(α, β)-Modules in Graphs

Michel Habib1, Lalla Mouatadid2, Eric Sopena3, and Mengchuan Zou1

1 IRIF, UMR 8243 CNRS & Paris University, Paris, France
2 Department of Computer Science, University of Toronto, Toronto, ON, Canada
3 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France

Abstract. Modular Decomposition focuses on repeatedly identifying a module \(M\) (a collection of vertices that shares exactly the same neighbourhood outside of \(M\)) and collapsing it into a single vertex. This notion of exactitude of neighbourhood is very strict, especially when dealing with real world graphs.

We study new ways to relax this exactitude condition. However, generalizing modular decomposition is far from obvious. Most of the previous proposals lose algebraic properties of modules and thus most of the nice algorithmic consequences.

We introduce the notion of an \((\alpha, \beta)\)-module, a relaxation that maintains some of the algebraic structure. It leads to a new combinatorial decomposition with interesting properties. Among the main results in this work, we show that minimal \((\alpha, \beta)\)-modules can be computed in polynomial time, and that every graph admits an \((\alpha, \beta)\)-modular decomposition tree, thus generalizing Gallai’s Theorem (which corresponds to the case for \(\alpha = \beta = 0\)). Unfortunately we give evidence that computing such a decomposition tree can be difficult.

1 Introduction

First introduced for undirected graphs by Gallai in [20] to analyze the structure of comparability graphs, modular decomposition has been used and defined in many areas of discrete mathematics, including 2-structures, automata, partial orders, set systems, hypergraphs, clutters, matroids, boolean and submodular functions [14,15,18,22]. For a survey on modular decomposition, see [31] and for its algorithmic aspects [24]. Since they have been rediscovered in many fields, modules appear under various names in the literature, they have been called intervals, externally related sets, autonomous sets, partitive sets, homogeneous sets, and clans. In most of the above examples the family of modules of a given graph yields a kind of partitive family [6,8,9], and therefore leads to a unique modular decomposition tree that can be computed efficiently.

Roughly speaking, elements of a module \(M\) behave exactly the same with respect to elements outside of \(M\). Thus a module can be contracted to a single element without losing neighbourhood and connectivity information. This technique

* This work is supported by the ANR-France Project Hosigra (ANR-17-CE40-0022). Preliminary results of this work were presented in [23].
has been used to solve many optimization problems and has led to a number of elegant graph algorithms, see for instance [30]. Other direct applications of modular decomposition appear in areas such as computational protein-protein interaction networks and graph drawing [19,36]. Recently, new applications have appeared in the study of large networks [41,34], where a module is considered as a regularity or a community that has to be detected and understood.

Although it is well known that almost all graphs have no non-trivial modules [32], some graphs that arise from real data seem to have many non-trivial modules [35]. How can we explain such a phenomenon? It could be that the context in which this real data is generated has a clustering structure; but it could also be because we reach some known regularities as predicted by Szemerédi’s Regularity Lemma [42]. In fact for every $\epsilon > 0$ Szemerédi’s lemma asserts the existence of an n_0 such that all undirected graphs with more than n_0 vertices admit an ϵ-regular partition of its vertices. Such a partition is a kind of an approximate modular decomposition, and linear time algorithms for exact modular decomposition are known [24].

Our results. In this paper we introduce and study a new generalization of modular decomposition by relaxing the strict neighbourhood condition of modules with a tolerance of some errors (missing or extra edges). In particular, we define an (α, β)-module to be a set M whose elements behave exactly the same with respect to elements outside of M, except that each outside element can have either at most α missing edges or at most β extra edges connecting it to M. In other words, an (α, β)-module M can be turned into a module by adding at most α edges, or deleting at most β edges, at each element outside M. In particular, we recover the standard modular decomposition when $\alpha = \beta = 0$.

This new combinatorial decomposition is not only theoretically interesting but also can lead to practical applications. We first prove that every graph admits an (α, β)-modular decomposition tree which is a kind of generalization of Gallai’s Theorem. But by no means such a tree is unique and we also give evidence that finding such a tree could be NP-hard. On the algorithmic side we propose a polynomial algorithm to compute a covering of the vertex set by minimal (α, β)-modules with a bounded overlap, in $O(m \cdot n^{\alpha+\beta+1})$ time. For the bipartite case, when we restrict (α, β)-modules on one side of the bipartition, we completely compute all these (α, β)-modules. In particular, we give an algorithm that computes a covering of the vertices of a bipartite graph in $O(n^{\alpha+\beta}(n + m))$ time, using maximal (α, β)-modules. This can be of great help for community detection in bipartite graphs.

Organization of the paper. Section 2 covers the necessary background on standard modular decomposition, introduces (α, β)-modules and illustrates various applications of (α, β)-modular decomposition. Sections 3 covers structural properties of (α, β)-modules and the NP-hardness results. Section 4 contains all the algorithmic results, in particular the computation of minimal (α, β)-modules as well as (α, β)-primality testing. Section 5 covers the complete determination of (α, β)-modules that lay one side of a bipartite graph. We conclude in Section 6 with an alternate relaxation of modular decomposition.
2 Modular Decomposition: A Primer

Let $G = (V(G), E(G))$ be a graph on $|V(G)| = n$ vertices and $|E(G)| = m$ edges. For two adjacent vertices $u, v \in V(G)$, uv denotes the edge in $E(G)$ with endpoints u and v. All the graphs considered here are simple (no loops, no multiple edges), finite and undirected. The complement of a graph $G = (V, E)$ is the graph $\overline{G} = (V(G), \overline{E(G)})$ where $uv \in \overline{E(G)}$ if and only $uv \notin E(G)$. We often refer to the sets of vertices and edges of G as V and E respectively, if G is clear from the context.

For a set of vertices $X \subseteq V$, we denote by $G(X)$ the induced subgraph of G generated by X. The set $N(v) = \{u : uv \in E\}$ is the neighbourhood of v and the set $\overline{N(v)} = \{u : uv \notin E\} \cup \{v\}$ the non-neighbourhood of v. This notation can also be extended to sets of vertices: for a set $X \subseteq V$, we let

$$N(X) = \{x \in V \setminus X : \exists y \in X \text{ and } xy \in E(G)\},$$

and

$$\overline{N}(X) = \{x \in V \setminus X : \forall y \in X, \ xy \notin E(G)\}.$$

Note here that $N(X)$ is not the union of the sets $N(x)$ for all $x \in X$, but the set of vertices outside from X that have a neighbour in X. Two vertices u and v are called false twins if $N(u) = N(v)$, and true twins if $N(u) \cup \{u\} = N(v) \cup \{v\}$.

A Moore family on a set X is a collection of subsets of X that contains X itself and is closed under intersection.

Definition 1. A module of a graph $G = (V, E)$ is a set of vertices $M \subseteq V$ that satisfies

$$\forall x, y \in M, \ N(x) \setminus M = N(y) \setminus M.$$

In other words, $V \setminus M$ is partitioned into two parts A, B such that there is a complete bipartite subgraph between M and A, and no edges between M and B. Observe that we have $A = N(M)$, and $B = \overline{N}(M)$.

A single vertex $\{v : v \in V\}$ is always a module, and so are the empty module and the set V. Such modules are called trivial modules. A graph with only trivial modules is called a prime graph. A module is maximal if it is not contained in any other non-trivial module.

A modular decomposition tree of a graph G is a tree $T(G)$ that captures the decomposition of G into modules. The leaves of $T(G)$ represent the vertices of G, the internal nodes of $T(G)$ capture operations on modules, and are labelled parallel, series, or prime. A parallel node captures the disjoint union of its children, whereas a series node captures the full connection of its children (i.e., connect every vertex of its left child to every vertex of its right child). Parallel and series nodes are often referred to as complete nodes. Fig. 1 illustrates a graph with its modular decomposition tree.

By the Modular Decomposition Theorem \[9,20\], every graph admits a unique modular decomposition tree. Other combinatorial objects also admit unique decomposition trees, partitive families in particular.
Fig. 1. A graph G (left) and its modular decomposition tree (right). Maximal modules are red, series and parallel nodes are labelled in the tree as S and P respectively.

Two sets A and B overlap if $A \cap B \neq \emptyset$, $A \setminus B \neq \emptyset$, and $B \setminus A \neq \emptyset$. In a family of subsets \mathcal{F} of a ground set V, a set $S \in \mathcal{F}$ is strong if S does not overlap with any other set in \mathcal{F}. We denote by Δ the symmetric difference of two sets:

$$A \Delta B = \{a : a \in A \setminus B\} \cup \{b : b \in B \setminus A\}.$$

Definition 2 ([9]). A family of subsets \mathcal{F} over a ground set V is partitive if

(i) \emptyset, V, and all singletons $\{x : x \in V\}$ belong to \mathcal{F}, and

(ii) $\forall A, B \in \mathcal{F}$, if $A \cap B \neq \emptyset$ then $A \cup B \in \mathcal{F}$, $A \cap B \in \mathcal{F}$, $A \setminus B \in \mathcal{F}$, and $A \Delta B \in \mathcal{F}$.

