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Abstract
We investigate the feasibility of reconstructing an

arbitrarily-shaped specular scene (refractive or mirror-like)
from one or more viewpoints. By reducing shape recovery
to the problem of reconstructing individual 3D light paths
that cross the image plane, we obtain three key results.
First, we show how to compute the depth map of a specu-
lar scene from a single viewpoint, when the scene redirects
incoming light just once. Second, for scenes where incom-
ing light undergoes two refractions or reflections, we show
that three viewpoints are sufficient to enable reconstruction
in the general case. Third, we show that it is impossible to
reconstruct individual light paths when light is redirected
more than twice. Our analysis assumes that, for every point
on the image plane, we know at least one 3D point on its
light path. This leads directly to reconstruction algorithms
that rely on an “environment matting” procedure to estab-
lish pixel-to-point correspondences along a light path. Pre-
liminary reconstruction results for a variety of scenes (mir-
ror, glass, etc) are also presented.

1. Introduction

The reconstruction of general specular scenes, either
refractive or mirror-like, is one of the few remaining
open problems in visual reconstruction. Examples include
scenes that contain glass objects, mirrors, or liquids, where
refraction and specular reflection dominate the image for-
mation process. Such scenes cannot be reconstructed by
laser scanners or by 3D reconstruction algorithms designed
for objects that scatter incident light (e.g., [1–3]). Recon-
structing such scenes, on the other hand, could have impli-
cations in many disciplines, including graphics [4, 5], op-
tics [6, 7], 3-D scanning [8, 9], and fluid modeling [10].

Specular objects do not have an “appearance” of their
own—they simply distort the appearance of other objects
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Figure 1. Viewing a known reference point indirectly via (a)
an opaque specular scene (a mirror) and (b) a transparent
specular scene (a volume of water).

nearby, creating an indirect view of the original objects.
Unlike perspective images, where 3D points project along
straight lines, indirect views are created by light that travels
along a piecewise-linear light path (Figure 1). The com-
plexity of this projection process and the difficulty of in-
verting it has brought about new image-based techniques,
such as environment matting [4, 5, 11], that side-step 3D
reconstruction altogether. Instead of computing shape, they
compute the shape’s effect on appearance—all they recover
is a function that maps points on a pattern placed near the
scene to pixels in the pattern’s distorted, indirect view.

In this paper, we investigate the reconstruction of such
scenes with an approach that seeks to invert the indirect pro-
jection process. Despite the problem’s apparent intractabil-
ity in the general case, it is possible to characterize the class
of reconstructible scenes and to develop simple reconstruc-
tion algorithms for some important cases. In particular, our
work considers three questions:

• suppose we are given a function that maps each point
in the image to a 3D “reference point” that indirectly
projects to it; can we recover the point’s light path?

• if so, under what conditions?
• how do we design reconstruction algorithms that do

not impose any a priori constraints on the shape of
the unknown specular scene?



Little is known about how to address these questions in
the general case, although specialized reconstruction algo-
rithms for a few cases have been developed. The earliest
algorithms come from multi-media photogrammetry [12,
13], where the scene is assumed to have a known paramet-
ric form. These approaches solve a generalized structure-
from-motion problem that takes into account refractions
and reflections caused by parametric surfaces with a few
known degrees of freedom (e.g., underwater objects viewed
from above a planar sea surface). An algorithm along these
lines was recently proposed by Ben Ezra and Nayar [14] for
reconstructing glass objects modeled as super-ellipsoids.
Knowledge of a scene’s low-order parametric form implies
that these techniques cannot be used for reconstructing ob-
jects with fine detail or with a complicated, unknown shape.

Most computer vision research on the topic has followed
a “shape-from-distortion” approach for reconstructing ei-
ther mirrors [9, 15] or liquids [16–19]. In this approach, 3D
shape is recovered by analyzing the distortion of a known
pattern placed near the specular surface. Unfortunately it
is impossible, in general, to reconstruct the 3D shape of
an unknown specular scene from just one image. This has
prompted a variety of assumptions, including approximate
planarity [17–20], surface smoothness [15], integrability
[9], and special optics [10, 16, 21]. These approaches are
restricted to the simplest forms of indirect viewing, where
light bounces at most once before reaching the camera (e.g.,
by reflecting off a mirror or refracting once through the
air-water boundary). Moreover, research on reconstruct-
ing glass objects has relied on either a silhouette-based ap-
proach [4], where an object’s specular properties are not ex-
ploited for reconstruction, or on analyzing the polarization
of light specularly reflected from their surface [22]. Unfor-
tunately, silhouette-based approaches are limited to recov-
ering a visual hull approximation and polarization-based
analysis is difficult when transmission, rather than specu-
lar reflection, dominates image formation.

