific

context of seed germination in Arabidopsis thaliana, the model organism of plant biology.

We studied two aspects of the problem: (i) detecting two-way interactions, and (ii) detecting

three-way interactions. Chapter 2 addresses the first problem by detecting two-way interactions

using gene expression data, not from a diverse range of sources, but exclusively from imbibed

mature seeds of Arabidopsis in a state of either germination or non-germination. The inter-

actions thus detected are more accurate in answering specific biological questions about seed

germination [1]. A coexpression network, SeedNet [1], now available online as a community

resource, is constructed by including all two-way interactions whose strength of correlation ex-

ceeds some threshold. This threshold is chosen so that the network fits a scale-free graph as

closely as possible. At this threshold, all edges in SeedNet have extremely high significance, as

measured by FDR.

SeedNet consists of two main clusters, one associated with germination, and the other

with non-germination. The thesis shows that the correlation between genes is not due to

preferential expression, but due to correlation during seed germination and non-germination.

150
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Correlation, and the clusters based on it, are therefore not a proxy for preferential expression,

but reflect other factors, specifically biological processes that operate during germination and

during non-germination. The thesis also examines the correlation and variance structure of

the two clusters in more detail, revealing intriguing properties. We show, for example, that

genes that are preferentially expressed during germination tend to be equally correlated during

germination and non-germination. Thus, genes that are “turned up” during germination seem

to work together in the same way during both germination and non-germination. Likewise for

genes that are preferentially expressed during non-germination.

The thesis gives a detailed development of the methods used to construct and analyze Seed-

Net. The development includes mathematical proofs of results on covariance decomposition and

preferential expression, and a robust algorithm for determining the optimum correlation thresh-

old for approximating a scale-free graph. These methods form the computational contribution

of [1]. Chapter 2 is also being submitted for publication as a separate paper.

In our second approach, detecting three-way interactions, the coexpression of a pair of genes

can depend on the expression level of a third (unspecified) gene. That is, we search for triples

of genes in which the expression level of one gene affects the coexpression of the other two.

In this way, the thesis addresses another limitation of conventional coexpression analysis: it

focusses on pairwise relationships between genes. Pairwise coexpression is clearly too simplistic

to describe the complex relationships between gene expression levels, which can involve multiple

genes and can vary depending on the biological context. In general, pairwise coexpression does

not capture higher-order statistical dependencies or the complex biological relationships they

reflect.

As a first step, Chapter 3 develops a quadratic regression model to detect three-way in-

teractions in gene expression data, and applies it to data from Arabidopsis and yeast. The

model is relatively straightforward and computationally inexpensive, enabling us to detect a

vast number of possible three-way interactions in a reasonable amount of time and to compare

FDR estimates by a variety of methods. The thesis provides both direct and circumstantial

evidence demonstrating that the model detects real biological signals, validating its efficacy. We

also show that discoveries made by the detector exhibit the expected correspondence between

three-way interaction and transcriptionally-dependent coexpression; that is, when three genes
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interact, the coexpression of two of them depends on the expression level of the third. Finally,

we show that the detector works even when predictor genes are correlated (unlike [20]), though

the FDR may increase.1

A particular challenge in discovering three-way interactions on a genome-wide scale is the

large potential for false positives, since the number of possible three-way interactions grows as

O(N3), as opposed to O(N2) for pairwise interactions, where N is the number of genes under

study. Thus, a crucial step in the discovery process is accurately estimating FDR, since only

if the FDR is low and stable can a discovery be confidently declared. However, as the thesis

shows, extending the approaches used for two-way interactions can seriously underestimate the

FDR for three-way interactions, sometimes by several orders of magnitude.

Estimating the FDR of three-way interactions in gene expression data faces two main chal-

lenges: (i) the underlying distribution of the data is unknown, and (ii) estimating the null

distribution is considerably more subtle than for two-way interactions. The bootstrap is a well-

known solution to the first problem, and this thesis explores its utility in addressing the second

problem. In particular, Chapter 3 develops a method based on the bootstrap for estimating

the FDR of our regression-based detector. Chapter 4 then tests the method and compares it

to other methods used in the literature, including permutation tests and an analytical t-test.

