Lalla Mouatadid

CSC 373 - Algorithm Design, Analysis, and Complexity

Introduction to Complexity Theory

Summer 2014

Recall a boolean formula ¢ is a formula composed of boolean variables (i.e. variables that take 0 or 1) and
the standard boolean operators A, V,-. ¢ is in conjunctive normal form (CNF) if it is the conjunction
(A) of clauses where each clause is a disjunction (V) of the input variables. For instance:

We will encode ¢ as list of clauses C = {Cy, Cy, ...
set {x1,..,x,} where each x; is either positive or negative: C; C {x1,...xp, X1, ...

¢(x,y,2) = (2 V2) A (D2 V oy V) Ay V —z)

express ¢ in a compact way as follows:

3

O(z1, .0y Tn) = \/ w
lweC;

%

,Cm} where each C; is a list of variables drawn from the

, ", }. Therefore we can

¢ is satisfiable if there exists an assignment a to the variables of ¢ such that ¢(a) = 1.
The satisfiability problem, known as SAT, is a decision problem where we return 1 iff there is an assignment

that satisfies ¢:

‘ SAT: Given a boolen formular ¢ in CNF, return 1 iff ¢ is satisfiable

In the last lecture, we stated the following theorem that we didn’t prove:

Theorem 1. Circuit-SAT is NP-complete

We will use Theorem 1 to show that SAT is also NP-Complete. It is (clear (?) why?) that SAT is a restricted
version of circuit-SAT. We will thus show that despite such a strong structure imposed by SAT, the problem
remains NP-complete. The following theorem is known as the Cook-Levin Theorem:

Theorem 2. SAT is NP-complete.

Recall that to show a problem £ is NP-complete, we need to show 2 things:

1. £ NP.

2. £ is NP-hard (i.e. A<p L for all A € NP).

Theorem 1 states that Circuit-SAT is NP-complete, and thus NP-hard, which means for all A € NP:

A <p Circuit-SAT

Therefore there exists a polytime reduction from any problem A in NP to Circuit-SAT. So if we can show
that Circuit-SAT <p SAT (i.e. a polytime reduction from Circuit-SAT to SAT) then by transitivity':

A <p SAT for all A € NP ! We prove this formally in the following proposition:

Proposition 1. Let A and B be decision problems. If A is NP-hard and A <p B then B is NP-hard.

Iproperties of reducibility!

Proof. A is NP-hard = L <p A for all £ eNP. Meaning, there is a polytime reduction 7" such that:
L(z)=1 < A(T(z)) =1 (for all z € {0,1}*) (1)
Moreover:
A<pB = A(y)=1 < B(R(y)) =1 (for all y € {0,1}") (2)
Where R is another polytime reduction. Now putting (1) and (2) together we get:
Ve e {0,1,}* L(x)=1 <= AT (z)) =1

<= B(S(x)) =1 (where S(z) = R(T(x))).

S is a polytime reduction, why? We conclude that £ <p B for all £ eNP and thus B is NP-hard. O

Before we start the proof of the Cook-Levin Theorem, we first formally describe the input to the Circuit-SAT
problem. We consider every circuit C with m gates and n input variables. We label each gate g; for 1 <i <m
and each input variable z; for 1 < j < n. Each gate g; is encoded as follows:

9i(Ni, I;, 05)

where \; denotes the type of gate: A\; € {A,V,—, x1,...,z,}. If \; € {A,V,—} then it is an interior gate in C,
otherwise it is an input gate if \; € {x1,...,x,}.

I; denotes the input gates to g; and thus I; C {1...m}. Notice that if \; € {A,V} then |[;| = 2 (e.g. if
Ai = {A} L = {j,k} then g; computes (g; A gi)), if Ay = {=} then |I;| = 1 and if A\; € {z1,...,x,} then
|I;] = 0.

O; is the set of output gates of ¢g; and is unbounded; but we make the assumption that if |O;| = 0 then g; is
the output gate of the circuit.

So why do we need this detailed description of the circuit? Well to perform a reduction from Circuit-SAT
to SAT, we are given a Circuit C and need to somehow encode a SAT input out of C. Recall that the input
to SAT is a boolean formula ¢ in CNF:

3

d)(xla"'axn): \/ w
1weC;

%

We are now ready to proove the Cook-Levin Theorem. The outline of the proof is as follows: We first give
a polytime verifier (show the problem is in NP), then given a circuit C as described above, we will construct
a SAT instance ¢ in polytime from C such that ¢(a) = 1 iff C(a) = 1 for some assignment a of the input
variables.