Our goal is to develop a general framework for analyzing
specular scenes that does not impose a priori assumptions
on the shape of their surfaces or the nature of their media
(e.g., opaque or transparent). To achieve this, we formulate
the reconstruction of individual light paths as a geometric
constraint satisfaction problem that generalizes the familiar
notion of triangulation to the case of indirect projection.

Our approach can be thought of as complementing two
lines of recent work. Research on environment matting
and generalized imaging models [5, 23, 24] represents an
arrangement of cameras, mirrors and lenses as an abstract
function that maps 3D points or 3D rays to points on the im-
age plane. These techniques focus on computing this func-
tion and treat the arrangement itself as an unknown “black
box.” In contrast, here we assume that this function is

known and study the problem of reconstructing the arrange-
ment. Work on specular stereo [25–28] relies on a two-
camera configuration or a moving observer to reconstruct a
mirror-like object. These algorithms solve the light path re-
construction problem for one specific case; our framework
leads to several generalizations, including a stronger two-
view result [29] that enables reconstruction of a refractive
scene even when its refractive index is unknown.

On the theoretical side, our work has five key contri-
butions. First, we provide a unified analysis of refractive
and mirror-like scenes, leading to algorithms that work for
both problems. Second, we characterize the set of recon-
structible scenes in a way that depends only on the num-
ber of vertices along a light path. As such, our results ap-
ply to any specific scene geometry that produces paths of
a given length. Third, we identify a very simple algorithm
for computing the depth map of a mirror surface from one
viewpoint. The algorithm relies on knowledge of a function
that maps each image point to two known reference points
along its light path and places no restrictions on shape, ex-
cept that light must bounce exactly once before reaching
the camera. Fourth, we establish the most general class of
scenes that can be reconstructed using an efficient, stereo-
like algorithm: these are scenes where light bounces twice
before reaching the camera. To our knowledge, this prob-
lem, which requires three viewpoints to solve it, has not
been previously analyzed. Fifth, we show that, while effi-
cient algorithms may not exist for scenes with light paths
of length K ≥ 3, there is enough information in 3(K − 1)
viewpoints to reduce shape ambiguities to a discrete set.

While our emphasis here is on the underlying theory,
we present preliminary results on real specular scenes, both
refractive and mirror-like. These results have several im-
plications. First, they show that it is possible to recon-
struct mirror surfaces using a technique whose accuracy is
bounded by the calibration accuracy of a single stationary
camera (which can be very high by using well-known tech-
niques [30]). Second, it is possible to reconstruct each point
on a specular 3D scene (mirror, liquid, glass) independently
of all other points. This allows reconstruction of scenes
with fine surface detail and/or discontinuities. Third, it is
possible to compute a separate depth and a separate sur-
face normal for each surface point [3]; this is unlike typ-
ical stereo or laser-scanning techniques (which compute a
point-set that must be differentiated to compute normals) or
photometric stereo techniques (which compute an orienta-
tion map that must be integrated to obtain a surface). As
such, our algorithms yield a richer 3D dataset for inferring
an object’s unknown surface.
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Figure 2. An example light path. The dark gray region de-
notes a mirror-like object and the light gray region a trans-
parent object. Here, the light path from p intersects three
surfaces before reaching point q on the image plane, and
therefore has three vertices, v1,v2 and v3, and four rays.
In light-path triangulation, the coordinates of c,q and p are
known and the goal is to determine the coordinates and nor-
mals of the vertices. By convention, we order vertices and
rays along a path according to the direction of light travel.

2. Light-Path Triangulation

Perspective projection requires that every 3D point
projects to an image along a straight line. When the scene
is composed of refractive or mirror-like objects, this linear
projection model is not valid anymore. Here we extend this
model by studying indirect projections of 3D points. Infor-
mally, indirect projection occurs anytime a point is viewed
indirectly, via one or more specular surfaces.