Partitive families play a fundamental role in combinatorial decomposition [8,9]. Every partitive family admits a unique decomposition tree with only complete and prime nodes. The strong elements of \mathcal{F} form a tree ordered by the inclusion relation [9].

A complement reducible graph is a graph whose decomposition tree has no prime nodes, that is, the graph is totally decomposable into parallel and series nodes only. Complement reducible graphs are also known as cographs, and are exactly the P_4-free graphs [40]. A modular decomposition tree of a cograph is often referred to as a cotree. Cographs have been widely studied, and many typical NP-hard problems (colouring, independent set, etc.) become tractable on cographs [11].

2.1 Generalizations of Modular Decomposition / Motivation

Finding a non-trivial tractable generalization of modules is not an easy task. Indeed, when trying to do so, we are faced with two main difficulties.

The first one is to obtain a pseudo-generalization. Suppose for example that we change the definition of a module into: $\forall x, y \in M$, $N^*(x) \setminus M = N^*(y) \setminus M$, where $N^*(x)$ can mean something like “vertices at distance at most k” or “vertices joined by an odd path”, etc. In many of these scenarios, it turns out that the problem transforms itself into the computation of precisely the modules of some
auxiliary graph built from the original one. Some work in this direction avoiding this drawback can be found in [7].

The second difficulty is NP-hardness. Consider the notion of roles defined in sociology, where two vertices play the same role in a social network if they have the same set of colours in their neighbourhood. In this scenario, if a colouring of the vertices is given, then one can compute these roles in polynomial time. Otherwise, the problem is indeed a colouring problem which is NP-hard to compute [17].

In this work, we consider two variations of the notion of modules, both of which trying to avoid these two difficulties. Some of these new modules are polynomial to compute, and we believe they are worth studying further. We focus on the most promising relaxation, namely what we call (α, β)-modules.

Our initial idea was to allow some “errors” by saying that at most k edges (for some fixed integer k) could be missing in the complete bipartite subgraph between M and $N(M)$, denoted $(M, N(M))$, and, symmetrically, that at most k extra edges can exist between M and $\overline{N}(M)$. But by doing so, we loose most of the nice algebraic properties of modules which yield an underlying partitive family. Furthermore, most modular decomposition algorithms are based on these algebraic properties [9].

A second natural idea is to relax the condition on the complete bipartite subgraph $(M, N(M))$, for example by asking for a graph that does not contain any $2K_2$ (two disjoint edges). Unfortunately, as shown in [38], to test whether a given graph admits such a decomposition is NP-complete. In fact, in the same work, the authors studied a generalized join decomposition solving a question raised in [27] about perfection. A completely different type of generalization was proposed and studied by Ehrenfeucht and McConnell in [13] where they introduce the notion of a k-structure that unifies the prime decomposition on 2-structures as well as k-ary relations; now while this new notion of k-structures is a generalization of these two concepts, it is not itself a relaxation of the exactitude constraint of modular decomposition.

For all the above reasons and obstacles, we focus on (α, β)-modules which maintain some algebraic properties and thus allow to obtain nice algorithms.

Intuitively, we want the reader to think of an (α, β)-module as a subset of vertices that almost looks the same from the outside. So, if M is an (α, β)-module, then for all $x, y \in M$, $N(x) \setminus M$ and $N(y) \setminus M$ are the same, with the exception of at most $\alpha + \beta$ “errors”, where an error is either a missing edge or an extra edge. We use the integers α and β to bound the number of errors in the adjacency, according to their type.

Formally, we define an (α, β)-module as follows.

Definition 3. An (α, β)-module of a graph $G = (V, E)$ is a set of vertices $M \subseteq V$ that satisfies

$$\forall x \in V \setminus M, \ |M \cap N(x)| \geq |M| - \alpha \ or \ |M \cap N(x)| \leq \beta.$$

In other words, M can be turned into a (standard) module by adding at most α edges or deleting at most β edges at each vertex outside M.
This notion of missing or extra edges, that we call \((\alpha, \beta)\)-errors, finds application naturally in various fields, from data compression and exact encodings to approximation algorithms.

Indeed, modular decomposition is often presented as an efficient way to encode a graph. This encoding property is preserved under the \((\alpha, \beta)\)-modules. We want to be able to contract a non-trivial \((\alpha, \beta)\)-module (to be precisely defined later, see Definition 7) into a single vertex while keeping almost the entirety of the original graph, and then apply induction on the decomposition. To this end, for a graph \(G = (V, E)\), let \(M\) be a non-trivial \((\alpha, \beta)\)-module with \(X = N(M)\) and \(Y = \overline{N}(M)\). If we want an exact encoding of \(G\), we can contract \(M\) into a unique vertex \(m\) adjacent to every vertex in \(X\), and non-adjacent to any vertex in \(Y\). We then keep track of the subgraph \(G(M)\) and the errors that potentially arose from the missing edges in \((M, X)\) and the extra edges in \((M, Y)\). This new encoding has at least \(|X| \cdot (|M| - \alpha - 1)\) edges less than the original encoding in the worst case and \(|X| \cdot (|M| - 1)\) when \(M\) is a module.

3 Structural Properties of \((\alpha, \beta)\)-Modules

In order to maintain some of the algebraic properties of modules, and avoid running into the \(NP\)-complete scenarios previously mentioned, the \((\alpha, \beta)\) generalization of modules seems to be a good compromise.

We emphasize a few points concerning \((\alpha, \beta)\)-modules. Note first that we tolerate \(\alpha\) or \(\beta\) “error-edges” per vertex outside the module, depending on how this vertex is connected to the \((\alpha, \beta)\)-module, and not \(\alpha + \beta\) error-edges per module. Secondly, observe that when \(\alpha = \beta = 0\), we recover the standard definition of modules (see Definition 1), which can be rephrased as follows.

Definition 4. A module of a graph \(G = (V, E)\) is a set of vertices \(M \subseteq V\) that satisfies

\[
\forall x \in V \setminus M, \ M \cap N(x) = \emptyset \text{ or } M \cap N(x) = M.
\]

Of course we only consider cases for which \(\max(\alpha, \beta) < |V| - 1\). Fig. 2 illustrates an example of a graph with a \((1, 1)\)-module.

![Fig. 2](image_url)

Fig. 2. The set \(\{d, e, f\}\) is not a standard module, nor a \((1, 0)\) or a \((0, 1)\)-module, only a \((1, 1)\)-module.

Let us begin with some simple properties that directly follow from Definition 3.
Proposition 1. If M is an (α, β)-module of G, then the following holds.

1. M is an (α', β')-module of G, for every $\alpha \leq \alpha'$ and $\beta \leq \beta'$.
2. M is a (β, α)-module of G.
3. M is an (α, β)-module of every induced subgraph $G(N)$ of G with $M \subseteq N$.
4. Every (α, β)-module of $G(M)$ is an (α, β)-module of G.

Proof.

1. Taking α' and β' such that $\alpha \leq \alpha'$ and $\beta \leq \beta'$ can only relax the module conditions.
2. Moving to the complement just interchanges the roles of α and β in the definition.
3. If the (α, β)-module conditions are satisfied for all vertices in $V(G) \setminus M$, then they are satisfied for all vertices in $V(G) \setminus N$ for $M \subseteq N$. Therefore M is an (α, β)-module of the induced subgraph $G(N)$.
4. Let N be an (α, β)-module of the subgraph $G(M)$. So every vertex in $M \setminus N$ satisfies the (α, β)-module conditions. Since M is supposed to be an (α, β)-module, every vertex in $V(G) \setminus M$ satisfies the (α, β)-module conditions for M and therefore also for $N \subseteq M$.

Definition 5. Let $G = (V, E)$ be a graph and $A \subseteq V$ be a set of vertices. The α-neighbourhood and β-non-neighbourhood of A are, respectively,

$$N_\alpha(A) = \{x \notin A: |N(x) \cap A| \geq |A| - \alpha\}, \text{ and}$$
$$\overline{N}_\beta(A) = \{x \notin A: |N(x) \cap A| \leq \beta\}.$$

Moreover, if $x \in N_\alpha(A)$ (resp. $x \in \overline{N}_\beta(A)$), we say that x is an α-neighbour of A (resp. a β-non-neighbour of A) and that x is α-adjacent (resp. β-non-adjacent) to every vertex of A.