The tests show that these methods produce widely differing estimates of FDR on both real

and simulated data, often differing by more than an order of magnitude. In particular, the

bootstrap method consistently produces by far the largest estimates. This indicates that either

the bootstrap method is overestimating or the other methods are underestimating the number

of false discoveries.

It is impossible to determine which method is more accurate without knowing all the three-

way interactions in a dataset. Since this is unknown for large biological datasets, we test the

methods on simulated data, for which all interactions are known. The thesis develops numerous

procedures for simulating data with a wide variety of statistical properties and provides a

clear description of these procedures. While the simulations themselves are a highly simplified

approximation of biological reality, they do provide strong evidence that the bootstrap method

1When two genes are correlated, it is difficult to unravel their effects on a third gene. In particular, regression
is known to be difficult when predictor variables are correlated [27].
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is the most accurate over a wide range of statistical conditions. In particular, while all the

methods give good estimates on idealized data, the bootstrap method consistently gives the

most reasonable estimates on more complex data, while the other methods rapidly break down,

consistently underestimating the true number of false discoveries, often by more than an order

of magnitude. In sum, our bootstrap method provides the best available estimate of FDR for

three-way interactions over a wide range of conditions.

In addition, the simulation procedures themselves can be regarded as a community resource

for generating benchmark data for testing methods that estimate the FDR of three-way inter-

actions in gene expression data. Such data is crucial for comparing FDR estimation methods

and estimating their accuracy.

Finally, for the same Arabidopsis data used in SeedNet, our detector of three-way inter-

actions discovers a large number of high-confidence three-way interactions, from which over

64,000 new edges can be added to SeedNet, significantly enlarging the set of edges in SeedNet.

These new edges usually do not represent high pairwise correlation, and consequently are out

of reach by conventional means, but they fall well within the spectrum of our three-way inter-

action detector, which instead looks for transcriptionally-dependent correlations. This greatly

extends the usability of gene expression data as it reveals a large number of relationships that

cannot be detected by traditional coexpression analysis. The material in Chapters 3 and 4, on

three-way interactions, is being submitted for publication.

Several possibilities can be explored in the future. The most tangible one is that we can

continue the current study on the bootstrap method for estimating FDR by using a combination

of our data simulation models. For example, for some gene triples, the two predictor genes could

have a quadratic relationship with the target gene, while for other triples, the relationship

could be cubic. More generally, when generating simulated data, the gene triples could have

a mixture of the relationships described in Chapter 4. Also, from a practical point of view,

it would more directly benefit the bioinformatics community to develop easy-to-use software

packages for detecting interactions and estimating their FDR, either in the form of application

program interfaces (APIs), a stand-alone program, or online web tools.

While the multi-way interactions explored in this thesis are mostly three-way interactions
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having one target gene and two predictor genes, we can consider extending the second-order

model to higher-order models to capture four-way interactions with three predictor genes, five-

way interactions with four predictor genes, etc. Unfortunately, this would dramatically increase

the number of potential hypothesis tests. To address this, we could first cluster genes, and then,

for each small cluster select a representative gene (profile), then detect multi-way interactions

for these representatives. This can be thought of as multi-way interactions between groups.

Another way to build higher-order models is to join two existing three-way interactions by letting

the target gene of one triple be a predictor gene of another. (In contrast, we cannot simply

join two two-way interactions to form a three-way interaction.) Furthermore, can we devise a

unified framework which enables us to harvest 2,3,4,5,...-way interactions simultaneously? Then

how do we tailor the bootstrap method to estimate FDR?

The bootstrap method of estimating FDR developed in this thesis was applied to 3-way

interactions. In principle, it could be adapted for 2-way interactions and compared to the

permutation-based method used in Chapter 2. However, the 2-way detector of Chapter 2 is

based on correlation coefficients, while the 3-way detector of Chapter 3 is based on regres-

sion. Applying the bootstrap method of estimating FDR to 2-way interactions would require

reformulating the 2-way detection problem in terms of regression.

