
CSC 373 - Algorithm Design, Analysis, and Complexity Summer 2016

Lalla Mouatadid

DP: All Pairs Shortest Paths, The Floyd-Warshall Algorithm

So far, we’ve covered Dijkstra’s Algorithm, which solves the (s, t) shortest path problem (you’re given a
specific source and a terminal). We also covered the Bellman-Ford Algorithm which solves the single source
shortest paths (you’re given a specific starting point s). It is thus natural to ask whether there is a simple
algorithm that solves the all pairs shortest paths; that is, the shortest path between any two arbitrary ver-
tices in the graph. We formally define the following problem:

All Pairs Shortest Paths:
Input: An edge-weighted graph G(V,E,w) where w : E → R
Output: The length of the shortest path from u to v for any u, v ∈ V .

A natural way to approach this problem is to just use the algorithms we have with different vertices u, v as
sources and terminals. For instance, we could use Dijkstra’s Algorithm starting with s = v for every v ∈ V .
Since Dijkstra’s Algorithm runs in O(m + n log n), our algorithm would take O(nm + n2 log n), but then -
as we saw for Bellman-Fords- we need to assume that out graph contains no edges with negative weights.

On the other hand, if we use Bellman-Ford Algorithm, the total runtime would be O(n2m). And if G is a
dense graph (i.e. |E| is Ω(n2)), then our algorithm would take O(n4), which is ..hmm.. inefficient. Especially
if we think about how many times a u, v path is computed.

Consider for instance a graph G(V,E) where V = {v1, v2, v3, v4}. If we run one of the algorithms above
starting with v1, the paths Pv1v2 , Pv1v3 , Pv1v4 , Pv1v5 would be compute more than once. That’s a total of
O(n) extra paths we don’t need to compute..

Our goal is thus to beat the O(n4) runtime (using DP hopefully :) .

Before attacking the problem, let’s define some notation that we’ll use later:

We use Pab to denote the path P between vertices a and b, and we use V (Pab) to denote the set of vertices
on P other than a and b

V (Pab) = {v is in the path Pab|v 6= a and v 6= b}

Given a set S ⊆ V , we say that Pab is restricted to S if V (Pab) ⊆ S. In other words, the elements of the
set S are the only vertices allowed to appear on Pab.

Okay, so how do we break this problem down to sub-problem.

We want the shortest path between any two vertices. So if we restrict our focus to one pair of vertices i, j,
we seek the shortest path Pij between these two vertices. This path Pij can contain any vertex v ∈ V . In
other words, Pij is restricted to S where S = V . We ask the question of whether Pij , the shortest i, j path,
can be restricted to a just subset of V . That is, can we construct Pij from a small subset V (Pij) of V ?

Let’s formalize this idea. We use an array M [i, j, k] to denote the length of the shortest path Pij that uses
the first k vertices. Ah! When we say first, we must have some sort of ordering imposed on the vertices.
Well in this case, we don’t care what vertices we will pick, since we will try all of them. So we sort the
vertices in some arbitrary order V = {v1, v2, ..., vn}, where i will refer to vertex vi for notational simplicity.

1

2

Okay nice! Now we have this ordering, so M [i, j, k] is just:

M [i, j, k] = The length of the shortest Pij path restricted to {1, 2, ..., k}

What’s the base case? If we don’t consider any set of vertices, then M [i, j, 0] is just the weight of the edge
(i, j) so M [i, j, 0] = wij .

Now we need a way to recursively define M [i, j, k]. Since we have this ordering {v1, v2, ..., vk−1, vk, vk+1, ..., vn}
on V , we can just check at every step whether the kth vertex contributes to the construction of a shortest
Pij or not. Therefore it suffices to check whether k appears in Pij . If it doesn’t, then we conclude that:

M [i, j, k] = M [i, j, k − 1]