Consider a scene that is viewed from one or more known
viewpoints and contains one or more objects of unknown
shape. We assume that each object is a volume composed of
a homogeneous medium (opaque or transparent) and whose
surface is smooth, i.e., it does not contain surface irregular-
ities that scatter the incident light. In this case, the propa-
gation of light through the scene is characterized by three
basic processes [31, 32]—specular reflection at an object’s
surface, specular transmission (i.e., refraction) at the sur-
face of a transparent object, and linear propagation within
an object’s interior and through empty space.

Given an arbitrary 3D point p, a known viewpoint c,
and a known image plane, the point’s projection is deter-
mined by the 3D path(s) that light would trace in order to
reach that viewpoint (Figure 2). We use the term light path
to refer to such a path. If a light path exists, it will be a
piecewise-linear curve between p and c whose vertices, if
any, will always lie on the surface of some object in the
scene. The number of vertices along a path is therefore
equal to the number of surfaces it intersects. In general,
there may be more than one light pathconnecting a 3D point
to a viewpoint, or there may be none at all.1 We say that
point q is an indirect projection of p if there is a light path
between p and c that crosses the image plane at q.

1See [33] for a camera-mirror arrangement that forces scene points to
indirectly project twice onto the image plane.
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Figure 3. Basic geometry of 〈N, K, M〉-triangulation.

2.1. The Light-Path Triangulation Problem

Suppose the specular scene is viewed from N known
viewpoints. Furthermore, suppose that we are given a func-
tion which tells us, for every point on the associated im-
age planes, the 3D coordinates of M “reference points” that
project to that point indirectly (Figure 3). Now, suppose we
choose a point q on one of the image planes and assign it a
“depth” value, i.e., a hypothetical distance to the last vertex
along its light path. Under what conditions can we decide
unambiguously the correctness of this depth? Our goal is
to answer this question in the general case, i.e., for smooth
scenes of arbitrary shape, N ≥ 1 viewpoints, M ≥ 1
known reference points, and light paths with K ≥ 1 ver-
tices. To simplify our exposition, we assume without loss
of generality that all light paths have the same number, K,
of vertices and that this number is known.

When we assign a depth d to a point on the image plane,
we define the 3D position of one specular point, vd, along
the ray through the selected image point. If that depth is
correct, vd would redirect light toward all N viewpoints
in a way that is consistent with the laws of refraction and
reflection, as well as the known function that maps image
points to reference points. Specifically, light would travel
along N distinct light paths whose last vertex is vd (Fig-
ure 3). These paths define a graph, that we call the light net-
work for depth d. The network connects the N perspective
projections of vd to their corresponding reference points.

Definition 1 (Consistent Light Network) The light net-
work for depth d is consistent if we can assign a normal
to vd and 3D coordinates and normals to its other vertices
so that the resulting light paths are consistent with the laws
of reflection and refraction.

Definition 2 (〈N,K,M〉-Triangulation) Assigns a depth
d to a given image point so that the resulting light network
is consistent.

Definition 3 (Tractability) A triangulation problem is
tractable for a given image point if its solution space is a



0-dimensional manifold, i.e., it is a collection of isolated
depth values.

Intuitively, the minimum M and N needed to make tri-
angulation tractable for a given path length K indicate the
problem’s intrinsic difficulty. We use the term light-path
triangulation to refer to the entire family of 〈N,K,M〉-
triangulation problems.

Light-path triangulation differs from traditional stereo
triangulation in three important ways. First, unlike stereo
where at least two viewpoints are needed for reconstruction,
tractable light-path triangulation is possible even with just
one viewpoint (Section 3.1). Second, unlike stereo where
a single point is reconstructed from a pair of intersecting
3D rays, here we must reconstruct the 3D coordinates of all
N(K − 1) + 1 points in a light network, to guarantee con-
sistency. Third, while stereo triangulation does not provide
surface normal information, light-path triangulation recon-
structs normals as well. Hence, even though it is harder to
solve, light-path triangulation yields richer scene descrip-
tions than stereo both in terms of density (i.e., number of
reconstructed points) and content (i.e., points and normals).