While the second-order model developed in Chapter 3 enjoys simplicity and speed, thus

enabling us to test hundreds of millions of hypotheses within a reasonable amount of time,

we certainly can consider more-complex but more computationally expensive models. For ex-

ample, some undirected graphical models have found applications in learning the structure of

dependency for a small number of discrete (response) variables [118, 119]. However, just to

do so already requires using nonstandard optimization and using cross-validation to tune their

regularization parameters [118], or imposes restrictions on selecting subsets (of variables) [119].

Furthermore, how can we adapt these models so that they can discover multi-way interac-

tions in gene expression data? Do these models scale well to a large number of genes? More

importantly, how do we estimate FDR? All these questions are worth exploring.

Some guidelines are already available. For example, detecting three-way interactions on

a genome-wide scale requires simple models, because of the vast number of possible triples.

However, the number of triples decreases rapidly as the number of genes decreases, so more-
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complex models could be used if the number of genes of interest is small (e.g., hundreds instead

of thousands). The bootstrap can then be used to estimate p-values, from which an FDR is easily

estimated (Section 3.3.2.2). Moreover, if an analytical formula (like the t test in Section 3.3.2.1)

is available for estimating p-values assuming the expression data is Gaussian, then a bootstrap

version of the method may provide good p-value estimates for real (non-Gaussian) data. This

approach was taken in Section 3.3.2.2.

For the two-way interactions of Chapter 2, there are a number of other correlation measures

that could be tried, e.g., mutual information [35], Kendall rank correlation [120] and Spearman

rank correlation [120]. For instance, although Spearman rank correlation throws away infor-

mation, it might find non-linear monotonic relationships that are not detected well by Pearson

correlation. The statistical significance (FDR) of these correlations could also be estimated by

permutation tests. However, the biological significance of the results would have to be confirmed

by additional laboratory experiments.

Another avenue for future research is to further develop the simulation procedures of Chap-

ter 4, with the aim of capturing a wider range of statistical properties, especially those found in

real gene expression data. For example, in simulating interacting gene triples, the procedures

randomly choose values for the interaction coefficients (e.g., coefficient f in the interaction term

f̂xi1xi2 in Figure 4.1). In this thesis, these coefficients were chosen from a uniform distribution

on [-0.5,0.5]. This means that the coefficients can in principle be 0. If all the interaction coef-

ficients in an interacting triple are 0, then the triple is not interacting at all. Fortunately, this

situation has probability 0. Nevertheless, there is a non-zero probability of choosing interaction

coefficients that are all very close to 0. Such triples represent very weak three-way interactions,

and one can ask whether they should count as real three-way interactions at all. This, of course,

is a biological question: how weak does a three-way interaction have to be before it is no longer

of biological interest. In some ways the question is mute, since in our simulations, the number

of very-weak three way interactions is miniscule compared to the number of interacting and

non-interacting gene triples, and their effect on the results is correspondingly tiny. Nevertheless,

one could certainly consider modifying the simulation procedures so that for interacting triples,

there is zero probability of choosing a value for an interaction coefficient in a small interval

around 0. This raises the question of how small the interval should be, which is precisely the
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biological question mentioned above. Since the question may not have a definitive answer, one

could simulate many data sets, each with a different-sized interval around 0. For each such

data set, one would estimate the FDR using a variety of methods, as in Chapter 4, and see

if interval size has any effect on the results, and if so, whether the bootstrap method is still

uniformly the most accurate.

Lastly, another avenue of future research is to investigate whether the 64,000 new edges

added to SeedNet can be used to predict gene function in the traditional manner (guilt by

association) or by looking for hub genes. Perhaps they can also be used to help find potential

combinatorial regulation (as in Section 3.4.3.3). More generally, for any method that uses

coexpression edges to make biological inferences, it may be possible to adapt the method to use

new edges inferred from three-way interactions in gene expression data.



Appendix A

Appendix for Chapter 2

A.1 Covariance decomposition

Let xij and yij be real numbers, for i = 1 · · ·m and j = 1 · · ·ni. Intuitively, there are m groups

(e.g., m types of seeds) and xij and yij are a pair of measurements on group i (e.g., xij is the

expression level of a gene on seed j in group i. Likewise for yij .) We let N =
∑

i ni be the total

number of measurements. This appendix shows that the total covariance of the xij and yij can

be decomposed into a sum of covariances within groups and between groups.

