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LP Rounding - An Example

Consider the following variant of vertex cover:

Weighted Vertex Cover with Edge Penalties
Input:A graph G(V,E,w, c) where w : V → R+, and c : E → R+.
Problem Return a subset of vertices S ⊆ V such that∑

v∈S
w(v) +

∑
(u,v)∈E
u,v/∈S

c(u, v)

is minimized.

Notice that this is not a “real” vertex cover: We pay for vertices we collect, and we still want to cover edges,
but if we decide to leave an edge e uncovered, we also pay a penalty cost c(e) for it.

In this lecture, we will formulate the above problem as an 0, 1 IP, and use LP rounding to come up with the
best approximation ratio for the problem. In particular, we will first attempt a naive rounding, and then
see how we can be slightly more clever to come up with a better approximation ratio.

First we formulate the problem as a 0, 1 IP. To this end, we introduce a boolean variable xi for every vertex
i ∈ [n], such that xi = 1 if i ∈ S, and 0 otherwise. Similarly, we introduce another boolean variable eij for
every edge (i, j) ∈ E, such that eij = 1 iff edge (i, j) is covered.

minimize

n∑
i=1

w(i)xi +
∑

(i,j)∈E
i,j /∈S

c(i, j)(1− eij)

s.t. xi + xj ≥ eij ∀(i, j) ∈ E
xi ∈ {0, 1} ∀i ∈ [n]

eij ∈ {0, 1} ∀(i, j) ∈ E

Relaxing this IP to an LP means changing the last two constraints to

xi ∈ [0, 1]

eij ∈ [0, 1]

Let’s focus for the rounding now. Let {x∗i }, {e∗ij} be the values of the optimal solutions to the relaxed LP,
and let {yi}, {zij} be the corresponding rounded values.

Here’s a first rounding attempt. Let’s consider the naive rounding where we set zij to 1 if e∗ij ≥ 1/2 and
zij = 0 otherwise. How does this rounding affect the rounding of x∗i . We only need to consider the x∗i
affected by the rounding of e∗ij to 1, in order to satisfy the constraint xi + xj ≥ eij .

In each constraint, we must have x∗i + x∗j ≥ 1/2, so either x∗i ≥ 1/4 or x∗j ≥ 1/4. Therefore, for i ∈ [n], we
set yi to 1 if x∗i ≥ 1/4, and 0 otherwise.
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This rounding scheme satisfies all the IP constraints. Next we bound the rounded variables given our scheme:

1− zij ≤ 2(1− e∗ij) ∀(i, j) ∈ E
yi ≤ 4x∗i ∀i ∈ [n]

Summing over all variables, the value of the rounded solution is

∑
i∈S

w(i)yi +
∑

(i,j)∈E
i,j /∈S

c(i, j)(1− zij) ≤ 4
∑
i∈S

w(i)x∗i + 2
∑

(i,j)∈E
i,j /∈S

c(i, j)(1− e∗ij)

≤ 4LPOPT

≤ 4IPOPT

Using this rounding scheme, we get a 4-approximation algorithm. But we can do better! In particular, we
can just be “vague” about the rounding threshold and decide later what value works best. Formally, let
α ∈ [0, 1] be the threshold we use for rounding {e∗ij}. If e∗ij ≥ α, then zij = 1, otherwise zij = 0. Using
the reasoning above, we set yi to 1 if x∗i ≥ α/2, and 0 otherwise. next we bound these variables given our
rounding scheme

(1− zij) ≤ (1− α)−1(1− e∗ij)

yi ≤
2

α
x∗i

Summing up over all the vertices and edges again we get∑
i∈S

w(i)yi +
∑

(i,j)∈E
i,j /∈S

c(i, j)(1− zij) ≤
2

α

∑
i∈S

w(i)x∗i + (1− α)−1
∑

(i,j)∈E
i,j /∈S

c(i, j)(1− e∗ij) (1)

This is optimized when 1
α = (1− α)−1. Solving for α, we get α = 2/3. Plugging this value into (1) gives us

3
∑
i∈S

w(i)x∗i + 3
∑

(i,j)∈E
i,j /∈S

c(i, j)(1− e∗ij) ≤ 3LPOPT ≤ 3IPOPT (2)

Therefore this rounding gives a 3-approximation, and since we solved for the best α ∈ [0, 1], this is the best
approximation ratio we can get.