Definition 6. Let $G = (V, E)$ be a graph and $A \subseteq V$ be a set of vertices. A vertex $z \notin A$ is an (α, β)-splitter for A if

$$\beta < |N(z) \cap A| < |A| - \alpha.$$

We denote by $S_{\alpha, \beta}(A)$ the set of (α, β)-splitters of A.

Hence, a set A is an (α, β)-module if and only if $S_{\alpha, \beta}(A) = \emptyset$. As an immediate consequence we have the following easy facts.

Lemma 1. For every graph $G = (V, E)$ and every set of vertices $A \subseteq V$, the following holds.

1. $N_\alpha(A) \cup \overline{N}_\beta(A) \cup S_{\alpha, \beta}(A) = V \setminus A$.
2. If $|A| \geq \alpha + \beta + 1$, then $N_\alpha(A) \cap \overline{N}_\beta(A) = \emptyset$.
3. If $|A| \leq \alpha + \beta + 1$, then $S_{\alpha, \beta}(A) = \emptyset$.
4. If $|A| = \alpha + \beta + 1$, then $N_{\alpha}(A)$ and $\overline{N}_{\beta}(A)$ partition $V \setminus A$.

5. If A is an (α, β)-module of G and $|A| \geq \alpha + \beta + 1$, then $N_{\alpha}(A)$ and $\overline{N}_{\beta}(A)$ partition $V \setminus A$.

Proof.

1. This directly follows from the definitions of these sets.
2. If $x \in N_{\alpha}(A)$, then $|N(x) \cap A| \geq |A| - \alpha \geq \beta + 1$ and thus $x \notin N_{\beta}(A)$.
3. If $x \in S_{\alpha,\beta}(A)$, then $|N(x) \cap A| < |A| - \alpha < \beta + 1$, a contradiction.
4. We have $N_{\alpha}(A) \cap \overline{N}_{\beta}(A) = \emptyset$ by Item 2, and $S_{\alpha,\beta}(A) = \emptyset$ by Item 3. The result then follows from Item 1.
5. This follows from Items 1 and 2.

Lemma 2. For every graph $G = (V,E)$ and every set of vertices $A \subseteq V$, if $|A| \leq \alpha + \beta + 1$, then A is an (α, β)-module of G.

Proof. Using Lemma 1, A admits no (α, β)-splitter and is thus an (α, β)-module of G. \square

It thus seems that the subsets of size $\alpha + \beta + 1$ are crucial to the study of this new decomposition. In fact, if A is such a set, then for every vertex $z \notin A$, we have either $z \in N_{\alpha}(A)$ or $z \in \overline{N}_{\beta}(A)$, but not both (Lemma 1).

Lemma 3. If a vertex s is an (α, β)-splitter for a set A, then s is also an (α, β)-splitter for every set $B \supseteq A$ with $s \notin B$.

Proof. Let s be an (α, β)-splitter of A. We thus have $\beta < |N(s) \cap A| < |A| - \alpha$. Now, if $A \subseteq B$ and $s \notin B$, then we have $\beta < |N(s) \cap A| \leq |N(s) \cap B|$. Similarly, since $N(s) \setminus B \supseteq N(s) \setminus A$, we have $|N(s) \cap B| < |B| - \alpha$. Therefore, we get $\beta < |N(s) \cap B| < |B| - \alpha$ and s is an (α, β)-splitter for B. \square

Theorem 1. For every graph $G = (V,E)$, the family of (α, β)-modules of G satisfies the following.

1. The set V is an (α, β)-module of G, and every set $A \subseteq V$ with $|A| \leq \alpha + \beta + 1$ is an (α, β)-module of G.

2. If A and B are two (α, β)-modules of G, then $A \cap B$ is an (α, β)-module of G. Moreover, the (α, β)-splitters of $A \setminus B$ and $B \setminus A$ can only belong to $A \cap B$.

Proof.

1. This directly follows from Definition 3 and Lemma 2.
2. First notice that if both A and B are (α, β)-modules considered in Item 1, then so do $A \cap B$, $A \setminus B$ and $B \setminus A$. Suppose then that the cardinality of both A and B is at least $\alpha + \beta + 2$ and at most $|V| - 1$. If $A \cap B$ has an (α, β)-splitter outside of $A \cup B$ then, by Lemma 3 A and B would also have an (α, β)-splitter, a contradiction. If $A \cap B$ has an (α, β)-splitter in $B \setminus A$ (resp. in $A \setminus B$) then, by Lemma 3, again A (resp. B) would have an (α, β)-splitter. Therefore, $A \cap B$ is an (α, β)-module of G.
Let us now consider $A \setminus B$. If $A \setminus B$ has an (α, β)-splitter in $B \setminus A$ then, by Lemma 3, A would have a (α, β)-splitter as well. The same conclusion arises for splitters outside of $A \cup B$. Hence, the only possible (α, β)-splitters for $A \setminus B$ and, similarly, for $B \setminus A$, are in $A \cap B$. □

Since the family of (α, β)-modules is closed under intersection, it yields a notion of graph convexity. Given a set A, we can compute the minimal (under inclusion) (α, β)-module $M(A)$ that contains A, with strictly more than $\alpha + \beta + 1$ elements, thus computing a modular closure via (α, β)-splitters. Furthermore, the dual cases of $(1, 0)$-modules and $(0, 1)$-modules seem very interesting.

Definition 7. An (α, β)-module M of a graph $G = (V, E)$ is a trivial (α, β)-module if either $M = V$ or $|M| \leq \alpha + \beta + 1$.

Definition 8. A graph is an (α, β)-prime graph if it has only trivial (α, β)-modules.

Observe here that when $\alpha = \beta = 0$, trivial (α, β)-modules are exactly trivial (standard) modules, and (α, β)-prime graphs are exactly prime graphs.

From Lemma 2 we directly get the following result.

Corollary 1. A graph $G = (V, E)$ with $|V| \leq \alpha + \beta + 1$ has only trivial (α, β)-modules.

However, we want to distinguish “truly” (α, β)-prime graphs and “degenerate” (α, β)-prime graphs.

Definition 9. A graph $G = (V, E)$ is (α, β)-degenerate if $|V| \leq \alpha + \beta + 2$.

Notice the difference between degenerate and trivial nodes. Just like the $\alpha = \beta = 0$ case where singletons are trivial modules but modules of two vertices are degenerate, the definition of (α, β)-degenerate graphs is different from that of trivial (α, β)-modules, and (α, β)-degenerate graphs will further be used to define the (α, β)-modular decomposition tree, instead of trivial modules in the classic modular decomposition.

Let us say that a non-trivial (α, β)-module A is a minimal non-trivial (α, β)-module if every (α, β)-module strictly contained in A is trivial. The following result directly follows from this definition.

Proposition 2. If A and B are overlapping minimal non-trivial (α, β)-modules of a graph G, then $A \cap B$ is a trivial (α, β)-module of G.

From Theorem 2 we get the following result.

Corollary 2. For every graph G, the family of (α, β)-modules of G is a Moore family.
In the standard setting, if X and Y are modules, then $X \cup Y$, $X \setminus Y$, and $Y \setminus X$ are also modules \[924\]. Unfortunately, this does not always hold in the (α, β) setting. But we can prove a weaker result, namely that we still have an “almost partitive” family.

Theorem 2. Let A and B be two non-trivial overlapping (α, β)-modules of a graph G. If $|A \cap B| \geq \alpha + \beta + 1$, then $A \cup B$ and $A \Delta B$ are $(2\alpha, 2\beta)$-modules of G.

Proof. Let $z \in V \setminus B$. We have $S_{\alpha,\beta}(B) = \emptyset$ since B is an (α, β)-module, and $|B| \geq \alpha + \beta + 1$ since B is non-trivial. Therefore, by Lemma 1.5, $\overline{N}_\alpha(B)$ and $\overline{N}_\beta(B)$ partition $V \setminus B$. Suppose $z \in N_\alpha(B)$. Then, z has at most α non-neighbours in $A \cap B$ and thus at least $\beta + 1$ neighbours in $A \cap B$. This gives $z \in N_\alpha(A)$ since A is an (α, β)-module.

Consider first $A \cup B$. In the worst case, z has at most α non-neighbours in $A \setminus B$ and at most α non-neighbours in $B \setminus A$. Using the same reasoning on $\overline{N}_\beta(B)$, we get that $A \cup B$ is a $(2\alpha, 2\beta)$-module.