Lemma 1. For each i,

ni∑
j=1

(xij − x̄••)(yij − ȳ••) =

ni∑
j=1

(xij − x̄i•)(yij − ȳi•) + ni(x̄i• − x̄••)(ȳi• − ȳ••)

where x̄•• =
∑

ij xij/N is the average of xij, and x̄i• =
∑

j xij/ni is the average of xij on

group i (and likewise for ȳ•• and ȳi•).
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Proof.

∑
j

(xij − x̄••)(yij − ȳ••)

=
∑
j

[(xij − x̄i•) + (x̄i• − x̄••)][(yij − ȳi•) + (ȳi• − ȳ••)]

=
∑
j

[(xij − x̄i•)(yij − ȳi•) + (x̄i• − x̄••)(ȳi• − ȳ••)

+ (xij − x̄i•)(ȳi• − ȳ••) + (x̄i• − x̄••)(yij − ȳi•)]

=
∑
j

(xij − x̄i•)(yij − ȳi•) + ni(x̄i• − x̄••)(ȳi• − ȳ••)

+ (ȳi• − ȳ••)
∑
j

(xij − x̄i•) + (x̄i• − x̄••)
∑
j

(yij − ȳi•)

=
∑
j

(xij − x̄i•)(yij − ȳi•) + ni(x̄i• − x̄••)(ȳi• − ȳ••)

since
∑

j(xij − x̄i•) = nix̄i• − nix̄i• = 0, and likewise for
∑

j(yij − ȳi•).

Corollary 1. Covtotal = Covwithin + Covbetween, where

Covtotal =
1

N

∑
i

ni∑
j=1

(xij − x̄••)(yij − ȳ••) is the total covariace

Covwithin =
1

N

∑
i

ni∑
j=1

(xij − x̄i•)(yij − ȳi•) is the covariance within groups

Covbetween =
1

N

∑
i

ni(x̄i• − x̄••)(ȳi• − ȳ••) is the covariance between groups

In the special case in which xij = yij , we get the following standard result of analysis of

variance (ANOVA) about the variance of xij [114].

Corollary 2. V artotal = V arwithin + V arbetween, where

V artotal =
1

N

∑
i

ni∑
j=1

(xij − x̄••)2 is the total variance

V arwithin =
1

N

∑
i

ni∑
j=1

(xij − x̄i•)2 is the variance within groups

V arbetween =
1

N

∑
i

ni(x̄i• − x̄••)2 is the variance between groups
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When there are only two groups, the expression x̄•• can be eliminated, leading to specialized

results, which are used in Section 2.3.2.1 and Appendix A.2.

Lemma 2. If m = 2, then

x̄1• − x̄•• = n2(x̄1• − x̄2•)/N

x̄2• − x̄•• = n1(x̄2• − x̄1•)/N

Proof. Recalling that N = n1 + n2,

x̄1• − x̄•• = x̄1• −
m∑
i=1

ni∑
j=1

xij/N

= x̄1• −
m∑
i=1

nix̄i•/N

= x̄1• − (n1x̄1• + n2x̄2•)/(n1 + n2)

= n2(x̄1• − x̄2•)/(n1 + n2)

= n2(x̄1• − x̄2•)/N

The proof of the second equation is similar.

Corollary 3. If m = 2, then

V arbetween =
n1n2
N2

(x̄1• − x̄2•)2

Proof.

V arbetween =
1

N

m∑
i=1

ni(x̄i• − x̄••)2

=
1

N
[n1(x̄1• − x̄••)2 + n2(x̄2• − x̄••)2]

=
1

N
[n1n

2
2(x̄1• − x̄2•)2/N2 + n2n

2
1(x̄2• − x̄1•)2/N2]

=
1

N3
n1n2(n1 + n2)(x̄1• − x̄2•)2

=
n1n2
N2

(x̄1• − x̄2•)2
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since N = n1 + n2.

