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Linear Programming: Introduction

A bit of a historical background about linear programming, that I stole from Jeff Erickson’s lecture notes:

“Linear programming was used implicitly by Fourier in the early 1800s, but it was first formalized and applied
to problems in economics in the 1930s by Leonid Kantorovich. Kantorivich’s work was hidden behind the
Iron Curtain (where it was largely ignored) and therefore unknown in the West. Linear programming was
rediscovered and applied to shipping problems in the early 1940s by Tjalling Koopmans. The first complete
algorithm to solve linear programming problems, called the simplex method, was published by George Dantzig
in 1947. Koopmans first proposed the name “linear programming” in a discussion with Dantzig in 1948.
Kantorovich and Koopmans shared the 1975 Nobel Prize in Economics “for their contributions to the theory
of optimum allocation of resources”. Dantzig did not; his work was apparently too pure. Koopmans wrote
to Kantorovich suggesting that they refuse the prize in protest of Dantzig’s exclusion, but Kantorovich saw
the prize as a vindication of his use of mathematics in economics, which his Soviet colleagues had written
off as “a means for apologists of capitalism”.

Linear Programming is a powerful algorithmic tool that allows us to express a number of optimization
problems in a simple framework. To build some intuition on how a linear program is constructed, we start
with the following simple example:

A rancher is mixing two types of food for his cattle, brand X and brand Y . Each serving requires 60 grams
of protein and 30 grams of fat. Brand X has 15gr of protein and 10gr of fat and costs 80 cents per unit.
Brand Y has 20gr of protein and 5gr of fat and costs 50 cents per unit. How much of each brand should the
rancher buy in order to minimize his cost?

We can express this optimization problem in a more mathematical form as follows: We first need to define
what it is we are optimizing. In this case, we want to minimize the rancher’s costs C. To formally define C,
we introduce two new variables: x1 to represent the number of units of brand X and x2 the number of units
of brand Y . We can thus express the cost as follows:

minimize C = 0.8x1 + 0.5x2 (1)

Since each x1 unit costs 80cents, and x2 costs 50cents. We call (1) the objective function. The goal is
to determine the values of x1 and x2 that will minimize (1). We have a few constraints imposed by the
problem (and the cattle ...) that we need to satisfy.

First, we can’t buy a negative number of x1 or x2 units, so

x1, x2 ≥ 0 (2)

Second, we need to satisfy the fat and protein constraints:

15x1 + 20x2 ≥ 60 We need at least 60gr of protein (3)

10x1 + 5x2 ≥ 30 and at least 30gr of fat (4)

And that’s it! So if we put it all together, we can express our problem as follows:

minimize C = 0.8x1 + 0.5x2

subject to 15x1 + 20x2 ≥ 60

10x1 + 5x2 ≥ 30

x1, x2 ≥ 0
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What’s special about this representation? The objective function is linear, and the constraints are linear.
It’s a linear program, LP for short. In order to solve it, we will think about the LP in terms of matrices and
vectors. Out objective function is a minimization of a dot product of two vectors:

c = (0.8, 0.5) and x = (x1, x2)

So we can rewrite the objective function as:

min
x

c · x

Similarly, we can express each constraint as a dot product where:

a1 · x ≥ 60

a2 · x ≥ 30

a1 = (15, 20)

a2 = (10, 5)

Or, we can collect all the ai vectors into a matrix A and the constants into a b vector as follows:

Ax ≤ b

where A = (a1, a2)T and b = (60, 30)T

And so our LP becomes:

min
x

c · x

subject to Ax ≥ b

x ≥ 0

It turned out in fact that every linear program can be converted into the above form known as the canonical
form of the LP 1. It is indeed a more compact expression of:

minimize

d∑
j=1

cjxj

subject to

d∑
j=1

aijxj ≥ bi for every i = 1...n

xj ≥ 0 for every j = 1...d

Formally, we define linear programming as follows:

Input: A linear program with d variables (d for dimension usually) and m constraints.
Problem: A setting to each of the variables so that all the constrainsts are satisfied and the objective
function is optimized.

Notice that the problem could either be a minimization (example above) or a maximization problem.