2.2. Basic Properties of a Light Path

In principle, it is always possible to express a light-path
triangulation problem as a system of non-linear equations
that govern light propagation through the scene. Rather
than study the analytical form of those equations, which
can be quite complex, we take a geometric approach. In
particular, we express 〈N,K,M〉-triangulation as a geo-
metric constraint satisfaction problem whose solution space
depends on just three properties (Figure 4):

• Planarity Property: Light propagation at a vertex always
occurs on a single plane that contains the surface normal.
That is, the vectors n,din and dout are always coplanar.

• Deflection Property: If we know the refractive index and
know any two of vectors n,din,dout, we can determine
uniquely the third vector. Moreover, this relation is a local
diffeomorphism.2

• Double-Correspondence Property: If we are given two
distinct reference points that project indirectly to the same
image point, the first ray on the image point’s light path
must be the line through the two reference points.

Note that all three properties hold for reflected and for
refracted light. As a result, our analysis does not distin-
guish between these two different types of light propaga-
tion, making our theoretical results applicable to scenes
with mirror-like or refractive objects, or both.

While not previously used for reconstruction, the
Double-Correspondence Property has been noted in the

2Recall that a smooth map, f , between two manifolds is a local diffeo-
morphism at a point p if its derivative, dfp, is 1-1 and onto [35].
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Figure 4. Visualizing the three properties of a light path.
Vectors n,din,dout are always coplanar. In specular re-
flection, shown above, the angle between n and din is al-
ways equal to that of n and dout. In specular transmission,
Snell’s law states that the ratio of sines of these angles is
equal to the relative index of refraction [31]. Hence, know-
ing one angle allows us to determine the other in both cases.

context of environment matting [5] and camera calibra-
tion [23]. Here, it highlights a fundamental difference be-
tween light-path triangulations where two or more refer-
ence points are known per image point (M ≥ 2) versus just
one (M = 1): two or more reference points provide com-
plete information about the 3D ray along which light prop-
agates before it enters the scene, which is impossible to get
from just one reference point. This distinction is especially
important in interpreting the results of our analysis.

3. Tractable Light-Path Triangulations

Our main theoretical result is an enumeration of all
tractable light-path triangulation problems (Figure 5):

Theorem 1 The only tractable 〈N,K,M〉-triangulations
are shown in the tables below:

One reference point (M = 1)
K = 1 K = 2 K ≥ 3

N = 1
N ≥ 2 � ×

Two or more reference points (M ≥ 2)
K = 1 K = 2 K ≥ 3

N = 1 � ×
N = 2 � ×
N = 3 � × �
N ≥ 4 � × � ×
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Figure 5. The basic tractable light-path triangulation problems. Similarly-colored rays are on the same light path. The unknown
vertices and normals are indicated along each path. (a) 〈1, 1, 2〉-triangulation. (b) 〈2, 1, 1〉-triangulation. (c) 〈3, 2, 2〉-triangulation.

where ‘�’ marks tractable problems where the scene is ei-
ther known to be a mirror or its refractive index is known;
‘×’ marks tractable problems where the refractive index (or
whether it is a mirror) is unknown; and blanks correspond
to intractable cases.

We obtain this result through a case-by-case analysis in
which the three properties of Section 2.2 are applied to the
above cases. Proofs for the cases of 〈1, 1, 2〉-triangulation
and 〈3, 2, 2〉-triangulation are given in Sections 3.1 and 3.2,
respectively. Each of these proofs is constructive and leads
directly to a reconstruction algorithm. See [29] for a de-
tailed investigation of a third case, 〈2, 1, 1〉-triangulation,
which includes a proof, algorithmic details, and experimen-
tal results on reconstructing dynamic surfaces of liquids.

Theorem 1 can be interpreted both as a negative and as
a positive result. On the negative side, it tells us that light-
path triangulation quickly becomes intractable for scenes
where a light path intersects many surfaces. Moreover, our
capabilities are severely limited when M = 1, i.e., when
one known reference point projects to each image point.

On the positive side, the theorem identifies three non-
trivial cases that are tractable: (1) reconstructing a mir-
ror from just one viewpoint; (2) reconstructing a refractive
surface with an unknown refractive index from two view-
points; and (3) using three viewpoints to reconstruct scenes
that refract or reflect light twice.