A.2 Preferential expression

As described in Section 2.3.1.1, we use gene significance [7] (abbreviated as GS) to quantify

the preferential expression of a gene. Formally, GS is the correlation coefficient between gene

expression levels and binary sample traits. In our case, the samples are seeds, and the traits

are “germinating” and “non-germinating.” Intuitively, GS is high if the gene’s expression levels

tend to be high on germinating seeds and low on non-germinating seeds. This section defines

GS formally and shows that it is proportional to the difference in the mean expression level

on germinating seeds and the mean expression level on non-germinating seeds, a result that is

needed in Section 2.3.2.2. It follows as a corollary that GS is equivalent to a t statistic for the

difference in mean expression levels, a result that we include for completeness.

As in Section 2.3.2.1, we divide the seeds into two groups, with group 1 consisting of

germinating seeds, and group 2 consisting of non-germinating seeds. The seeds in group 1 are

labelled 1, 2, ..., n1, and the seeds in group 2 are labelled 1, 2, ..., n2. We let N = n1 +n2 be the

total number of seeds. Given a gene, we let xij denote it’s expression level in seed j of group

i. We also let yij denote the trait of seed j in group i. That is, yij = 1 for germinating seeds,

and −1 for non-germinating seeds. Consequently, y1j = 1 and y2j = −1, for all j. The averages

x̄i•, ȳi•, x̄•• and ȳ•• are defined as in Lemma 1 of Appendix A.1.

Gene significance is defined as the Pearson correlation coefficient of the xij and the yij [7].

Definition 1. GS = Sxy/
√
SxSy where

Sxy =
∑
ij

(xij − x̄••)(yij − ȳ••)

Sx =
∑
ij

(xij − x̄••)2

Sy =
∑
ij

(yij − ȳ••)2

Because yij has a special form, we can simplify the expressions for Sxy and Sy.

Lemma 3. Sxy = 2n1n2(x̄1• − x̄2•)/N
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Proof. First recall that x̄1• − x̄•• = n2(x̄1• − x̄2•)/N , by Lemma 2 in Appendix A.1. Thus,

since y1j = 1,

n1∑
j=1

(x1j − x̄••)(y1j − ȳ••) = (1− ȳ••)
n1∑
j=1

(x1j − x̄••)

= (1− ȳ••)n1(x̄1• − x̄••)

= (1− ȳ••)n1n2(x̄1• − x̄2•)/N

Likewise, since y2j = −1,

n2∑
j=1

(x2j − x̄••)(y2j − ȳ••) = (1 + ȳ••)n1n2(x̄1• − x̄2•)/N

Adding these two expressions, we get

Sxy =

2∑
i=1

ni∑
j=1

(xij − x̄••)(yij − ȳ••)

=

n1∑
j=1

(x1j − x̄••)(y1j − ȳ••) +

n2∑
j=1

(x2j − x̄••)(y2j − ȳ••)

= (1− ȳ••)n1n2(x̄1• − x̄2•)/N + (1 + ȳ••)n1n2(x̄1• − x̄2•)/N

= 2n1n2(x̄1• − x̄2•)/N

Lemma 4. Sy = 4n1n2/N
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Proof. First note that ȳ•• = (n1 − n2)/N , since y1j = 1 and y2j = −1. Hence,

Sy =
2∑
i=1

ni∑
j=1

(yij − ȳ••)2

=

n1∑
j=1

(y1j − ȳ••)2 +

n2∑
j=1

(y2j − ȳ••)2

=

n1∑
j=1

(1− ȳ••)2 +

n2∑
j=1

(−1− ȳ••)2 since y1j = 1 and y2j = −1

=

n1∑
j=1

(1− 2ȳ•• + ȳ2••) +

n2∑
j=1

(1 + 2ȳ•• + ȳ2••)

= (n1 + n2) + 2(n2 − n1)ȳ•• + (n1 + n2)ȳ
2
••

= (n1 + n2) + 2(n2 − n1)(n1 − n2)/N + (n1 + n2)(n1 − n2)2/N2

= (n1 + n2)
2/N − 2(n1 − n2)2/N + (n1 − n2)2/N since N = n1 + n2

= (n1 + n2)
2/N − (n1 − n2)2/N

= 4n1n2/N

Having simplified Sxy and Sy, we can now simplify the expression for GS.

Corollary 4.

GS = α
x̄1• − x̄2•√
V artotal

where V artotal = Sx/N is the variance in the expression level, and α =
√
n1n2/N is a positive

constant.