And if k appears in Pij , then our path looks something like: Pij = vi · ...vk... · vj . What do we know about
the vertices between vi and vj? What’s V (Pij)? Well, V (Pij) must be drawn from the set {1, 2, ..., k},
(why?). So if V (Pij) ⊆ {1, 2, ..., k}, what can we say about the subpaths Pik and Pkj? They’re both subsets
of {1, 2, ..., k − 1} ! So in the case of k being an element on Pij , we have:

M [i, j, k] = M [i, k, k − 1] + M [k, j, k − 1]

That is, the shortest path from i to j is the just the sum of the shortest paths from i to k and k to j. Since
we’re trying to minimize the total length of Pij , we take the min of both cases, so:

M [i, j, k] = min{M [i, j, k − 1],M [i, k, k − 1] + M [k, j, k − 1]}

Since we’re trying all k up to n vertices, To prove the optimality of the algorithm, it suffices to show that
M [i, j, k] is indeed a minimum length of Pij .

Let’s first go through an example to illustrate how the algorithm works. The first table is our base case (i.e.
k = 0, T [i, j, 0] = wij). The remaining tables compute both M [i, j, k − 1] and M [i, k, k − 1] + M [k, j, k − 1]
for k ∈ [4] and choose the best (min) value. Suppose the arbitrary ordering we fix is a, b, c, d = v1, v2, v3, v4
respectively:

a

b

c

d

3344

−2

11

k=0 a b c d
a - 4 -2 ∞
b 4 - 3 ∞
c ∞ 3 - 1
d ∞ ∞ 1 -

k=1 a b c d
a - 4 -2 ∞
b 4 - 2 ∞
c ∞ 3 - 1
d ∞ ∞ 1 -

k=2 a b c d
a - 4 -2 ∞
b 4 - 2 ∞
c 7 3 - 1
d ∞ ∞ 1 -

k=3 a b c d
a - 1 -2 -1
b 4 - 2 3
c 7 3 - 1
d 8 4 1 -

k=4 a b c d
a - 1 -2 -1
b 4 - 2 3
c 7 3 - 1
d 8 4 1 -

3

This algorithm is known as the Floyd-Warshall algorithm, which runs in O(n3) time1.

Algorithm 1 All Pairs Shortest Path

1: for 1 ≤ i, j,≤ n do
2: M [i, j, 0] = wij

3: end for
4: for k = 1 ... n do
5: for i = 1 ... n do
6: for j = 1 ... n do
7: M [i, j, k] = min{M [i, j, k − 1],M [i, k, k − 1] + M [k, j, k − 1]}
8: end for
9: end for

10: end for

Proof of optimality:

Proof. For the base case, we’ve already discussed how M [i, j, 0] is just the weight of the edge (i, j). So
M [i, j, 0] = wij . Suppose that M [i, j, l] is optimal for all l < k and consider the case where l = k.

Let P̃ij denote a shortest (optimal) i, j path restricted to {1, 2, ..., k}. If P̃ij does not contain k, then the

length of P̃ij is the same as the length of the shortest i, j path restricted to {1, 2, ..., k − 1}, and so by

induction hypothesis w(P̃ij) = M [i, j, k − 1]2

If P̃ij does contain k, then P̃ij is the concatenation of two paths P̃ik and P̃kj from i to k and k to j respectively.

Since k appears on both P̃ik and P̃kj , all the vertices of P̃ik and P̃kj other than i, j and k must be drawn

from the set {1, 2, ..., k − 1}. Meaning P̃ik is an i, k path restricted to {1, 2, ..., k − 1} and P̃kj is a k, j path

restricted to {1, 2, ..., k − 1}. Notice that both P̃ik and P̃kj are optimal, since otherwise we contradict the

optimality of P̃ij . By induction hypothesis, w(P̃ik) = M [i, k, k − 1] and w(P̃kj) = M [k, j, k − 1], therefore

w(P̃ij) = w(P̃ik) + w(P̃kj) = M [i, k, k − 1] + M [k, j, k − 1].

Since our recursive definition considers both cases and picks the minimum, it follows that M [i, j, k] is optimal.

1and beats the O(n4) :3
2I’m abusing notation here and using w(P̃ij) to denote the weight (i.e. the length) of the shortest i, j path.