Consider now $A \Delta B$. We just have to further consider the case of vertices in $A \cap B$. Also in the worst case, errors arise when a given vertex $z \in A \cap B$ has α (resp. β) errors in $A \setminus B$ and α (resp. β) errors in $B \setminus A$. Therefore $A \Delta B$ is a $(2\alpha, 2\beta)$-module. \qed

3.1 (α, β)-Modular Decomposition Trees

Definition 10. Let $G = (V, E)$ be a graph. Two disjoint sets of vertices $A, B \subseteq V$ are said to be α-connected if $A \subseteq N_\alpha(B)$ and $B \subseteq N_\alpha(A)$. Similarly, they are said to be β-non-connected if $A \subseteq \overline{N}_\beta(B)$ and $B \subseteq \overline{N}_\beta(A)$.

In other words, A and B are α-connected if every vertex in A is an α-neighbour of B and every vertex in B is an α-neighbour of A. They are β-non-connected if every vertex in A is a β-non-neighbour of B and every vertex in B is a β-non-neighbour of A.

Definition 11. Let $G = (V, E)$ be a graph.

- An (α, β)-modular partition of G is a partition of V into (α, β)-modules.
- For $|V| \geq \alpha + \beta + 3$, we say that G admits an α-series (resp. a β-parallel) decomposition if there exists an (α, β)-modular partition of V, $P = \{V_1, \ldots, V_k\}$, such that
 1. $\exists j \in [k]$ such that $|V_j| \geq \alpha + \beta + 1$,
 2. $\forall i, j \in [k], i \neq j$, V_i and V_j are α-connected (resp. β-non-connected).
- For $|V| \geq \alpha + \beta + 3$, we say that G admits an (α, β)-prime decomposition if there exists an (α, β)-modular partition of V, $P = \{V_1, \ldots, V_k\}$, with $k \geq 2$ such that
 1. $\forall i \in [k], V_i$ is maximal (under inclusion),
2. $\exists j \in [k]$ such that $|V_j| \geq \alpha + \beta + 1$, and

3. there exist two pairs (i, j) and (p, q), $i \neq j$, $p \neq q$, such that V_i and V_j are α-connected while V_p and V_q are β-non-connected.

Using Proposition 1.2 we have the following obvious property.

Property 1. A graph G admits an α-series decomposition if and only if G admits an α-parallel decomposition.

Proposition 3. If A and B are two disjoint (α, β)-modules of a graph G with $|A|, |B| \geq \alpha + \beta + 1$, then $N_\alpha(A) \supseteq B$ and $N_\beta(B) \supseteq A$ are mutually exclusive.

Proof. Suppose to the contrary that $N_\alpha(A) \supseteq B$ and $N_\beta(B) \supseteq A$.

Let $m_{A,B}$ be the number of edges in G joining A and B. We thus have

$$|B| \cdot (|A| - \alpha) \leq m_{A,B} \leq |A| \cdot \beta \implies |A| \cdot |B| < \beta \cdot |A| + \alpha \cdot |B|. \quad (1)$$

Now, let $|A| = \alpha + \beta + a$ and $|B| = \alpha + \beta + b$, with $a, b \in \mathbb{N}$. We then get

$$\alpha \cdot a + \beta \cdot b + ab \leq 0,$$

a contradiction. \square

Furthermore it could be the case that A is α-connected to B and that B is neither α-connected to A nor β-non-connected to A.

Definition 12. Using the terminology of [12] for combinatorial decompositions, we will say that a graph $G = (V,E)$ is (α, β)-brittle if every subset of V is an (α, β)-module.

Of course, $(\alpha, 0)$-complete graphs (i.e., complete graphs missing at most α edges), and $(0, \beta)$-independent graphs (i.e., independent sets with at most β edges) are (α, β)-brittle, but they are not the only obvious ones; any path P_k is also $(1, 1)$-brittle.

As already seen previously, all graphs G with $|V| \leq \alpha + \beta + 2$ are (α, β)-brittle, and we called them (α, β)-degenerate to distinguish them from the “truly” (α, β)-prime graphs. All these remarks raise the question of the characterization of (α, β)-brittle graphs. Clearly, any graph G with minimum degree at least $|V| - \alpha$ or maximum degree at most β is (α, β)-brittle.

Open Problem 1 Can we characterize the (α, β)-brittle graphs?

Using Definition 11 and Proposition 1.4, and mimicking the case of standard modular decomposition, we may define an (α, β)-modular decomposition tree as follows.
Definition 13. An \((\alpha, \beta)\)-modular decomposition tree of a graph \(G = (V, E)\) is a tree whose nodes are labelled with \((\alpha, \beta)\)-modules ordered by inclusion with four types of nodes:

1. \(\alpha\)-series,
2. \(\beta\)-parallel,
3. \((\alpha, \beta)\)-prime, and
4. \((\alpha, \beta)\)-degenerate.

Each level of the tree corresponds to a partition of \(V\), starting with \(\{V\}\) at the root, and such that the leaves correspond to a partition of \(V\) into \((\alpha, \beta)\)-degenerate nodes.

Such an \((\alpha, \beta)\)-modular decomposition tree completely describes what we call an \((\alpha, \beta)\)-modular decomposition of a graph \(G\).

In the standard modular decomposition setting, the notion of strong modules, i.e., modules that do not overlap any other module, is quite central. In the \((\alpha, \beta)\)-modular decomposition setting, observe that there are no strong \((\alpha, \beta)\)-modules other than \(\{V\}\) and the singletons \(\{v : v \in V\}\). This comes from the fact that when \(\max\{\alpha, \beta\} \geq 1\), every subset of vertices of size 2 is a trivial \((\alpha, \beta)\)-module.

Now, assume there is a standard strong module \(A \neq V\) with \(|A| > 1\). By taking any vertex \(v \in A\) and any vertex \(u \in V \setminus A\), we get an \((\alpha, \beta)\)-module of size 2 which overlaps \(A\).

Recall that the Modular Decomposition Theorem [20] (Gallai’s Theorem) says that every graph admits a unique modular decomposition tree. In the \((\alpha, \beta)\) setting, we have the following weaker form of Gallai’s Theorem.

Theorem 3. Every graph \(G = (V, E)\) with \(|V| \geq \alpha + \beta + 3\) admits an \((\alpha, \beta)\)-modular decomposition tree, for every \((\alpha, \beta)\) with \(0 \leq \alpha, \beta \leq |V| - 1\).

Proof. Let \(G = (V, E)\) be an arbitrary graph. If \(G\) is an \((\alpha, \beta)\)-prime graph then \(G\) admits a trivial \((\alpha, \beta)\)-modular decomposition tree \(T(G)\), with a root labelled \((\alpha, \beta)\)-prime. The leaves of \(T(G)\) are the children of the root, where every leaf is associated with a partition of \(V\) into sets of at most \(\alpha + \beta + 1\) vertices.

Suppose now that \(G\) is not an \((\alpha, \beta)\)-prime graph. Then \(G\) admits at least one non-trivial \((\alpha, \beta)\)-module. We then show how to obtain a partition \(P = \{M_1, \ldots, M_k\}\) of \(V\) with \(k \geq 3\) and \(|M_1| \geq \alpha + \beta + 1\).

Let \(M_1\) be any maximal (under inclusion) non-trivial \((\alpha, \beta)\)-module, \(|M_1| > \alpha + \beta + 1\) since it is non-trivial, and let \(R\) be the set of remaining vertices: \(R = V \setminus M_1\). We consider two cases, depending on the size of \(R\).

1. \(|R| > \alpha + \beta + 1\).

 We simply apply the same reasoning on \(G(V \setminus M_1)\). We recursively take \(V' = V \setminus M_1\) and \(M' \subseteq V'\) a maximal non-trivial \((\alpha, \beta)\)-module of \(G\), and let \(R' = V' \setminus M'\). Let \(P = P \cup \{M'\}\).

2. \(|R| \leq \alpha + \beta + 1\).

 Then \(R\) is a trivial \((\alpha, \beta)\)-module and let \(P = P \cup \{R\}\).
We eventually obtain a partition \(\mathcal{P} = \{ M_1, \ldots, M_k \} \) of \(V \) with \(k \geq 3 \). The partition \(\mathcal{P} \) is an \((\alpha, \beta)\)-modular partition in which only \(M_k \) could have less than \(\alpha + \beta \) vertices.

We then check whether \(\mathcal{P} \) induces an \(\alpha \)-series decomposition or a \(\beta \)-parallel decomposition. If not, we say that \(\mathcal{P} \) induces an \((\alpha, \beta)\)-prime decomposition.

We then build a tree with a root labelled \((\alpha, \beta)\)-prime (resp. \(\alpha \)-series, \(\beta \)-parallel) and whose children are the \((\alpha, \beta)\)-modular decomposition trees of the subgraphs \(G(M_i) \), \(1 \leq i \leq k \), and apply induction on the \(G(M_i) \)'s for all \(M_i \geq \alpha + \beta + 3 \) using Proposition 4, for those \(M_i \leq \alpha + \beta + 2 \) we label them as degenerate nodes and are leaves of the decomposition tree.