3.1. Mirrors: One Viewpoint, Two Reference
Points

Proposition 1 〈1, 1, 2〉-triangulation is tractable.

Proof: Let c be a known viewpoint and let q be a point
on the (known) image plane whose light path has exactly
one vertex v (Figures 4 and 5a). Moreover, suppose that
we know two distinct reference points, p1,p2, that indi-
rectly project to q. Finally, suppose that we do not know
the scene’s refractive index or whether it is a mirror.

The proof follows trivially from that fact that under these
conditions, both rays on the light path of q are known.
Specifically, the last ray is defined by the known points
c and q. Moreover, the Double-Correspondence Property
tells us that the first ray on its path passes through p1 and
p2. These two rays will intersect at exactly one point,
which must correspond to the location of vertex v. The
unique depth solution is given by

d =
‖(p1 − c) × din‖
‖dout × din‖ (1)

where din and dout are the unit vectors in the direction of
the path’s two rays.3 QED

While the algorithm implied by the proof of Proposi-
tion 1 is very simple, we are not aware of prior work that
uses it for reconstructing specular scenes.4

3.2. Glass: Three Viewpoints, Two Reference
Points

Proposition 2 〈3, 2, 2〉-triangulation is tractable for almost
all points on a generic surface with known refractive index.

Proof: The proof uses two basic intuitions: (1) the set of
all depth and normal assignments consistent with a sin-
gle viewpoint forms a 2D “constraint surface;” and (2) the
common intersection of three such surfaces (i.e., one for
each viewpoint) will in general be a set of isolated points.
In the following, we develop a constructive proof that for-
malizes these intuitions. For concreteness, assume that the

3Note that if we also know that q’s light path is caused by specular
reflection, the normal at q is uniquely determined—it is simply the unit
vector in the direction of the bisector, (din + dout)/2. When this infor-
mation is not available, one additional viewpoint is sufficient to determine
both the normal and the scene’s specular properties (i.e., whether it is re-
flective or refractive, and the refractive index).

4Note that while the Double-Correspondence Property was used in [23]
to recover the caustic of a mirror-based imaging system, this caustic does
not coincide with the mirror’s surface and, hence, their technique is not
equivalent to 〈1, 1, 2〉-triangulation.



“true” light path of every image point contains two refrac-
tive vertices (Figure 5c). Paths where one or both of their
vertices are reflective can be treated in an identical way.

To prove the proposition we use two facts. First, since
M = 2, we know two rays on the light path of every im-
age point (Figure 6a). Second, for scenes bounded by a
generic (i.e., non-degenerate) surface [34], the light path
of almost every pixel, in a measure-theoretic sense, will be
non-planar, i.e., the first and last ray of a light path will not
lie on the same plane, and therefore these rays will not in-
tersect. This is because the planarity of a light path is not a
stable [35] property—almost any infinitesimal surface de-
formation, change in viewpoint or change in the position of
pixel q will invalidate it.

Now let q be an arbitrary image point, let l1, l2, l3 be
the first, middle, and last ray along its light path, respec-
tively, and let d be a hypothetical depth value assigned to
q. We show that in general only isolated d-values can de-
fine a consistent light network.

Since l1 is the first ray on the light path of q, it con-
tains the first vertex of q’s path. Moreover, since this ray is
known, there is a one-degree-of-freedom ambiguity in the
position of this vertex. We can therefore parameterize its
position with a parameter δ ∈ (−∞,∞). For a given d,
each δ-value defines a unique position, vδ , for the path’s
first vertex and, consequently, a unique light path for q. In
that path, light initially propagates along l1, is refracted at
vδ and then at vd, and finally reaches q. From the Deflec-
tion Property, it follows that there is only one normal at vd

that can redirect light according to that path. Hence, it is
possible to map every pair (d, δ) to a normal, ndδ . More-
over, since l1 and l3 do not intersect in general, this map-
ping is a diffeomorphism for almost every q. Note that we
can compute ndδ for any d and δ because we know l1 and
l3.