Proof. Our polytime verifier V' will take the list of clauses C in addition to a certificate y; where y is an
encoding of an assignment a to the variables of the clauses. Clearly we can verify if a is an accepting or
rejecting instance in polynomial time by just plugging the assignment a into the clauses of C' and checking
if every C; is satisfied. The verifier returns 1 iff all the clauses are satisified and 0 otherwise. Therefore SAT
€ NP.

To show SAT is NP-hard, we give a reduction from Circuit-SAT to SAT: let C = {g1, g2, .., gm} be the
desciption of the circuit (input to Circuit-SAT) and {x1, ..., z,} the input variables.

We first define m + n variables ¢ a SAT instance as follows {x1, 2, .., Zn, Y1, Y2, .., Ym Where {z1,...,2,}
are the input variables to C and {yi, ..., ym} correspond to the values of {gi,...,gm} respectively given the
assignment of {x1,...,z,} (in other words, y; is the value of the ouput coming out g;).

Next, we need to define the clauses C' = {C1, Cy, ..., Cy, } of our CNF. To do so, we consider each gate g; for
1< <m:
e If g; is an input gate, then we introduce the constraint y; = x; where z; is the input to g;. We represent

(y; = x;) in CNF as follows:

(yi = x5) = (ys V —xj) A (- V)

If g; is an — gate and g; is the input to g;, then we introduce the constraint y; = —y;, equivalently:

(i = ;) = (i Vy;) A (=g V —y;)

If g; is an A gate and g;, gr the two gates that connect to g;, then y; = y; A yp:

(Wi=yi Nyr) = (Y V =y YV our) A (2w V) A (2 Vo)

If g; is an V then y; = y; V y; and

Wi=yi Vye) =y Vi V) Ay V) A (s V)

Finally if g; is the output gate, we add the constraint y; = 1, which is equivalent to adding the clause

Before showing that ¢ outputs 1 iff C outputs 1, we first need to show that this construction can be done in
polynomial time given the circuit C as described above. To construct the clauses above, we iterate through
all the gates in C, check their type \; and record the corresponding clauses as constructed above. How many
clauses do we record per gate? At most 3 clauses per gate (3 for A and V gates). So the algorithm takes at
most O(|C]) time to construct C = {C1, ..., Cp, } the list of clauses for ¢, where ¢ is the conjunction of the
clauses described above.

Next we show that C is satisfiable iff ¢ is satisfiable!

(=) Let (a7, ...,2}) be a satisfying assignment to C. Then for every gate g; in C, we denote by y} the value
outputted by g¢; given (z7,...,z)) and we claim that the assignment (z7,...,z%,y7,...,y,) is a satisfying
assignment to ¢. Why? Because every clause in ¢ is satisfied iff each y; has the value outputted by g, given
(27, ...,23%)! But recall we added the final clause to encode the output gate which is satisfied iff the circuit

output 1, which is the case given our assumption. So (7, ..., 2%, 43, ..., y%,) is a satisfying assignment to ¢.

(<) conversely, suppose (Z1,Z2, ..., Tntm) = (Z1, L2, e, Ty J1,---, Um) 1S & satisfying assignment to the con-
structed SAT instance. Then we claim that the values that (Z1,Zo,...,Z,) receive will cause C to output
1. Why? Because the values of the ;’s variables correspond precisely to the values of the gates in C given

(Z1, %, ..., Tn).

Conclusion: Given this Karp-rduction, it follows from the NP-hardness of Circuit-SAT that SAT is NP-
hard, and thus SAT is NP-complete. O

So even if we restrict our Circuit to a CNF, and thus imposing lots of structure on our input, the problem still
remains NP-complete. In the tutorial, you were introduced to 3-SAT and k-SAT in general: SAT instances
where each clause in ¢ has most 3 (resp. k) variables. You were able to show that even if we restrict SAT
even further to 3-SAT, the problem still remains NP-complete! This is quite surprising, especially when we
consider the Interval Scheduling problem, a restricted instance of Independent Set, but we were able to solve
it efficiently by having the structure imposed by the intervals.

