
CSC 373 - Algorithm Design, Analysis, and Complexity Summer 2014

Lalla Mouatadid

Introduction to Complexity Theory

Recall a boolean formula φ is a formula composed of boolean variables (i.e. variables that take 0 or 1) and
the standard boolean operators ∧,∨,¬. φ is in conjunctive normal form (CNF) if it is the conjunction
(∧) of clauses where each clause is a disjunction (∨) of the input variables. For instance:

φ(x, y, z) = (x ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) ∧ (y ∨ ¬z)

We will encode φ as list of clauses C = {C1, C2, ..., Cm} where each Ci is a list of variables drawn from the
set {x1, .., xn} where each xi is either positive or negative: Ci ⊆ {x1, ...xn,¬x1, ...,¬xn}. Therefore we can
express φ in a compact way as follows:

φ(x1, ..., xn) =

m∧
i=1

∨
w∈Ci

w

φ is satisfiable if there exists an assignment a to the variables of φ such that φ(a) = 1.
The satisfiability problem, known as SAT, is a decision problem where we return 1 iff there is an assignment
that satisfies φ:

SAT: Given a boolen formular φ in CNF, return 1 iff φ is satisfiable

In the last lecture, we stated the following theorem that we didn’t prove:

Theorem 1. Circuit-SAT is NP-complete

We will use Theorem 1 to show that SAT is also NP-Complete. It is (clear (?) why?) that SAT is a restricted
version of circuit-SAT. We will thus show that despite such a strong structure imposed by SAT, the problem
remains NP-complete. The following theorem is known as the Cook-Levin Theorem:

Theorem 2. SAT is NP-complete.

Recall that to show a problem L is NP-complete, we need to show 2 things:

1. L ∈ NP.

2. L is NP-hard (i.e. A ≤P L for all A ∈ NP).

Theorem 1 states that Circuit-SAT is NP-complete, and thus NP-hard, which means for all A ∈ NP:

A ≤P Circuit-SAT

Therefore there exists a polytime reduction from any problem A in NP to Circuit-SAT. So if we can show
that Circuit-SAT ≤P SAT (i.e. a polytime reduction from Circuit-SAT to SAT) then by transitivity1:
A ≤P SAT for all A ∈ NP ! We prove this formally in the following proposition:

Proposition 1. Let A and B be decision problems. If A is NP-hard and A ≤P B then B is NP-hard.

1properties of reducibility!

1

2

Proof. A is NP-hard =⇒ L ≤P A for all L ∈NP. Meaning, there is a polytime reduction T such that:

L(x) = 1 ⇐⇒ A(T (x)) = 1 (for all x ∈ {0, 1}∗) (1)

Moreover:

A ≤P B =⇒ A(y) = 1 ⇐⇒ B(R(y)) = 1 (for all y ∈ {0, 1}∗) (2)

Where R is another polytime reduction. Now putting (1) and (2) together we get:

∀x ∈ {0, 1, }∗ L(x) = 1 ⇐⇒ A(T (x)) = 1

⇐⇒ A(y) = 1 (for y = T (x))

⇐⇒ B(R(y)) = 1

⇐⇒ B(R(T (x))) = 1

⇐⇒ B(S(x)) = 1 (where S(x) = R(T (x))).

S is a polytime reduction, why? We conclude that L ≤P B for all L ∈NP and thus B is NP-hard.

Before we start the proof of the Cook-Levin Theorem, we first formally describe the input to the Circuit-SAT
problem. We consider every circuit C with m gates and n input variables. We label each gate gi for 1 ≤ i ≤ m
and each input variable xj for 1 ≤ j ≤ n. Each gate gi is encoded as follows:

gi(λi, Ii, Oi)

where λi denotes the type of gate: λi ∈ {∧,∨,¬, x1, ..., xn}. If λi ∈ {∧,∨,¬} then it is an interior gate in C,
otherwise it is an input gate if λi ∈ {x1, ..., xn}.

Ii denotes the input gates to gi and thus Ii ⊆ {1...m}. Notice that if λi ∈ {∧,∨} then |Ii| = 2 (e.g. if
λi = {∧}, Ii = {j, k} then gi computes (gj ∧ gk)), if λi = {¬} then |Ii| = 1 and if λi ∈ {x1, ..., xn} then
|Ii| = 0.

Oi is the set of output gates of gi and is unbounded; but we make the assumption that if |Oi| = 0 then gi is
the output gate of the circuit.

So why do we need this detailed description of the circuit? Well to perform a reduction from Circuit-SAT
to SAT, we are given a Circuit C and need to somehow encode a SAT input out of C. Recall that the input
to SAT is a boolean formula φ in CNF:

φ(x1, ..., xn) =

m∧
i=1

∨
w∈Ci

w

We are now ready to proove the Cook-Levin Theorem. The outline of the proof is as follows: We first give
a polytime verifier (show the problem is in NP), then given a circuit C as described above, we will construct
a SAT instance φ in polytime from C such that φ(a) = 1 iff C(a) = 1 for some assignment a of the input
variables.