Maximal \((\alpha, \beta)\)-modules may overlap, which unfortunately means, as it is also illustrated in the examples of the next sections, that this \((\alpha, \beta)\)-modular decomposition tree is not unique. Although such a decomposition tree can provide an exact encoding of the graph (if the \((\alpha, \beta)\)-errors are traced), it does not provide an encoding of all existing \((\alpha, \beta)\)-modules, see Figure 3 for instance. Furthermore, although the above proof is constructive, Theorem 3 does not lead to an efficient algorithm for computing an \((\alpha, \beta)\)-modular decomposition tree. In fact, we do not know any polynomial algorithm to compute \(M_1 \), a maximal non-trivial \((\alpha, \beta)\)-module, to start with. In the next section we will see that it could be the case that no such algorithm exists.

3.2 \(\alpha \)-Series and \(\beta \)-Parallel Operations

Let us focus on the \(\alpha \)-series and \(\beta \)-parallel decompositions.

Definition 14. An \((\alpha, \beta)\)-cograph is a graph that is totally decomposable with respect to \(\alpha \)-series and \(\beta \)-parallel decompositions until we reach \((\alpha, \beta)\)-degenerate subgraphs only.

Using Definition 14 above, it is clear that standard cographs are precisely the \((0, 0)\)-cographs. Let us call \((\alpha, \beta)\)-cotree the tree corresponding to an \((\alpha, \beta)\)-modular decomposition of an \((\alpha, \beta)\)-cograph. Although several different \((\alpha, \beta)\)-cotrees may be associated with an \((\alpha, \beta)\)-cograph, the following proposition shows that we can always find such an \((\alpha, \beta)\)-cotree having only \(\alpha \)-series and \(\beta \)-parallel internal nodes.

Proposition 4. A graph is an \((\alpha, \beta)\)-cograph if and only if it admits an \((\alpha, \beta)\)-cotree having only \(\alpha \)-series and \(\beta \)-parallel internal nodes.

Proof. We construct the \((\alpha, \beta)\)-cotree of an \((\alpha, \beta)\)-cograph \(G \) recursively as follows. Suppose \(G \) has an \(\alpha \)-series and \(\beta \)-parallel decomposition with partition \(\mathcal{P} = \{ V_1, \ldots, V_k \} \). Notice first that these two operations are exclusive since every part \(V_i \) has at least \(\alpha + \beta + 1 \) vertices, and thus two parts \(V_i \) and \(V_j \) cannot be both \(\alpha \)-connected and \(\beta \)-non-connected. The \((\alpha, \beta)\)-cotree is then obtained by taking a root \(r \), labelled \(\alpha \)-series, with \(k \) children \(T(G(V_i)), 1 \leq i \leq k \), and construct each subtree \(T(G(V_i)) \) by applying induction on the subgraph \(G(V_i) \), using Proposition 4. \(\square \)
Consider the two examples illustrated in Figures 3 and 4. Fig. 3 shows a (1, 1)-cograph H that admits a unique (1, 1)-cotree. Fig. 4 shows a (1, 1)-cograph G that admits two different (1, 1)-cotrees. Moreover, if we replace each vertex of G in Fig. 4 by an isomorphic copy of G, and repeat this process, we can build a (1, 1)-cograph which has exponentially many different (1, 1)-cotrees.

Fig. 3. A (1, 1)-cotree of the (1, 1)-cograph H on the left. Notice that H is not a cograph since it contains two induced P_4’s: $\{a, b, c, d\}$ and $\{e, f, g, h\}$.

Fig. 4. The graph G on the top is a (1, 1)-cograph, with two different (1, 1)-cotrees. The internal nodes have the same labels but the partitions of V induced by the leaves of the (1, 1)-cotrees are not the same.

As we shall see next, for $\alpha = 0$ and $\beta = 1$, the problem of recognizing if a graph admits a (0, 1)-parallel decomposition is related to a nice combinatorial problem first studied in [21]. The problem of finding such a decomposition is
equivalent to finding a matching cut set in a graph, i.e., an edge cut which is a matching, a well-known problem studied in [4,10,33].

Unfortunately however, it turns out—as one might expect—that finding such a matching cut set in an arbitrary graph is an NP-complete problem, as shown by Chvátal in [10].

Theorem 4 ([10]). Deciding if a graph has a matching cut set is NP-complete.

Definition 15. Let $G = (V,E)$ be a graph and $P = \{V_1,\ldots,V_k\}$ be the partition of V associated with an (α,β)-modular decomposition of G. If every union of parts from $\{V_1,\ldots,V_k\}$ is an (α,β)-module, we say that such a decomposition is an (α,β)-modular brittle decomposition of G.

From Theorem 4, we get the following theorem.

Theorem 5. For a graph $G = (V,E)$ with $|V| \geq 4$, deciding if G admits a $(0,1)$-parallel (resp. a $(1,0)$-series) brittle decomposition is NP-complete.

Proof. Suppose G admits a $(0,1)$-parallel brittle decomposition with partition $P = \{V_1,\ldots,V_k\}$. Since it is a brittle decomposition, $\bigcup_{1 \leq i \leq k} V_i$ is a $(0,1)$-module, and therefore the partition $\{V_1, \bigcup_{1 \leq i \leq k} V_i\}$ is a matching cut set of G. Using Theorem 4, deciding if a graph admits a $(0,1)$-parallel decomposition is thus NP-complete. For the $(1,0)$-series case, since G has a $(1,0)$-series decomposition if and only if G has a $(0,1)$-parallel decomposition by Property 1, we are done. □

Theorem 5 implies that the characterization of (α,β)-brittle graphs could be not so easy. Since (α,β)-modular decomposition trees are not unique, let us now introduce minimal ones.

Definition 16. An (α,β)-modular decomposition tree of a graph G is **minimal** if the first partition level has a minimal number of parts, among all possible (α,β)-modular decomposition trees of G.

We can consider two decision problems, depending on whether α and β are part of the input or not.

Minimal modular decomposition

Input: Two positive integers α, β and a graph G.

Question: Does G admit a minimal (α,β)-modular decomposition?

Minimal (α,β)-modular decomposition

Input: A graph G.

Question: Does G admit a minimal (α,β)-modular decomposition?

Let us prove the NP-hardness of Minimal modular decomposition.

Proposition 5. For every pair of integers $(\alpha,\beta) \neq (0,0)$, and every graph G with $|V(G)| > 4(\alpha + \beta)$, G cannot admit an (α,β)-series decomposition and a (α,β)-parallel decomposition both in two parts, say $\{A_1, A_2\}$ and $\{B_1, B_2\}$, respectively.
Proof. First we notice that any two parts from different partitions must overlap. Indeed, suppose for example that $A_2 \subseteq B_2$. We then necessarily have $B_1 \subseteq A_1$. We then get that a vertex $x \in A_2$ must be α-connected and β-non-connected to B_1, a contradiction.

Since $V(G) = \bigcup_{i,j \in \{1,2\}} A_i \cap B_j$ and $|V(G)| > 4(\alpha + \beta)$, one of these four sets, say $C = A_1 \cap B_1$, has at least $\alpha + \beta + 1$ elements. But then, every $x \in A_2 \cap B_2$ is α-connected and β-non-connected to C, a contradiction.

Therefore if G admits a minimal (α, β)-modular decomposition with only two parts, then it is either an (α, β)-series decomposition or an (α, β)-parallel decomposition, but not both.

Corollary 3. Minimal modular decomposition is NP-complete.

Proof. Since computing a minimal $(0, 1)$-modular decomposition tree is enough to conclude if G has matching cut set or not. But by Theorem 4 such a computation is NP-complete. So for $\alpha = 0$ and $\beta = 1$ the problem is NP-complete. □

We also think that Minimal (α, β)-modular decomposition is NP-complete for every $(\alpha, \beta) \neq (0, 0)$. In fact our result 3 is not enough yet to prove that simply computing an (α, β)-modular decomposition tree is NP-hard, which we believe to be true, since, as shown in Figure 4 a given graph may have two different $(0, 1)$-parallel decompositions. Furthermore it could be the case that one is brittle and the other not. We leave this question as a conjecture.

Conjecture 1 For every (α, β) with max{\alpha, \beta} > 1, finding an (α, β)-modular decomposition of a graph G is an NP-complete problem.

In the above-mentioned work [10], Chvátal showed that the matching cut set problem is NP-complete on graphs with maximum degree four, and polynomial on graphs with maximum degree three. In fact the problem of finding a perfect matching cut set is also NP-hard [26].

