Motivation

- Given a graph $G(V, E)$, where V is the set of vertices, and E the set of edges, consider the following problem: What is the largest subset of V where every two vertices are pairwise nonadjacent?

The Maximum (Cardinality/ Weight) Independent Set Problem

- Why do we care?
 - Scheduling, Biology, Coding Theory ...
- Very easy to trick a greedy algorithm:

- The (Weighted) Maximum Independent Set, (W)MIS, problem is NP-hard on arbitrary graphs.

Cocomparability Graphs

- A cocomparability graph is the complement of a comparability graph (i.e. induced by a partial order).
- **Vertex Ordering Characterization:**
 - G is a cocomparability graph iff V admits an ordering (V) where every triple $a < b < c$ with $ac \in E$, $ab \in E$ or $bc \in E$ or both. For example:

- Such ordering is called an umbrella free ordering.
- $O(m + n)$ to compute – McConnell & Spinrad [1].
- Cocomparability graphs are a superclass to:
 - Trapezoid and Permutation graphs
 - Cographs
 - Interval graphs

Solving a problem on cocomparability graphs yields a solution to all these graph classes!

The Algorithm

- Given a cocomparability graph $G(V, E)$:
 - Compute a valid cocomparability ordering σ.
 - Scan σ from left to right to compute a new ordering τ of V, where vertices are inserted in τ in nondecreasing order of their (updated) weight.
 - Scan τ from right to left to greedily collect a maximum weight independent set.

Proof of Correctness

- Associate with every vertex a set $S(v)$, then at every iteration i:
 - For every vertex v, $S(v)$ is an independent set.
 - Every $S(v)$ is a maximum weighted independent set containing v in $G[v_1, ..., v_i]$.
 - Let be z, the rightmost vertex of τ, then $S(z)$ is a maximum weighted independent set in $G[v_1, ..., v_i]$.

Future Work

- Certify the algorithm. There exists a certifying algorithm for the unweighted case that computes a minimum clique cover of equal cardinality [2].
- Extend the algorithm to the k-colourable subgraph problem.