Proof. Our polytime verifier V will take the list of clauses C in addition to a certificate y; where y is an
encoding of an assignment a to the variables of the clauses. Clearly we can verify if a is an accepting or
rejecting instance in polynomial time by just plugging the assignment a into the clauses of C and checking
if every Ci is satisfied. The verifier returns 1 iff all the clauses are satisified and 0 otherwise. Therefore SAT
∈ NP.

To show SAT is NP-hard, we give a reduction from Circuit-SAT to SAT: let C = {g1, g2, ..., gm} be the
desciption of the circuit (input to Circuit-SAT) and {x1, ..., xn} the input variables.

3

We first define m + n variables φ a SAT instance as follows {x1, x2, .., xn, y1, y2, ..., ym} where {x1, ..., xn}
are the input variables to C and {y1, ..., ym} correspond to the values of {g1, ..., gm} respectively given the
assignment of {x1, ..., xn} (in other words, yi is the value of the ouput coming out gi).

Next, we need to define the clauses C = {C1, C2, ..., Cm} of our CNF. To do so, we consider each gate gi for
1 ≤ i ≤ m:

• If gi is an input gate, then we introduce the constraint yi = xj where xj is the input to gi. We represent
(yi = xj) in CNF as follows:

(yi = xj) ≡ (yi ∨ ¬xj) ∧ (¬yi ∨ xj)

• If gi is an ¬ gate and gj is the input to gi, then we introduce the constraint yi = ¬yj , equivalently:

(yi = ¬yj) ≡ (yi ∨ yj) ∧ (¬yi ∨ ¬yj)

• If gi is an ∧ gate and gj , gk the two gates that connect to gi, then yi = yj ∧ yk:

(yi = yj ∧ yk) ≡ (yi ∨ ¬yj ∨ ¬yk) ∧ (¬yi ∨ yj) ∧ (¬yi ∨ yk)

• If gi is an ∨ then yi = yj ∨ yk and

(yi = yj ∨ yk) ≡ (¬yi ∨ yj ∨ yk) ∧ (yi ∨ ¬yj) ∧ (yi ∨ ¬yk)

• Finally if gi is the output gate, we add the constraint yi ≡ 1, which is equivalent to adding the clause
(yi).

Before showing that φ outputs 1 iff C outputs 1, we first need to show that this construction can be done in
polynomial time given the circuit C as described above. To construct the clauses above, we iterate through
all the gates in C, check their type λi and record the corresponding clauses as constructed above. How many
clauses do we record per gate? At most 3 clauses per gate (3 for ∧ and ∨ gates). So the algorithm takes at
most O(|C|) time to construct C = {C1, ..., Cm} the list of clauses for φ, where φ is the conjunction of the
clauses described above.

Next we show that C is satisfiable iff φ is satisfiable!

(⇒) Let (x∗1, ..., x
∗
n) be a satisfying assignment to C. Then for every gate gi in C, we denote by y∗i the value

outputted by gi given (x∗1, ..., x
∗
n) and we claim that the assignment (x∗1, ..., x

∗
n, y
∗
1 , ..., y

∗
m) is a satisfying

assignment to φ. Why? Because every clause in φ is satisfied iff each yj has the value outputted by gj given
(x∗1, ..., x

∗
n)! But recall we added the final clause to encode the output gate which is satisfied iff the circuit

output 1, which is the case given our assumption. So (x∗1, ..., x
∗
n, y
∗
1 , ..., y

∗
m) is a satisfying assignment to φ.

(⇐) conversely, suppose (x̃1, x̃2, ..., x̃n+m) = (x̃1, x̃2, ..., x̃n, ỹ1, ..., ỹm) is a satisfying assignment to the con-
structed SAT instance. Then we claim that the values that (x̃1, x̃2, ..., x̃n) receive will cause C to output
1. Why? Because the values of the ỹi’s variables correspond precisely to the values of the gates in C given
(x̃1, x̃2, ..., x̃n).

Conclusion: Given this Karp-rduction, it follows from the NP-hardness of Circuit-SAT that SAT is NP-
hard, and thus SAT is NP-complete.

So even if we restrict our Circuit to a CNF, and thus imposing lots of structure on our input, the problem still
remains NP-complete. In the tutorial, you were introduced to 3-SAT and k-SAT in general: SAT instances
where each clause in φ has most 3 (resp. k) variables. You were able to show that even if we restrict SAT
even further to 3-SAT, the problem still remains NP-complete! This is quite surprising, especially when we
consider the Interval Scheduling problem, a restricted instance of Independent Set, but we were able to solve
it efficiently by having the structure imposed by the intervals.

