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LP Rounding - An Example

Consider the following variant of vertex cover:

Weighted Vertex Cover with Edge Penalties
Input:A graph G(V, E,w,c) where w : V — RT and ¢: E — R™T.
Problem Return a subset of vertices S C V such that

Zw(v)—F Z c(u, v)

veS (u,v)EE
u, ¢S

is minimized.

Notice that this is not a “real” vertex cover: We pay for vertices we collect, and we still want to cover edges,
but if we decide to leave an edge e uncovered, we also pay a penalty cost ¢(e) for it.

In this lecture, we will formulate the above problem as an 0,1 IP, and use LP rounding to come up with the
best approximation ratio for the problem. In particular, we will first attempt a naive rounding, and then
see how we can be slightly more clever to come up with a better approximation ratio.

First we formulate the problem as a 0,1 IP. To this end, we introduce a boolean variable x; for every vertex
i € [n], such that x; = 1if ¢ € S, and 0 otherwise. Similarly, we introduce another boolean variable e;; for
every edge (i,j) € E, such that e;; = 1 iff edge (i, ) is covered.

minimize Zw(z)acZ + Z c(i, ) (1 — eij)
=1 (i,j)eEE
i,jgS
s.t. x; + T > €ij V(l,j) eF
x; €{0,1} Vi€ [n]
ei; €{0,1} V(i,j) € E

Relaxing this IP to an LP means changing the last two constraints to

x; € [0, 1}
ey € 10,1]

Let’s focus for the rounding now. Let {z}}, {e};} be the values of the optimal solutions to the relaxed LP,
and let {y;}, {zi;} be the corresponding rounded values.

Here’s a first rounding attempt. Let’s consider the naive rounding where we set z;; to 1 if e]; > 1 /2 and
zij = 0 otherwise. How does this rounding affect the rounding of x]. We only need to consider the zj
affected by the rounding of €;; to 1, in order to satisfy the constraint z; + z; > e;;.

In each constraint, we must have zj + x} > 1/2, so either z7 > 1/4 or 2} > 1/4. Therefore, for i € [n], we
set y; to 1 if zF > 1/4, and 0 otherwise.



This rounding scheme satisfies all the IP constraints. Next we bound the rounded variables given our scheme:

1— Zij < 2(]. — 62}-) V(l,]) eFE
y; < 4z} Vi € [n]

Summing over all variables, the value of the rounded solution is

Zw(z)yz—i— Z c(i, 7)(1 — zij) <4Z Yoi +2 Z )1 —ef))

€S (i,J)EE i€S (i,5)EE
i,j¢S 1,j¢S

<4LPopr

<4IPopr

Using this rounding scheme, we get a 4-approximation algorithm. But we can do better! In particular, we
can just be “vague” about the rounding threshold and decide later what value works best. Formally, let
a € [0,1] be the threshold we use for rounding {ej;}. If ej; > «, then z;; = 1, otherwise z;; = 0. Using
the reasoning above, we set y; to 1 if 27 > /2, and 0 othervvlse next we bound these variables given our
rounding scheme
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(1—zy) <

yi <

Summing up over all the vertices and edges again we get

S wlyi+ Y eli,j)(1 - z5) < Zw Jrp+ (L —a)™t D e g)(1—e)) (1)
€S (i,j)EE zeS (i,j)EE
i,j§£S i7j§é5'

This is optimized when é = (1 — a)~t. Solving for a, we get o = 2/3. Plugging this value into (1) gives us

32 T+3 Z )(1 —ei;) <3LPopr < 3[Popr (2)
€S (i,j)eE
¢S

Therefore this rounding gives a 3-approximation, and since we solved for the best o € [0, 1], this is the best
approximation ratio we can get.