On the other hand, computing a matching cut set in the following graph classes is polynomial:

- graphs with maximum degree three [10],
- weakly chordal graphs and line-graphs [33],
- Series-Parallel graphs [37],
- claw-free graphs and graphs with bounded clique-width, as well as graphs with bounded treewidth [4],
- graphs with diameter 2 [5], and
- $(K_{1,4}, K_{1,4} + e)$-free graphs [28].

Therefore, to check whether a graph in any of the above classes is a $(1, 1)$-cograph, it suffices to run the corresponding matching cut set algorithm, either on the graph itself or on its complement.
From the practical side, a particular subclass of (0, 1)-parallel graphs has been introduced and studied in network theory [29], namely the class of networks obtained by starting from the one vertex graph and, at step \(t \), taking two graphs obtained in \(t - 1 \) steps and joining them by a perfect matching. This class, called Matching Composition Networks in [43], contains all hypercubes, as well as all crossed, twisted and Möbius hypercubes. In general, \(PMG(k) \) is a family of graphs recursively defined, that starts with all connected graphs on \(k \) vertices and, at every step, add any graph that can be obtained by selecting two graphs within the family having the same order and joining them with a perfect matching.

More formally, the family \(PMG(4) \), for instance, is defined as follows.

Definition 17 (PMG(4)). We start with the following seven connected graphs on four vertices:

- \(P_4, C_4, K_4, K_{1,3} \),
- a triangle with a pending edge,
- two triangles having an edge in common.

At every step, a new graph is obtained from two graphs in the family having the same order by joining them with a perfect matching.

Knowing that \(PMG(1) = PMG(2) \) and that they contain hypercubes, crossed, twisted and Möbius hypercubes, we end this section with the following recognition problem.

Open Problem 2 Given a graph \(G = (V,E) \) with \(|V| = 2^n \), what is the complexity of recognizing whether \(G \) belongs to \(PMG(k) \) or to one of its non-trivial subclasses?

3.3 The Structure of \((α,β)\)-Prime Graphs

Proposition 6. The only \((1,1)\)-prime graph of order 5 is \(C_5 \).

Proof. Let \(C_5 = [a, b, c, d, e] \). To prove that \(C_5 \) is a \((1,1)\)-prime graph, we just have to prove that every subset of four vertices is not a \((1,1)\)-module, which is obvious since for every such subset \(A \), the remaining vertex not in \(A \) is connected by exactly two edges to \(A \).

For the other direction, let \(G = (V,E) \) be a \((1,1)\)-prime graph of order 5, as there is no subset as non-trivial \((1,1)\)-module, we consider any subset of \(V \) of size four, denoted as \(M \), let \(x = V \setminus M \), since \(M \) is not a \((1,1)\)-module, \(|N(x) \cap M| > 1 \) and \(|N(x) \cap M| < 3 \), thus \(|N(x) \cap M| = 2 \) and \(deg(x) = 2 \). For every subset of four vertices we have the same argument, thus \(G \) is a 2-regular graph, and the only one is \(C_5 \). \(\square \)
Algorithm 1: Computing minimal \((\alpha, \beta)\)-modules.

Input: A graph \(G = (V, E)\) and a set \(A \subseteq V\) with \(|A| \geq \alpha + \beta + 2\).

Output: \(M(A)\), the unique minimal \((\alpha, \beta)\)-module that contains \(A\).

1. \(M_0 \leftarrow A, \ i \leftarrow 0\);
2. \(S \leftarrow \{x \in V \setminus M_0 : \beta < |N(x) \cap M_0| < |M_0| - \alpha\};\)
3. while \(S \neq \emptyset\) do
 4. \(i \leftarrow i + 1;\)
 5. \(M_i \leftarrow M_{i-1} \cup S;\)
 6. \(S \leftarrow \{x \in V \setminus M_i : \beta < |N(x) \cap M_i| < |M_i| - \alpha\};\)
 7. \(M(A) \leftarrow M_i;\)

Notice here that the Petersen graph can be obtained by a \((0, 1)\)-parallel operation made on two copies of a \(C_5\).

Obviously, we have the following inclusion: For all \(\alpha \leq \alpha'\) and all \(\beta \leq \beta'\), the family of \((\alpha, \beta)\)-prime graphs is included in the family of \((\alpha', \beta')\)-prime graphs. But can we improve this result? In the standard setting, the prime graphs are nested. In particular, \(P_4\) is the smallest prime graph, and all primes on \(n\) vertices contain a prime subgraph on either \(n - 1\) or \(n - 2\) vertices, as shown in [39].

We pose the following problem.

Open Problem 3 Are the \((\alpha, \beta)\)-prime graphs nested?

4 Computing the minimal \((\alpha, \beta)\)-modules

Despite the negative hardness results in the previous sections, we shall now examine how to compute all minimal \((\alpha, \beta)\)-modules of a given graph in polynomial time. As mentioned earlier, non-trivial \((\alpha, \beta)\)-modules have strictly more than \(\alpha + \beta + 2\) elements; and since they are closed under intersection, \((\alpha, \beta)\)-modules have an underlying graph convexity, and thus (see Algorithm 1), we can compute the minimal \((\alpha, \beta)\)-module \(M(A)\) that contains a given set \(A\) with \(|A| > \alpha + \beta + 2\), by computing a modular closure via \((\alpha, \beta)\)-splitters. In fact, we build a series of subsets \(M_i\) that starts with \(M_0 = A\) and satisfies \(M_i \subseteq M_{i+1}\) for every \(i \geq 0\).

Proposition 7. Algorithm 1 computes the unique minimal \((\alpha, \beta)\)-module that contains \(A\) in \(O(m \cdot n)\) time.

Proof. If \(A\) is an \((\alpha, \beta)\)-module, then in line 2, \(S = \emptyset\); otherwise, all the elements of \(S\) have to be added into \(M(A)\). In other words, using Lemma 3, there is no \((\alpha, \beta)\)-module \(M\) such that \(A \not\subseteq M \not\subseteq A \cup S\). At the end of the while loop, either \(M_i = V\) or we have found a non-trivial \((\alpha, \beta)\)-module that contains \(A\).

This algorithm obviously runs in \(O(m \cdot n)\) time naively or in \(O((\alpha + \beta) \cdot m)\) time using standard algorithmic techniques.
\(\square\)
Algorithm 2: Computing minimal \((\alpha, \beta)\)-modules.

Input: A graph \(G\) and \(A \subseteq V(G)\) with \(|A| \geq \alpha + \beta + 2\).

Output: \(M(A)\), the minimal \((\alpha, \beta)\)-module that contains \(A\)

```
1 OPEN ← A;
2 M(A) ← ∅;
3 foreach u ∈ V do
4     CLOSED(u) ← FALSE; edge(u) ← 0; non-edge(u) ← 0;
5 while OPEN ≠ ∅ do
6     Select a vertex \(z\) from OPEN and delete \(z\) from OPEN;
7     Add \(z\) to \(M(A)\);
8     CLOSED(z) ← TRUE;
9     foreach u neighbour of \(z\) do
10        if CLOSED(u) = FALSE and u ∉ M(A) then
11           edge(u) ← edge(u) + 1;
12           if \(\beta < \text{edge}(u)\) and \(\alpha < \text{non-edge}(u)\) then
13              Add u to OPEN
14        foreach v non-neighbour of \(z\) do
15           if CLOSED(v) = FALSE and v ∉ M(A) then
16              non-edge(v) ← non-edge(v) + 1;
17           if \(\beta < \text{edge}(v)\) and \(\alpha < \text{non-edge}(v)\) then
18              Add v to OPEN
```

Algorithm 2 proposes a different implementation that uses a graph search approach to compute the minimal \((\alpha, \beta)\)-module containing \(A\). This will allow us to achieve a linear running time.

Theorem 6. Algorithm 2 can be implemented in \(O(m + n)\) time.

Proof. We can implement Algorithm 2 as a kind of a graph search, using an algorithm less naive than Algorithm 1. Algorithm 2 also computes the minimal \((\alpha, \beta)\)-module that contains \(A\) in a graph search manner.

At the end of Algorithm 2, the set \(M(A)\) contains a minimal \((\alpha, \beta)\)-module that contains \(A\). At first glance, this algorithm requires \(O(n^2)\) operations, since for each vertex we must consider all its neighbours and all its non-neighbours.