Now let q′ be the perspective projection of point vd in
the second viewpoint, and let l′1 and l′3 be the first and last
ray on its light path, respectively (Figure 6b). Rays l′1 and
l′3 will also not intersect in general. Given a normal ndδ

and ray l′3, the Deflection Property tells us that there is a
unique ray, l′2, that (1) passes through vd and (2) causes
light propagating along l′2 to be refracted toward q′. This
ray is completely determined by vd, ndδ, the second view-
point, and the image point q′. In particular, there is no
geometric constraint between rays l′1 and l′2. It follows that
these rays will be in general position, i.e., they will not in-
tersect for an arbitrary choice of d and δ and will not form
a light path. Hence, such a choice does not produce a light
network for q.

For a given d, there is only an isolated set of δ-values
that cause rays l′1 and l′2 to intersect. To see this, note that
as δ varies over the interval (−∞,∞), ray l′2 traces a ruled
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Figure 6. (a)-(c) Path geometries in proof of Proposition 2.
(a) Light path of an image point q in the first viewpoint.
The arrow indicates the direction of incoming light. Rays l1
and l3 are known but l2 is not. The shaded plane is the plane
of rays l2 and l3 and always contains the surface normal,
ndδ . Generically, this plane will not contain ray l1. (b)
Light path of q′ in the second viewpoint, for a given value
of d and δ. Also shown, in yellow, is the path in (a). Rays
l′1 and l′3 are known. Ray l′2 is uniquely determined by
l′3 and ndδ . For arbitrary d and δ, the rays l′1 and l′2 will
not intersect. The dark-shaded plane is the plane of l′2 and
l′3. (c) Light path of q′′ in the third viewpoint. (d) Path
geometries in proof for Proposition 3.

surface whose shape has no relation to ray l′1. Since in gen-
eral a ray and a surface will only have isolated intersection
points [35], and since l′1 and l′2 intersect precisely at those
points, it follows that for every d there is only a discrete set,
∆d, of δ-values that produce a light path through q′.

Finally, consider the projection, q′′, of vd in the third
viewpoint (Figure 6c). For a given d, the normals that pro-
duce light paths for the first two viewpoints are given by
the set {ndδ | δ ∈ ∆d}. For every normal in this set there
is a unique ray, l′′2 , that passes through point vd and forces
light propagating along l′′2 to be refracted toward pixel q′′.
Since the set of normals is discrete, these rays form a dis-
crete family. Moreover, since this family of rays has no
relation to ray l′′1 and since rays in general position have no
common intersections, it follows that l′′1 and l′′2 will only
intersect for an isolated set of d-values. QED

Beyond showing that it is possible to reconstruct general



doubly-refracting and doubly-reflecting scenes, our proof
suggests a reconstruction algorithm: it tells us that we can
reconstruct all four vertices and normals in the light net-
work of a pixel q by conducting a 2D search in (d, δ)-space.
The search is for a pair (d, δ) that forces intersection both
of rays l′1, l

′
2 in Figure 6b and l′′1 , l′′2 in Figure 6c.

3.3. The Limits of Light-Path Triangulation

We now prove that Light-Path Triangulation cannot re-
construct general scenes that redirect light more than twice.

Proposition 3 〈N, 3, 2〉-triangulation is intractable.

Proof: It suffices to prove the proposition for the case where the
scene is refractive with a known refractive index and is viewed
from N > 1 viewpoints. Let d be a hypothetical depth value at
q, and let nd be an arbitrarily-chosen normal for vertex vd (Fig-
ure 6d). Given the projection q′ of vd in the i-th viewpoint, we
will assign coordinates and normals to all remaining vertices on its
light path in a way that is consistent with the laws of refraction.

We use the same terminology as in the proof of Proposition 2.
For a given d and nd, there is only one ray, l′3, that can refract
light toward image point q′ (Figure 6d). The second vertex, v, on
q′’s light path will lie on that ray. Choose an arbitrary location
on the ray for that vertex. To fully define a light path for q, we
now need to specify its first vertex. This vertex must lie on the
known ray l′1. As in the proof of Proposition 2, the 3D position,
vδ , of this vertex can be parameterized by a single parameter δ.
Choose an arbitrary value of δ to fix the location of that vertex as
well. Now, the Deflection Property tells us that there is a unique
normal that will redirect light from l′2 toward l′3 at v. Similarly,
there is a unique normal that will redirect light from l′1 toward l′2
at vδ . Hence, we have found an assignment of 3D coordinates
and normals for all path vertices that produces a light path for q′.
Since we were able to do this for an arbitrary value of the depth d,
the triangulation problem’s solution space is dense in �. QED

