
CSC 373 - Algorithm Design, Analysis, and Complexity Summer 2016

Lalla Mouatadid

Greedy Algorithms: Interval Scheduling

Definitions and Notation:

A graph G is an ordered pair (V,E) where V denotes a set of vertices, sometimes called nodes, and E the
corresponding set of edges (lines connecting the vertices). Formally V = {v1, v2, . . . , vn} is the set of vertices
and E = {(vi, vj) ∈ E means vertex vi is connected to vertex vj}. The set of edges usually refers to a
relationship between vertices. For instance, you can represent every person on Facebook as a vertex, and if
two people are friends on Facebook, then their corresponding vertices are connected with an edge. We say
two vertices vi, vj are adjacent if they are connected: (vi, vj) ∈ E. Given an edge e = (vi, vj), we say that
vertices vi, vj are incident to the edge e.

Given a graph G(V,E), a clique K(V ′, E′) is a subgraph of G where V ′ ⊆ V,E′ ⊆ E and for all u, v ∈
V ′, uv ∈ E′. In other words all the vertices in K are pairwise adjacent. An independent set H(Ṽ , Ẽ) is
also a subgraph of G where again Ṽ ⊆ V, Ẽ ⊆ E and for all u, v ∈ Ṽ , uv /∈ Ẽ. In other words all the vertices
in H are pairwise non-adjacent, Ẽ = ∅.

A graph is acyclic if it does not contain a cycle. A tree is an acyclic connected graph. A collection of trees
is called a forest

The maximum independent set problem asks for a largest maximum independent set in a graph
G(V,E).

Maximal vs. Maximum: Recall the difference between a maximal and a maximum solution S. We say
that S is a maximal solution if there is no element v /∈ S that we can add to S and increase the size |S|
of S. On the other hand, S is a maximum solution if there exists no solution S′ with |S′| > |S|. Clearly
every maximum solution S is also maximal, but the reverse is not true.

Example: Consider the graph G(V,E) below where V = {a, b, c, d, e, f}, E = {ab, ac, bc, bd, be, cd, ce, de, ef}.
The set {b, c, d, e} of vertices forms a clique. The set {a, e} is an independent set. The set {a, d, f} is also
an independent set. Notice that {a, e} is maximal whereas {a, d, f} is a maximum independent set.

a

b c

ed

f

P is the class of problems that can be solved in polynomial time. We consider algorithms that have a
polynomial runtime to be efficient, in general anything in the order of nO(1), where n is the size of the input
to the algorithm. On the other hand, problems that we do not know how to solve efficiently (we can only
compute solutions in exponential time) fall in the class of NP-hard problems. We will come back to these
classes towards the second half of the course.

1

2

Greedy Algorithms

Greedy Algorithms: At every iteration, you make a myopic decision. That is, you make the choice that
is best at the time, without worrying about the future. And decisions are irrevocable; you do not change
your mind once a decision is made.

With all these definitions in mind now, recall the music festival event scheduling problem. You have a
pass to your favorite music fest, and want to attend/watch as many performances as possible. You like all
the artists/bands equally; you just want to watch as many live shows as possible. But once you go to a
performance, you cannot leave half way through to attend another one.
Clearly every performance has a start and a finish time, and you are given the schedule ahead of time. As
we saw in class, we can think of each performance as a time interval (from its start time until it is over),
and we can abstract this problem as the interval scheduling problem (ISP), defined below more formally:

Interval Scheduling Problem:
Input: A list of intervals I = {I1, I2, . . . , In}, where each interval Ii is defined by two integers Ii = (si, fi)
with si < fi. Two intervals Ii, Ij are compatible, i.e. disjoint, if they do not intersect (fi < sj or si < fj).
Output: A maximum subset of pairwise compatible (disjoint) intervals in I.

A number of greedy heuristics we tried in class failed quickly and miserably. Heuristics such as the Greedy
Early Start Time algorithm (sorting the intervals by nondecreasing start time s1 ≤ s2 ≤ . . . ≤ sn), or the
Greedy by Duration (sorting the intervals by nondecreasing duration (f1− s1) ≤ (f2− s2) ≤ . . . ≤ (fn− sn))
etc, but the Early Finish Time greedy algorithm (EFT) seemed to work, and we proved it is indeed
optimal!

Algorithm 1 EFT

Input: A list of intervals I = {I1, I2, . . . , In}, where Ii = (si, fi) with si < fi for all 1 ≤ i ≤ n
Output: A maximum subset of pairwise compatible intervals in I

1: Sort the input list I of intervals in nondecreasing order of finish time.
2: f = 0
3: S0 = ∅
4: for i← 1 to n do
5: if f < si then . Ii is compatible with Si

6: Si = Si−1 ∪ {Ii}
7: f = fi
8: end if
9: end for

10: return Sn

Proof of optimality:

We will prove by induction that the solution returned by EFT is optimal. More precisely, we will show that
at every step i, i.e. at every iteration, the partial solution Si we created can be extended to some optimal
solution O. In other words, there exists an optimal solution O that contains Si.

Proof. Every optimal solution contains the empty set and thus the claim holds for the base case i = 0, S0 = ∅.
Now suppose Si can be extended to an optimal solution O. It remains to show that Si+1 can also be extended
to some optimal solution O∗, not necessarily the same as O. To prove this, we use an exchange argument.

There are two cases to consider. At step i+ 1, either no interval was added to Si, in which case Si+1 can be

3

extended to O, since Si = Si+1. Otherwise, let I be the interval added to Si and let J be the first interval
in O but not in Si. If I = J then we’re done. Suppose then I 6= J . Since the algorithm selected I at step i,
I must have the earliest finish time for all the remaining intervals in I. In particular

fI < fJ
1 (1)

Clearly I and J are compatible with every interval in Si. Since J ∈ O, J is compatible with every interval
J ′ in O that comes after J . In particular

fJ < fJ′ (2)

Using (1) and (2), it follows that I is compatible with every interval J ′ in O that comes after J . So we
can simply exchange J with I in O, and obtain O∗ = O ∪ {I}\{J} where O∗ is an optimal solution that
extends Si+1.

Convince yourself of the following: Given a schedule I = {I1, I2, . . . , In}, construct a graph G(V,E)
as follows: For every interval Ii, create a vertex vi, and two vertices are adjacent (vivj ∈ E) if and only if
their corresponding intervals overlap, then computing a maximum subset of pairwise compatible intervals is
equivalent to computing a maximum independent set in G.

1we abuse notation here and use fI , fJ instead of fk, fk′ (for 1 ≤ k, k′ ≤ n) to indicate the finish time of I, J respectively.