LPs have a nice geometric representation that we will exploit to solve them.

1sometimes, called the standard form
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The Geometry of Linear Programming:

A vector x that satisfies the constraints is in fact just a point x ∈ Rd. We say that a point x is feasible if
it satisfies the constraints of the LP. The set of all feasible points is called the feasible region of the linear
program.This feasible region has a nice geometric structure that helps us solve the LP.

In the example above, consider a constraint a1 · x ≥ b1; the corresponding linear function a1 · x = b1 defines
a line in 2D and thus splits the plan into two regions. The inequality ≥ b1 just indicates which side of the
plane a feasible solution should lie on. Therefore, given all the constraints, compacted in Ax ≥ b, we create
a feasible region in the plane where every side of the region satisfies some constraint.

This same geometric interpretation applies to higher dimensions. In general, any linear equation on d
variables defines a hyperplane in Rd2. Every hyperplane divides Rd into two halfspaces, where the set of
points in each halfspace satisfies a linear inequality.

The feasible points are precisely the set of points that satisfy all the linear inequalities, i.e. all the constraints
of the LP. So a feasible region id just the intersection of the halfspaces and the hyperplanes, where the
halfspace satisfy the strict inequality constraints, and the hyperplanes satisfy the equality constraints.

Recall that that a polyhedron is the intersection of a finite number of hyperplanes and halfpsaces. Convince
yourself that every polygon is convex.

We next go back to an example in 2D, since it is easier to visualize. Consider the following LP:

maximize x1 + 6x2 (5)

subject to x1 ≤ 200 (6)

x2 ≤ 300 (7)

x1 + x2 ≤ 400 (8)

x1, x2 ≥ 0 (9)

Plotting all the constraints, we get the white feasible region:

So what does it mean to solve this LP? In essence, we are looking for a value p (think p for profit since it is a
maximization problem), such that p = x1 + 6x2 is maximized. This is just the equation of a line with slope
−1
6 . For different values of p, we can “move” the line x1 + 6x2 = p as far as possible while still touching the

feasible region. The optimum solution will be the very last feasible point that the line sees; and I claim that
this must be a vertex of the polygon. (Why?).

2We get a line in 2D, a plane in 3D, etc.
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When you see why, you might wonder what if the profit line p = x1 + 6x2 is parallel to an edge of the
polygon? Then the optimum solution is not unique but we are guaranteed the existence of optimum vertex!
So how do we find this optimum vertex? We could try all the vertices of the polygon, and and pick the one
that maximizes p, but we don’t need to!

In 1947, George Dantzig introduced the Simplex Method. I recommend you read the textbook on how
Simplex works in detail, we will look at the geometric interpretation of what the algorithm does, which
basically is:

• Start at a vertex on the polygon.

• Repeatedly look for an adjacent vertex of better objective value.

• If we reach a vertex v that has no better neighbours, then the algorithm declares v to be optimal and
halts.

Applying this to the example above, we start at the origin (0, 0) (a vertex of the polygon) and compute
p = 0 + 6 · 0 = 0, so at (0, 0) our profit is p = 0. Moving to the next vertex in the polygon, we have the
point (200, 0) which gives us 200 + 6 · 0 = 200, at (200, 200) we get p = 1400, at (100, 300) we get p = 1900
and at (0, 300) we get p = 1800 < 1900. Therefore by the algorithm, the vertex lying in point (100, 300) is
the optimum vertex, and p = 1900.

Why does this local test imply global optimality? For one, the polygon is convex. Now think of the profit
line going through (100, 300): Since all the neighbours of the vertex in (100, 300) lie below the profit line,
the rest of the feasible polygon must also lie below this line, and thus (100, 300) is optimal.