3.4. The Power of Global Shape Recovery

The fact that light-path triangulation is intractable for
scenes with long light paths does not necessarily mean that
reconstruction of such scenes is hopeless. Intuitively, light-
path triangulation operates at a completely local level—for
any two points on the same image plane, it attempts to re-
construct the associated light networks independently of
each other. So what if we had a procedure that reasoned
about multiple light networks simultaneously? Here we
briefly sketch a partial answer to this question: we show
that a sufficiently large collection of viewpoints does con-
tain enough information to reduce shape ambiguities to a
discrete set. Although this existence result does not point
to any algorithms, it does suggest that, with enough images,
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Figure 7. The space of solvable specular scene reconstruc-
tion problems. For values of N, K in the dark-colored
region (red), reconstruction is possible by 〈N, K, 2〉-
triangulation, according to Theorem 1. When N, K are in
the light-colored region (yellow), 〈N, K, 2〉-triangulation
is intractablebut reconstruction may still be possible using
a global approach, according to Proposition 4.

we can test with reasonable confidence the validity of a hy-
pothesized 3D scene model:

Proposition 4 Given an arrangement of viewpoints for
which there is a constant K such that (1) every scene point
is intersected by at least 3(K − 1) light paths of length
≤ K and (2) the first and last ray of all these paths is
known, the location of each scene point is constrained to
a 0-dimensional solution manifold.

Intuitively, Proposition 4 gives us a lower bound on the
number of viewpoints we need for shape verification: for
light paths of maximum length K, each scene point must
project indirectly to least 3(K − 1) viewpoints. We prove
this result inductively, using Proposition 2 both as the base
case and for proving the inductive step.

Proof sketch (by induction): The base case is covered by
Proposition 2. To show that it holds for K = k, we define a
partitioning of the scene into k “layers,” S1, . . . ,Sk, where
the i-th layer contains scene points that (1) participate as
the i-th vertex on at least one light path with known first
and last rays and length ≤ k, and (2) they never participate
as a lower-numbered vertex on such a path. The proof is
restricted to scenes where each of the Si is a smooth man-
ifold. Now assume that we know the 3D position and sur-
face normal of all points in Sk. This assumption uniquely
determines the second-to-last ray of all k-vertex light paths
with known first and last ray. We now apply the proposi-
tion with K = k − 1 to the scene defined by the first k − 1
layers, using 3(k − 2) of the 3(k − 1) light paths that cross
each point and have known first, last and second-to-last ray.
It follows that if Sk is known, each point on the remaining



layers is constrained to a 0-dimensional solution manifold.
We now use a proof similar to that of Proposition 2 to show
that the remaining three light paths that cross each point and
were not used in the inductive step, constrain the 3D posi-
tion of each point on layer Sk to a 0-dimensional manifold.
�

4. Experimental Results

We used a 720 × 484-pixel Sony DXC-9000 video
camera for image acquisition and a DELL LCD display
for displaying reference patterns. To calibrate the camera
with respect to the plane of the LCD display, we used the
Matlab Calibration Toolbox [30], and used an environment
matting procedure [5] to find the correspondence between
image pixels and pixels on the display. The display was
then translated by a known amount and the procedure was
repeated, giving us two known 3D reference points per
pixel.

Reconstructing mirrors by 〈1,1,2〉-triangulation We
used the arrangement in Figures 1a and Figure 5a. A key
feature of 〈1, 1, 2〉-triangulation is that reconstruction ac-
curacy largely depends on the accuracy of camera calibra-
tion, not on the shape of the object being reconstructed.
We therefore concentrated on evaluating the accuracy of
the depths and normals computed individually for each
pixel, with an object whose ground-truth shape was known
very accurately: a 130×230mm front-surface mirror with
1
4 -wavelength flatness. To determine the mirror’s plane,
we digitized several points on it with a FaroArm Gold
touch probe, whose single-point measurement accuracy is
±0.05mm, and then fit a plane through these points. The
mirror was placed about 1.5m away from the camera.

