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Network Flows: Introduction & Maximum Flow

We now turn our attention to another powerful algorithmic technique: Local Search. In a local search
algorithm, we start with an arbitrary solution to our problem, then keep refining this solution by making
small repeated local changes that will increase the quality of our solution. Once a solution converges to a
local optimum, then no number of small changes will increase its quality and we are done. But this does not
always mean that this local optimum is the optimal solution to our problem. In this lecture, we focus on a
well structured instance of local search where the local optimum is indeed the global optimum.

Definitions

• A flow network is a directed graph G(V,E) with the following properties:

1. There is a positive weight function on E, called capacity, c : E → R+.

2. There are two designated vertices s and t in V , such that s 6= t. s is the source of the network and
t the terminal.

3. There are no incoming edges towards s and no outgoing edges from t.

• We use (G, s, t, c) to denote a flow network, with source s, terminal t, and edge capacities c.

• Given a flow network (G, s, t, c), a flow in G is a function f : E → R+ that satisfies the following
constraints:

1. Capacity constraint : For all edges e ∈ E, 0 ≤ f(e) ≤ c(e). Meaning no edge gets a flow that
exceeds its capacity.

2. Flow conservation : For every vertex v ∈ V \{s, t}, the flow going into v equals the flow coming
out of v: ∑

u:(u,v)∈E

f(u, v) =
∑

w:(v,w)∈E

f(v, w)

• The value of the flow, denoted val(f) is the total value of the flow leaving the source s:

val(f) =
∑

u:(s,u)∈E

f(s, u)

Example : Consider the network below1. val(f) = 4, as we can send 2 units of flow down the paths s−A− t
and s−B − t.

1note that the label on an edge f/c denotes the flow and the capacity of that edge
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Given a flow network, our goal is to send as much flow as possible from s to t. We’ll see how a local search
algorithm solves this problem. Formally, we have the following problem:

The Maximum Flow Problem:
Input: A flow network (G, s, t, c)
Output: A flow f on G where val(f) is maximized.

Since we said this is an instance of local search, we should be able to start with any solution and try to
improve it over a number of iterations. For instance, we could start by send two units of flow down the
path s−A− t in the example above, then improve on this solution by sending another 2 units of flow down
s−B− t. Since the capacities of the source s are now saturated, we know we can’t improve on this solution;
and thus val(f) = 4 is the local optimum. It turns out for this example, 4 is also an optimal solution for
this network
Now suppose our initial starting solution was the path s − A − B − t, this path gives us a flow of value 1.
We can improve it by sending another unit of flow down s−A− t and another unit of flow down s−B − t.
The flow network would then look like:
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The total value of this flow is val(f) = 3, but we know there is a better solution. Which path can we use to
increase the flow? If we claim that local search on the instance of max flow is optimal, then we should be
able to send one more unit of flow the network.

Before we attack this problem, we need a few more definitions. Given a flow network (G, s, t, c), an
augmenting path P is an s, t path in G where we can push more flow down the network. That is,
P = v1, v2, ..., vk where c(vi, vi+1)− f(vi, vi+1) > 0 for all 1 ≤ i < k and v1 = s, vk = t.

In the example above, there are no augmenting paths to push that 4th unit of flow, but we get around this
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problem by redirecting the flow in the network. There are two types of augmenting paths in a network:

Case 1. An s, t path where every edge has some unused capacity: c(e)− f(e) > 0 for every edge e ∈ P. We
just push at least one more unit of flow, thus increasing val(f).
Case 2. An s, t path where some edges have unused capacity and some are saturated, but we can redirect
the flow on the saturated edges.

To illustrate this 2nd case, consider the example above where we val(f) = 3. Since there is no augmenting
path that falls in case 1, we will try to redirect some flow in G. In particular, we will augment the flow along
the path s − B − A − t and in doing so, redirect 1 unit of flow down the edge (B,A). Notice that when
we redirected the flow down (B,A), we decreased the flow on the edge (A,B) since it is the exact flow we
redirected.
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To formalize this concept, we introduce a data structure that allows us to keep track of augmenting paths
in a network.

Definition:

Let (G, s, t, c) be a flow network and f a flow on G. A residual graph Gf of G is an edge-weighted directed
graph on the same vertex set V as G and the edge set E′ where E′ is constructed as follows: If there is an
edge (u, v) ∈ G, we add two edges (u, v) and (v, u) to E′ with capacities:

cf (u, v) = c(u, v)− f(u, v) : the amount of available capacity left on the edge (u, v)

cf (v, u) = f(u, v) : The amount of flow we are allowed to redirect

cf denotes the capacity of an edge in the residual graph Gf . If an edge e′ ∈ E′ has capacity cf (e′) = 0, we
just remove e′ from Gf .

Now we can redefine an augmenting path with respect to the residual graph: An augmenting path P on Gf

is an s, t path on Gf consisting of edges with positive capacity: cf (e) > 0 for all e ∈ P.

For further clarity, let’s consider the example above and produce what Gf looks like at every iteration:
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Send 1 unit of flow using P = s−A−B − t:
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Send 1 unit of flow using P = s−A− t
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Send 1 unit of flow using P = s−B − t
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Send 1 unit of flow using P = s−B −A− t
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There are no outgoing edges from s with leftover capacity, so we can’t start an augmenting path, and we
are done. It is not always the case however that we saturate the outgoing edges from s before we are done,
there could be leftover capacity on an (s, v) but no augmenting path in Gf .

So in general, we keep performing augmentations along paths P by increasing the flow on edges with available
capacity, and decreasing the flow when redirecting. How much flow can we send at every augmentation step?
Let P = v1, v2, ..., vk be an augmenting path with v1 = s, vk = t. Since P is an augmenting path, we know
that cf (vi, vi+1) > 0 for all edges (vi, vi+1) in P with 1 ≤ i < k. Therefore the most flow we can send down
P is just min

1≤i<k
cf (vi, vi+1). Why?

So far, we haven’t said how to solve our Maximum Flow problem! Ford and Fulkerson proposed this local
search algorithm to solve it: Keep augmenting f using augmenting paths until there are no more augmenting
paths! The claim is when the algorithm halts, the flow we end up with is maximized.

Algorithm 1 Ford-Fulkerson

Input: A flow network (G, s, t, c)
Output: A flow f on G where val(f) is maximized

1: Set f(e) = 0 for every edge in G.
2: while There is an augmenting path P in Gf do
3: Augment f using P
4: end while
5: Return f

We’ll prove the correctness of this algorithm in the next lecture. The proof is an immediate corollary of a
well know theorem: The Max-Flow/Min-Cut Theorem.


