We conclude our discussion of network flows with an application to bipartite matching. We need the following definitions:

A graph \(G(V, E) \) is a bipartite graph if \(V \) can be partitioned into two sets \(A \) and \(B \), such that \(A \cup B = V \), and for all \(e = (a, b) \in E \), \(a \in A, b \in B \).

The pair \((A, B) \) is called a bi-partition. We’ll use \(G(A \cup B, E) \) to refer to a bipartite graph with the bi-partition \((A, B) \).

A matching in a graph is a set of edges \(M \subseteq E \) such that for every pair of edges \(e_1, e_2 \in M \), \(e_1 \) and \(e_2 \) do not share a common end point.

A matching is maximal if it cannot be extended to a larger matching, and maximum if it has the most edges out of any matching \(M' \) of \(G \).

Example: The graph below is a bipartite graph with bi-partition \(A = \{a,b,c\} \) and \(B = \{x,y,z\} \). The matching \(M = \{(a, x), (b, y)\} \) is maximal, whereas \(M' = \{(a, z), (b, y), (c, x)\} \) is maximum.

So the problem we are trying to solve is the following:

The Bipartite Matching Problem:

Input: A bipartite graph \(G(A \cup B, E) \).

Output: A maximum matching \(M \) of \(G \).

But why this problem and how is it related to network flow? This is just to illustrate how Ford-Fulkerson can be applied in different ways. To solve this problem, we will give a reduction from the bipartite matching problem to the maximum flow problem. That is, we will (1) somehow change our bipartite matching problem into a max-flow problem, compute the max flow \(f \) and (2) use this solution (the flow \(f \)) to extract a solution to our original problem, namely finding a maximum matching.

In more precise terms: Given any bipartite graph \(G(A \cup B, E) \), we will show how to construct a flow network \((G', s, t, c) \) such that \(\text{max}(f) = |M| \), where \(M \) is a maximum matching for \(G(A \cup B, E) \). We will then use this max flow \(f \) on \(G' \) to reconstruct the corresponding maximum matching \(M \) on \(G \). This happens in two steps, which we will present in two separate algorithms:
Algorithm 1 ConstructNetwork

Input: A bipartite graph $G(A \cup B, E)$

Output: A flow network (G', s, t, c) such that $val(f)$, the max flow f of G', equals the size of a maximum matching on G.

1: Construct a flow network (G', V', E') as follows:
2: $V' = A \cup B \cup \{s, t\}$ \(\triangleright\) The vertices of G' are the same as the vertices of G, plus a source and a sink
3: For every $a \in A$, add the edge (s, a) to E'
4: For every $b \in B$, add the edge (b, t) to E'
5: For every $(a, b) \in E$, add (a, b) to E'
6: Set the capacity $c(e') = 1$ for every edge $e' \in E'$

Algorithm 2 ExtractMatching

Input: A flow network (G', s, t, c) and a max flow f on G'

Output: A maximum matching M on G

1: for every edge $(a, b) \in G'$ with flow $f(a, b) = 0$ do
2: Remove (a, b) from G.
3: end for
4: Return the set of edges with $f(a, b) = 1$.

What’s the complexity of these two algorithms? Well, ConstructNetwork takes $O(m + n)$; one iteration through the vertices and edges of G suffices, and ExtractMatching takes $O(m)$ time to select the edges with nonzero flow. The final algorithm looks like this now:

Algorithm 3 Bipartite Matching

Input: A bipartite graph $G(A \cup B, E)$

Output: A maximum matching M on G

1: $(G', s, t, c) \leftarrow \text{ConstructNetwork}(G)$
2: $f \leftarrow \text{FordFulkerson}(G', s, t, c)$
3: $M \leftarrow \text{ExtractMatching}(G', f)$
4: Return M

and takes $O(m^2n)$ time. Why?

Let’s prove that all of this actually works. To show that the reduction works, we’ll prove the following theorem:

Theorem: Let $G(A \cup B, E)$ be a bipartite graph. Let (G', s, t, c) be a flow networks constructed by ConstructNetwork on G:

1. The size of the maximum matching M of G equals the value of the maximum flow f on G'.
2. ExtractMatching returns a maximum matching when given the max flow f on G'.

Proof. 1. Let f be the maximum flow on G' and let a be any element of A. Notice that if $f(s, a) = 1$ then there must exist a vertex b such that $f(a, b) = 1$ (by conservation of flow). By construction of G', we know there exists an edge (b, t) with capacity 1, therefore $f(b, t) = 1$. So this augmenting path $s - a - b - t$ matched vertex a to vertex b. Since $c(s, a) = 1$, we know there doesn’t exist a vertex b' with $f(a, b') = 1$ otherwise
we violate the conservation of flow property. So a is matched to b only. And using the same argument on b, we conclude that b is matched to a only. Therefore, the set $M = \{(a,b) \in G'|a \in A, b \in B, f(a, b) = 1\}$ must be a matching in G.

2. Now suppose M, the matching returned by ExtractMatching is not maximum on G, and let M' be a maximum matching for G. Therefore $|M'| > |M|$.

Now construct a flow f' as follows: For every $(a, b) \in M'$, we set $f'(a, b) = 1$. By the previous argument, f' is a valid flow in G', and $\text{val}(f') = |M'| > |M| = \text{val}(f)$. This contradicts the maximality of f on G'!