However, if we use a partition refinement technique as defined in [25], starting with a partition of the vertices as \(P = \{A, V \setminus A\}\). We then keep in the same part, \(B(i,j)\), vertices \(x, y\) with \(\text{edge}(x) = \text{edge}(y) = i\) and \(\text{non-edge}(x) = \text{non-edge}(y) = j\). This way, when visiting a vertex \(z\), it suffices to compute

\[
B'(i+1,j) = B(i,j) \cap N(z), \text{ and }
B''(i,j+1) = B(i,j) - N(z),
\]

for each part \(B(i,j)\) in the current partition. This can be done in \(O(|N(z)|)\) time.

It should be noted that the parts need not to be sorted in the current partition, and we may have different parts with the same (edge, non-edge) values.

Algorithm 2 can thus be implemented in \(O(m + n)\) time. \(\square\)
Theorem 7. Using Algorithm 2, one can compute all the minimal non-trivial \((\alpha, \beta)\)-modules of a given graph in \(O(m \cdot n^{\alpha+\beta+2})\) time.

Proof. To do so, it suffices to use Algorithm 2 starting from every subset of \(\alpha + \beta + 2\) vertices. Since there exists \(O(n^{\alpha+\beta+2})\) such subsets, and Algorithm 2 runs in \(O(m + n)\) time for each one, we get a total complexity of \(O(m \cdot n^{\alpha+\beta+2})\) time.

\(\square\)

Corollary 4. Using theorem 7, one can compute a covering of \(V\) with an overlapping family of minimal \((\alpha, \beta)\)-modules in \(O(m \cdot n^{\alpha+\beta+2})\) time. Moreover, the overlapping of any two members of the obtained covering is bounded by \(\alpha + \beta + 1\).

Proof. Using theorem 7, we can compute an overlapping family of minimal \((\alpha, \beta)\)-modules in \(O(m \cdot n^{\alpha+\beta+2})\) time. But this family can possibly not be a full covering of \(V\) since some vertices may not belong to any minimal non-trivial \((\alpha, \beta)\)-module. To obtain a full covering, we then simply add the remaining vertices as singletons.

\(\square\)

Corollary 4 can be very interesting if we are looking for overlapping communities in social networks, where the overlapping is bounded by \(\alpha + \beta + 1\).

Going a step further, we can use Theorem 2 and merge every pair \(A, B\) of \((\alpha, \beta)\)-modules with \(|A \cap B| \geq \alpha + \beta + 1\), either by keeping \(A \cup B\) as a \((2\alpha, 2\beta)\)-module, or by computing \(M(A \cup B)\), the minimal \((\alpha, \beta)\)-module that contains \(A \cup B\). This depends however on the structure of the maximal \((\alpha, \beta)\)-modules, and unfortunately we do not know yet under which conditions there exists a unique partition into maximal \((\alpha, \beta)\)-modules.

Corollary 5. Checking if a graph is \((\alpha, \beta)\)-prime can be done in \(O(m \cdot n^{\alpha+\beta+2})\) time.

Proof. Easy using Theorem 7.

\(\square\)

5 An Application on Bipartite Graphs

In this section, let \(G = (X, Y, E)\) be a bipartite graph with parts \(X\) and \(Y\). By allowing \(\alpha + \beta\) errors in the decomposition, \((\alpha, \beta)\)-modules can be made up with vertices from both \(X\) and \(Y\). However, in some applications, we are forced to consider \(X\) and \(Y\) separately. Consider for instance the setting where \(X\) and \(Y\) represent the sets of customers and products, or the sets of DNA sequences and organisms, in which case one would want to find regularities on each side of the bipartition.

Definition 18. For a given bipartite graph \(G = (X, Y, E)\), we let

\[
\mathcal{F}_{\alpha, \beta}(X) = \{M : M \text{ is an } (\alpha, \beta)\text{-module of } G \text{ and } M \subseteq X\}.
\]

Note that \(X\) is not always an \((\alpha, \beta)\)-module of \(G\).
Proposition 8. For every two sets $A, B \in \mathcal{F}_{\alpha, \beta}(X)$, $A \cap B$, $A \setminus B$ and $B \setminus A$ are all in $\mathcal{F}_{\alpha, \beta}(X)$.

Proof. Using Theorem 1, the only (α, β)-splitters of the sets $A \setminus B$ and $B \setminus A$ must belong to $A \cap B$; but since $A, B \subseteq X$, and X is an independent set, this is not possible.

It should be noticed here that for $A \subseteq X$, the minimal (α, β)-module that contains A does not always belong to $\mathcal{F}_{\alpha, \beta}(X)$, since we may have to add (α, β)-splitters from Y. Therefore we have to use an algorithmic approach different from those developed in the previous section in order to compute $\mathcal{F}_{\alpha, \beta}(X)$.

Definition 19. Two sets $A, B \subseteq V$, $A \neq B$, with $|A| = |B| = \alpha + \beta + 1$, are said to be false (α, β)-twin (resp. true (α, β)-twin) in G if they satisfy the following three conditions:

1. $A \cup B$ is an (α, β)-module,
2. $\forall x \in A$, $x \in N_\alpha(B)$ (resp. $x \in \overline{N}_\beta(B)$),
3. $\forall y \in B$, $y \in N_\alpha(A)$ (resp. $y \in \overline{N}_\beta(A)$).

Observe that A and B are false (α, β)-twin sets in G if and only if A and B are true (β, α)-twin sets in G.

Proposition 9. Being (true or false) (α, β)-twin is an equivalence relation on subsets of vertices.

When applying Definition 19 to bipartite graphs, we obviously only have false (α, β)-twin sets.

Proposition 10. A set $M \subseteq X$ is an (α, β)-module if and only if M is a union of false (α, β)-twin sets.

Proof. Let $A, B \subseteq M$, with $|A| = |B| = \alpha + \beta + 1$. Pick any vertex $z \in Y$. If $z \in N_\alpha(A)$, then $z \in N_\alpha(M)$ and therefore $z \in N_\alpha(B)$. Therefore, A and B are false (α, β)-twin sets since they are both included in X.

The converse directly follows from Definition 19.

Consequently, in terms of $(\alpha + \beta + 1)$-tuples, the sets of false (α, β)-twin sets partition the $(\alpha + \beta + 1)$-tuples. Furthermore, using the notion of false (α, β)-twin sets, we obtain the following theorem (recall that for a graph G, $\mathcal{F}_{\alpha, \beta}$ is the set of its (α, β)-modules whose elements are in X).

Theorem 8. For a given bipartite graph $G = (X, Y, E)$, the maximal elements of $\mathcal{F}_{\alpha, \beta}(X)$ can be computed in $O(n^{\alpha+\beta}(n+m))$ time.

Proof. To do so, we first build an auxiliary bipartite graph, $G' = (A, Y, E(G'))$, which represents the labelled incidence graph of the $(\alpha + \beta + 1)$-tuples of vertices of X. The set of vertices of G' is thus the set A of these $(\alpha + \beta + 1)$-tuples,
By Lemma 1.4, we know that every such tuple \(T \) yields a partition of \(Y \) into \(N_\alpha(T) \) and \(N_\beta(T) \). The set of edges of \(G' \) is then defined by setting, for every \(T \in A \) and \(y \in Y \),

\[
Ty \in E(G') \text{ if and only if } y \in N_\alpha(T),
\]

which implies

\[
Ty \notin E(G') \text{ if and only if } y \in \overline{N}_\beta(T).
\]

Since every vertex in \(X \) belongs to at most \(O(n_\alpha + n_\beta) \) tuples from \(A \), the number of edges in \(E(G') \) is in \(O(m \cdot n_\alpha + n_\beta) \).

Given the auxiliary graph \(G' \), we now partition \(A \) into false twins. To this aim, we use every vertex in \(Y \) to refine \(A \) with respect to \((\alpha, \beta)\)-neighbourhood. This can be done in \(O(n_\alpha + n_\beta + 1 + n_\alpha + n_\beta \cdot m) \) time, using standard partition refinement techniques [25].

Let \(Q = \{A_1, \ldots, A_k\} \) be such a partition. We prove the following claim.

Claim: No element of \(F_{\alpha, \beta} \) can contain two \((\alpha + \beta + 1)\)-tuples from different parts of \(Q \).