Proof. By the above lemmas,

GS =
Sxy√
SxSy

=
2n1n2(x̄1• − x̄2•)/N√

Sx 4n1n2/N
=

(x̄1• − x̄2•)
√
n1n2/N√

Sx/N

Thus, the gene significance, GS, is proportional to the drop in mean expression level from
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group 1 to group 2 (x̄1•− x̄2•) relative to the total variation in expression levels (V artotal). This

is a measure of the significance of the drop. It is closely related to a more well-known measure

of significance, the t test statistic, as shown in the next corollary. This corollary and its proof

use the notation for variance defined in Corollary 2 of Appendix A.1.

Corollary 5. GS = αt/
√

1 + (αt)2 where t = (x̄1•−x̄2•)/
√
V arwithin and α =

√
n1n2/N .

Proof.

GS2 = α2 (x̄1• − x̄2•)2

V artotal
by Corollary 4

=
α2(x̄1• − x̄2•)2

V arwithin + V arbetween
by Corollary 2

=
α2(x̄1• − x̄2•)2

V arwithin + (x̄1• − x̄2•)2n1n2/N2
by Corollary 3

=
α2(x̄1• − x̄2•)2

V arwithin + α2(x̄1• − x̄2•)2

=
α2(x̄1• − x̄2•)2/V arwithin

1 + α2(x̄1• − x̄2•)2/V arwithin

=
α2t2

1 + α2t2

The important point here is that (x̄1• − x̄2•)/
√
Vwithin is proportional to a t statistic for

the difference of two population means [114]. In our case, it measures the significance of

the difference in mean expression levels on germinating and non-germinating seeds. Equally

important, the function h(t) = αt/
√

1 + (αt)2 is monotonically increasing. Thus, the statistic

GS is equivalent to the t statistic. In particular, t > t0 if and only if GS > h(t0), for any

threshold t0. Thus, any test on t can be converted to a test on GS, and vice versa.

A.3 Degree distributions in geometric random graphs

This appendix shows that geometric random graphs are a poor model for coexpression net-

works such as SeedNet. In a geometric random graph, G(n, r), n nodes are independently and

uniformly distributed in a d-dimensional unit cube, and any two nodes are joined by an edge if

the Euclidean distance between them is less than r. For example, G(1000, 0.1) in 2-dimensional
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space contains 1000 nodes embedded in a unit square, and two nodes have an edge if their

Euclidean distance is less than 0.1. We look at how well geometric random graphs model the

node-degree distribution of coexpression networks derived from the SeedNet data using a variety

of correlation cutoffs, τ . Figure A.1 shows histograms of node-degree distribution for G(n, r)

in 2-dimensional space for n = 14, 088 and several values of r. Here, 14088 is the number of

genes in the SeedNet data, and r is chosen so that the average node degree in G(n, r) is roughly

equal to the average node degree in one of the coexpression networks. Likewise, Figure A.2

and Figure A.3 show degree distributions for geometric random graphs in 3-dimensional space

and 4-dimensional space, respectively. These histograms are vastly different from those in Fig-

ure 2.20 and the right-hand side of Figure 2.21, which show the true node-degree distribution

of the coexpression networks. In particular, the true histograms are sharply peaked at the

left, decrease monotonically from left to right, and are convex. In contrast, the histograms for

geometric random graphs are peaked at the right, increase from left to right before suddenly

plunging to zero, and three of them are highly non-convex, having two plateaux and an up-down

peak, and the fourth one is concave.
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Figure A.1: Histograms of degree distribution in four geometric random graphs in 2-dimensional
space, G(14088, 0.161), G(14088, 0.105), G(14088, 0.058), and G(14088, 0.024). The values of
the second parameter in G, r = 0.161, 0.105, 0.058, and 0.024, are chosen such that the resulting
graphs have roughly the same average node degree as the coexpression networks with correlation
cutoffs τ = 0.5, 0.6, 0.7, and 0.8, respectively.
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Figure A.2: Similar to Figure A.1, but the geometric random graphs are in 3-dimensional space.
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Figure A.3: Similar to Figure A.1, but the geometric random graphs are in 4-dimensional space.
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