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DP: Single Source Shortest Paths, The Bellman-Ford Algorithm

Consider the following graph G:
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Suppose we want to compute the shortest st path in G. Running Dijkstra’s algorithm on G computes the
following values: d[A] = 3, d[B] = 4, d[t] = 5, where in fact the shortest distance to A from s has length 1
and the shortest st path has length 4 and not 5.

As we discussed in class, the problem here is that Dijkstra’s algorithm makes the assumption that the weights
are always positive! And so when a vertex is processed (i.e. removed from the priority queue), we assume
that its weight will never change. Which is the case if a graph has no negative edge weights. So how do we
solve the shortest path problem if we have a graph with negative weights on the edges?

Notice first that if G has a cycle whose total weight is negative, then the shortest path problem does not
make sense anymore, since every walk around the cycle will reduce the total length of a path and repeated
walks will keep decreasing the length of the path over and over again. So we rephrase the previous question
to how to compute the shortest path problem on a graph with negative edge weights but no negative cycles.
Let’s formally define our problem:

The Single Source Shortest Path:
Input: A directed edge-weighted graph G(V,E,w) where w : E → R and G has no negative cycles. A start
vertex s.
Output: All su shortest paths for u ∈ V .

Notice that we need a directed graph, since otherwise an edge with negative weight is a “cycle” on its
own in an undirected graph. How do we tackle this problem? Let’s look at how Dijkstra’s algorithm
updates the distances. Suppose v is a vertex with sv distance d[v]. Suppose the neighbourhood of v is
N [v] = {u1, u2, . . . , uk}, and let d[u1], d[u2], . . . , d[uk] denote the respective shortest distances from s to
u1, u2, . . . , uk. Then the shortest sv path would be the path that minimizes d[ui] +w(ui, v). We can rewrite
this as:

d[u] = min
1≤i≤k

{d[ui] + w(ui, v)}

When we find the right ui that minimizes the distance, we relax d[v]. Relaxation across an edge (u, v) is
the process of assigning a cheaper distance to a vertex v by using a shortest su path and the edge (u, v):
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Relax(u,v)
If d[v] > d[u] + w(u, v):
d[v] = d[u] + w(u, v)

The problem with he example above is that A was processed before B, so when we relax across the edge
(B,A), A was already removed from the priority queue and thus d[A] does not get updated. The question is
whether we can find a way to not remove A from the priority queue until we are sure no more updates will
decrease its shortest distance from s.

Notice that if we compute the shortest d[v] for a given vertex v, then no matter how many relaxations we
perform, d[v] will never decrease (since we have the shortest path)! So here’s an ugly algorithm:

Algorithm 1 Meh..

1: Set d[s] = 0 and d[v] =∞ for all v 6= s.
2: for i = 1 . . . to some k do
3: Relax every edge in the graph.
4: end for

The idea is to relax every edge over and over again and hopefully, we’ll eventually optimally compute d[u]
for some vertex u and then use d[u] to compute the rest of the values. We just don’t know how many of
these relaxation rounds we need to perform, but it must be some constant k if G has no negative cycles! So
what’s k? Let’s build some intuition.

Suppose the path Psv = {s = w0, w1, . . . , wx−1, wx = v} is an optimal shortest sv path in G. To get to this
conclusion (that Psv is optimal), we would have had to relax over the edge (s, w1), then (w1, w2),. . . , then
(wx−1, wx = v). In fact, since the algorithm above relaxes all the edges in G, it is then possible that we have
relaxed other sv paths Qsv = {s, u1, . . . , ut, v} that are not shortest sv paths. But the for optimal path
Psv, we had to relax across all its edges. So if this idea makes sense, we are formally claiming the following:

Claim: Consider two vertices s, v ∈ V , s 6= v, and let Psv be a shortest path connecting s and v with the
smallest number of edges Psv = {s = w0, w1, . . . , wx−1, wx = v}. Then after x relaxations (i.e. the length of
Psv), d[v] is optimal.

Proof. We prove the claim by induction on x. If x = 1, then the shortest sv path is the edge (s, v). Therefore
after one round of relaxation, d[v] is minimized since we relax across the edge (s, v). The base case holds.
Suppose the claim holds for all j < x.

Consider Psv with x edges. Let Psv = {s = w0, w1, w2, . . . , wx−1, wx = v} and consider the distances d[wi]
after x − 1 rounds of relaxation. By induction hypothesis, d[s] and d[wi] for i ∈ [x − 1] are optimal. Now
we just perform one more relaxation round, and the edge (wx−1, wx = v) will be relaxed. Since d[wx−1] is
minimal (i.e. optimal), relaxing over (wx−1, v) will also be minimal since Psv is a shortest sv path.

Tada! But we’re not done yet. We said earlier that for some fixed k, we will eventually have optimal
distances. And in the claim above, we say that for x relaxation rounds we will also have optimal distances.
So what’s k and what’s x? Well, if we set k to be x, then for this specific Psv path, we are guaranteed an
optimal solution. What about other paths? We know for sure that any path from s to any vertex in G will
have at most n− 1 vertices (i.e. this path contains all of V ). Suppose Psv has n− 1 edges, then we would
visit all of V \v during relaxation rounds, before we get to v. So we would optimally relax all the paths Psy

for y = v before we get to v, and thus optimally compute all d[y]’s. And by the claim above, we would also
optimally compute d[v]. Therefore we need at most n− 1 relaxation rounds in order to compute d[·] for all
the vertices in G. So the algorithm now looks like:
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Algorithm 2 The Bellman-Ford Algorithm

1: Set d[s] = 0 and d[v] =∞ for all v 6= s.
2: for i = 1 . . . n− 1 do
3: for every edge (u, v) in G do
4: Relax(u, v)
5: end for
6: end for

This algorithm is known as the Bellman-Ford Algorithm. It is easy to see that it takes O(mn) time.
Everything we have done so far is with respect to graphs with no negative cycles, can you modify or exploit
this algorithm to test if G has a negative cycle? And if there is such a cycle, how would you find it?

Notice how this algorithm has a different flavour than all algorithms we’ve seen so far. Recall greedy
algorithms are myopic: At every iteration we make a decision that is best for the moment. In Bellman
Ford, we actually relax all the edges at every iteration, hoping to build short sub-paths as we go along,
and eventually get all shortest paths. This algorithm paradigm is known as Dynamic Programming,
instead of being myopic at every step, we try to solve the same problem on a smaller instance (in this case,
computing optimal sub-paths), and eventually combine these sub-solutions to get a final optimal solution.
We will formalize this idea in the next lecture.