Proof. Let \(A_i \in A_1, A_j \in A_j \), with \(i \neq j \), and \(S \) be a subset of \(X \) such that \(A_i \cup A_j \subseteq S \). Since \(i \neq j \), there is a vertex \(y \in Y \) such that (w.l.o.g.) \(A_i \in N_\alpha(y) \) and \(A_j \in \overline{N}_\beta(y) \). Hence we have

\[
|A_i| - \alpha \leq |S \cap N(y)| \leq |S| - |A_j| + \beta,
\]

which gives

\[
\beta + 1 \leq |S \cap N(y)| \leq |S| - \alpha - 1,
\]

and thus \(y \) is an \((\alpha, \beta)\)-splitter for \(S \). \(\square \)

Therefore, to find the maximal elements of \(F_{\alpha, \beta} \), we can restrict the search to the \(A_i \)'s. Let us now examine how to generate them. To this aim, we define a labelling \(\lambda \) that assigns to each ordered pair \((y, A)\), with \(y \in Y \) and \(A \in A \), a subset of \(A \) as follows.

\begin{itemize}
 \item If \(yA \in E(G') \) and \(a_1, \ldots, a_k, k \leq \alpha \), are the vertices from \(A \) non adjacent to \(y \), then we set \(\lambda(y, A) = \{a_1, \ldots, a_k\} \).
 \item Symmetrically, if \(yA \notin E(G') \) and \(a_1, \ldots, a_h, h \leq \beta \), are the vertices from \(A \) adjacent to \(y \), then we set \(\lambda(y, A) = \{a_1, \ldots, a_h\} \).
\end{itemize}

This labelling can be done while constructing the graph \(G' \).

Then, a maximal element \(F \) of \(F_{\alpha, \beta} \) is just a maximal union of elements of some \(A_i, 1 \leq i \leq k \), satisfying the following:

\begin{itemize}
 \item For every vertex \(y \in Y \),
 \begin{itemize}
 \item if every element of \(A_i \) is adjacent to \(y \), then \(|\cup_{A \in F} \lambda(y, A)| \leq \alpha \),
 \item otherwise, \(|\cup_{A \in F} \lambda(y, A)| \leq \beta \).
 \end{itemize}
\end{itemize}
Note that all vertices in A_i are false twins, since the graph G' is bipartite, and therefore connected the same way to Y.

To produce these maximal sets, we start with $\alpha = \beta = 0$, in which case the only maximal module has an empty label. Let M_0 denote this module and $M_{0,0} = \{M_0\}$ denote the set of maximal elements at this step. We then increase either α or β by one, and recursively compute the new set, $M_{\alpha+1,\beta}$ or $M_{\alpha,\beta+1}$, of maximal elements from the previously computed set $M_{\alpha,\beta}$ (note that every maximal (α, β)-module is contained in a maximal $(\alpha + 1, \beta)$-module and in a maximal $(\alpha, \beta + 1)$-module as well).

For $\alpha = \beta = 0$, M_0 is unique. For $\alpha = \beta = 1$, there are at most $|Y|^2$ maximal $(1, 1)$-modules in $F_{1,1}$. Hence, there are at most $|Y|^{|\alpha + \beta|}$ maximal (α, β)-modules in $F_{\alpha,\beta}$. This computation is therefore bounded in the whole by

$$(\alpha + \beta)(\Sigma_{i=0}^{i=|Y|} |Y|^i) \cdot (|X|^{|\alpha + \beta| + 1}),$$

which is in the order of $O((|Y|^{|\alpha + \beta + 1|}) \cdot (|X|^{|\alpha + \beta + 1|}))$. \hfill \square

Note that these maximal elements of $F_{\alpha,\beta}(X)$ may overlap. It remains to test the quality of the covering obtained on some real data graphs. We leave this as something to explore for data analysts.

6 Conclusion

Before we conclude, we want first to expose the reader to a different way to approach the approximation of modules.

6.1 k-splitter Modules: An Alternate Approximation

Another natural way to approach the problem of approximating modules is by restricting the number of splitters a module can have. Recall that in the standard modular decomposition setting, a splitter of a module M in a graph $G = (V,E)$ is a vertex $v \in V \setminus M$ such that there exists at least two vertices $a, b \in M$ with $av \in E$ and $bv \notin E$. By restricting the number of splitters outside a module, we get the following definition – which intuitively just allows at most k “errors” in terms of connectivity.

Definition 20. For a given graph $G = (V,E)$, a subset M of V is a k-splitter module if M has at most k splitters.

Notice then that by setting $k = 0$ in the above definition, we recover the standard modular decomposition setting [24], i.e., for every $x \in V \setminus M$, either $M \cap N(x) = \emptyset$ or $M \cap N(x) = M$. So, for this approximate setting, we will necessarily only consider the case $k < |V(G)| - 1$.

We begin with some obvious remarks.

Proposition 11. If M is a k-splitter for G, then the following holds.
1. M is a k'-splitter module for G, for every $k' \geq k$.
2. M is a k-splitter module for G.
3. If s is a splitter for M, then s is also a splitter for every set $M' \supseteq M$ with $s \notin M'$.

Proposition 12. The family of k-splitter modules of a graph $G = (V,E)$ satisfies the following.

1. Every set $A \subseteq V$ with $|A| \leq 1$ or $|A| \geq |V| - k$ is a k-splitter module of G. (We call such a set A a trivial k-splitter module.)
2. For every two k-splitter modules $A, B \subseteq V$ of G with $A \cap B \neq \emptyset$, $A \cup B$ is a $2k$-splitter module of G.
3. For every two k-splitter modules $A, B \subseteq V$ of G with $A \cap B \neq \emptyset$, $A \cap B$ is a $2k$-splitter module of G.

Proof.

1. This follows from the definition.
2. There cannot be a splitter of $A \cup B$ that is not a splitter of either A or B since $A \cap B \neq \emptyset$. We get the $2k$ in the worst case, when both A and B have two disjoint sets of k splitters outside of $A \cup B$.
3. A splitter of $A \cap B$ in $V \setminus (A \cup B)$ is a splitter of both A and B. A splitter of $A \cap B$ in A is a splitter of B and a splitter of $A \cap B$ in B is a splitter of A. Therefore, the number of splitters of $A \cap B$ is at most the sum of the numbers of splitters of A and B, i.e., $2k$.

Proposition 13. If A and B are two non-trivial k-splitter modules of a graph $G = (V,E)$, then $A \setminus B$ is a $(k + |A \cap B|)$-module of G.

Proof. There are at most k splitters of $A \setminus B$ in $V \setminus A$, and at most $|A \cap B|$ splitters of $A \setminus B$ in $A \cap B$.

Proposition 14. For a graph $G = (V,E)$ and a subset $A \subseteq V$, there may exist different minimal (under inclusion) k-splitter modules containing A.

Proof. Suppose A admits $k + 1$ splitters. Every one of these $k + 1$ splitters can be added to A in order to obtain a k-splitter module.

In conclusion, this approximation variation is not closed under intersection, unfortunately. There was no way to define some sort of convexity, and thus no easy way to define a closure operator with this notion, which is why we have focused our study on (α, β)-modules instead.

6.2 Conclusions and Perspectives

In this work, we introduce a new notion of modular decomposition relaxation. This notion of (α, β)-module yields many interesting questions, both from a theoretical or practical point of view. Standard modular decomposition is too
restrictive for graphs that arise from real data; do \((\alpha, \beta)\)-modules indeed often arise in this setting? We believe this relaxation of modular decomposition can definitely find applications in practice.

On the theory side, this new combinatorial decomposition may help to better understand graph structuration that can be obtained when grouping vertices that have similar neighbourhood. Such an idea has been successfully used with the notion of twin-width [32]. Furthermore it is related to fundamental combinatorial objects as for example matching cutsets and their generalization.

Another natural and useful application of \((\alpha, \beta)\)-modules concerns approximation algorithms. Similarly to how cographs are the totally decomposable graphs with respect to standard modular decomposition, we can define \((\alpha, \beta)\)-cographs as the totally decomposable graphs with no \((\alpha, \beta)\)-prime graphs. Now consider the classical colouring and independent set programs on cographs. The linear time algorithms for these problems both use modular decomposition. Roughly speaking, the algorithms compute a modular decomposition tree, and keep track of the series and parallel internal nodes of the cotree by scanning the tree from the leaves to the root. Now for \(\alpha + \beta \leq 1\), we can get a simple 2-approximation algorithm for \((\alpha, \beta)\)-cographs for both colouring and independent set, just by summing over all the \((\alpha, \beta)\)-errors.

Our work leaves many interesting questions open (five open questions and one conjecture), as the study of \((\alpha, \beta)\)-prime graphs for instance. We have also exhibited new classes of graphs, such as the \((1,1)\)-cographs, that contain many interesting subclasses and on which it would be interesting to consider the Erdős-Hajnal conjecture [10], which holds for cographs and is closed under substitution [11]. Our work could also be related to the very interesting new generalization of cographs introduced in [3].

We have also presented polynomial time algorithms that we believe could all be improved. It is important however to keep in mind that since the number of unions of overlapping minimal modules can be exponential, it is thus hard to compute from the minimal \((\alpha, \beta)\)-modules some hierarchy of modules. However, perhaps a better way to decompose a graph is to first compute the families of minimal modules with small values of \(\alpha\) and \(\beta\), and then consider a hierarchy of overlapping families.

References