Simplex just returns the optimal solution: (x1, x2) = (100, 300) and p = 1900, but how do we check this
answer? We could maybe try to find a tight upperbound on p just by looking at our constraints? For
instance, constraints (6) and (7) tell us:

x1 + 6x2 ≤ 200 + 6 · 300 (10)

= 2000 this means, p can’t be more than 2000. (11)

Another set of constraints, say (7) and (8) tell us:

5x2 + x1 + x2 ≤ 5 · 300 + 400 (12)

x1 + 6x2 ≤ 1900 (13)

This set of constraints gives us a tighter bound on p; but we know that p = 1900 using Simplex. We say
that triple (0, 5, 1) is a certificate of optimality. Consider the inequality above (12): We put it together
by taking 0 of the first constraint (6), 5 of the second constraint (7) and 1 of the third constraint (8), so the
triple (0, 5, 1) applied on the set of constraints gives us the optimal profit. The question is then how to find
this certificate.

The goal is to find a triple (y1, y2, y3) that, when applied to the set of constraints (3 constraints in the above
example, hence a vector y = (y1, y2, y3) ∈ R3), gives us a tight upperbound. That is:

y1 · (x1 ≤ 200)

y2 · (x2 ≤ 300)

y3 · (x1 + x2 ≤ 400)

Clearly all the yi’s have to be positive, otherwise multiplying by a negative constant would not maintain the
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inequalities. Expanding and summing over the inequalities above, we get:

y1x1 + y2x2 + y3x1 + y3x2 ≤ 200y1 + 300y2 + 400y3

(y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3

and y1, y2, y3 ≥ 0

We want to maximize the profit p = x1 + 6x2, so we want the left hand side of the above inequality to be
x1 + 6x2 = (y1 + y3)x1 + (y2 + y3)x2 so that the right hand side is an upperbound. We achieve that by
setting (y1 + y3) = 1, (y2 + y3) = 6; in fact we could even set (y1 + y3) ≥ 1, (y2 + y3) ≥ 6. Therefore our
upper bound becomes:

x1 + 6x2 ≤ 200y1 + 300y2 + 400y3

y1, y2, y3 ≥ 0

y1 + y3 ≥ 1

y2 + y3 ≥ 6

Clearly we can assign large values to y1, y2, y3 and still satisfy all the above constraints, for instance y1 =
y2 = y3 = 1000 satisfy all the constraints and is an upperbound to x1 + 6x2. The goal however is to find a
upper bound as tight as possible; what does this mean? It means we want to find values of y1, y2, y3 that
minimize 200y1 + 300y2 + 400y3 while satisfying all the constraints. Ah! Ah! This is just a minimization
problem! Another linear program! #stillexcited.

minimize 200y1 + 300y2 + 400y3 (14)

subject to y1, y2, y3 ≥ 0 (15)

y1 + y3 ≥ 1 (16)

y2 + y3 ≥ 6 (17)

So if we can solve this new LP, then we’ll get the best upper bound on our original LP. In fact, if we can
find a pair of feasible solutions to the two LP that are equal, then they must be optimal! (Why?) We
call the original LP the primal LP, and this new one the dual LP. For our example, we know that both
(x1, x2) = (100, 300) and (y1, y2, y3) = (0, 5, 1) give us a value of 1900, so this must be optimal. This is not
by coincidence, it is called the Duality Theorem:

Theorem 1. If an LP has a bounded optimum, then so does its dual and the two optimum values coincide.

In general, we can go from a primal LP to its dual by a “mechanical” translation; essentially swapping the
constraints and the variables:

max c · x
subject to Ax ≤ b

x ≥ 0

We extract its dual as follow:

min y · b
subject to yA ≥ c

y ≥ 0

The theorem above is better known as the Fundamental Theorem of Linear Programming, and it
says:
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Theorem 2. A linear program has an optimal solutin x∗ iff its dual has an optimal solution y∗ such that
c · x∗ = y∗Ax∗ = y∗ · b.

And we have already encountered this when we did the Max Flow/Min Cut theorem.

The weaker version of this theorem, is the known as the Weak Duality Theorem, and it says:

Theorem 3. If x is a feasible3 solution for a canonical LP, and y a feasible solution for its dual, then
c · x ≤ yAx ≤ y · b.

Clearly if the LP has an unbounded solution, the dual is infeasible.

Notice however that the primal LP is not always a maximizing problem. What’s the dual of the following
LP?

minimize 7x1 + x2 + 5x3

subject to x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

3Notice that the condition on x is feasibility only, not necessarily optimality, hence this weaker version.