To compute the depth d at a pixel, we simply intersected
the first and last ray along its light path (see Eq. (1)). The
bisector of these rays gave us the surface normal. This
computation was done at each of 301082 pixels in the
image, giving us an equal number of 3D position and
normal measurements. No smoothing or post-processing
was applied. The RMS distance of the reconstructed
3D points from the ground-truth plane was 0.644mm,
equivalent to a single-point accuracy of roughly 99.96%
of the camera-to-object distance. To assess the accuracy
of reconstructed normals, we measured the angle between
each computed normal and the ground-truth normal; the
mean error was 0.182 degrees, showing that single-point
orientation measurements were also highly accurate. We
emphasize that these accuracies were obtained without
using any information about the scene’s shape and without
combining measurements from multiple pixels.

Reconstructing liquids by 〈2,1,1〉-triangulation

See [29] for details.

Reconstructing glass objects by 〈3,2,2〉-triangulation
We used the arrangement in Figure 8 and Figure 5c. Since
this triangulation requires three or more viewpoints, we
place objects on a turntable between the LCD and the cam-
era and compute the correspondence between image pixels
and pixels on the display for each object rotation.

One of our test objects, a diamond-shaped glass orna-
ment, is shown in Figure 8. The object’s many planar
facets, which produce complex light paths, its surface dis-
continuities, and its sharp, protruding tip make reconstruc-
tion especially challenging. We used five viewpoints, at
±20,±10 and 0-degree rotations. The object extended
about 4cm in depth, roughly 1m away from the camera.
To reconstruct it, we used all available views and solved
a 〈5, 2, 2〉-triangulation problem independently for every
pixel in the 0-degree viewpoint. For each such pixel, our
implementation performed a search in (d, δ)-space for a
pair of values that produce a valid light path for all view-
points (Section 3.2 and Figures 6a-c). These values were
then refined in a non-linear optimization stage. Since the
light network of a pixel contains six vertices, the algorithm
reconstructs six points and six normals per pixel—one on
the object’s front surface and seven more on the back (Fig-
ure 3). Importantly, since we use more viewpoints than
the minimum three required, the reconstruction is over-
constrained and allows us to estimate the object’s refractive
index, which was estimated to be 1.53.

Figure 8 shows reconstruction results for the object’s
front surface. The maps for the normals’ slant and tilt
angles suggest that the object’s surface orientation was
highly consistent across different pixels within a facet,
even though light paths for different pixels were recon-
structed completely independently, and no smoothing or
post-processing was applied. Because of this indepen-
dence, normals were reconstructed accurately even near
the diamond’s tip, where the surface is highly degenerate.
Also observe that, as a side-effect, we obtain an automatic
segmentation of the scene into smooth segments. This is
because image-to-LCD correspondences cannot be estab-
lished at the precise location of a normal discontinuity and,
hence, those pixels were not reconstructed. To further as-
sess the precision of the reconstruction we measured the
consistency of normals and depths within each planar facet.
These quantitative measurements are shown in the table of
Figure 8. They show that individually-reconstructed nor-
mals are consistent to within a few degrees, while depth
measurements, which seem to produce a noisier map, show
deviations on the order of 0.1 to 0.2% of the object-to-
camera distance. These results, which confirm our basic
theory, suggest that it is possible to recover detailed shape
information for refractive objects without any knowledge of
their shape, and despite the complexity of image formation.



Acquisition setup

object

LCD monitor

turntable

camera

Input viewpoint (−20◦) Input viewpoint (0◦) Input viewpoint (10◦)

Side view Normal slant map [−90◦, 90◦] Normal tilt map [−90◦, 90◦] Depth map [1026mm, 1066mm]

3D views of reconstructed surfels Facet labels

A

B C

D

E

FG

H

Facet label A B C D E F G H
Mean angle from average normal (deg) 3.48 3.35 1.68 4.85 5.62 2.78 6.33 4.44
RMS distance from best-fit plane (mm) 1.01 1.11 0.64 1.47 1.93 1.06 2.03 1.45

Figure 8. Acquisition setup: A linear translation stage moves the LCD in a forward/backward direction. During acquisition, the
LCD displays a black background with a single horizontal or vertical stripe (see supplementary video). Normal maps: Gray-scale
values correspond to the slant or tilt angle of each reconstructed normal. Depth map: Gray-scale values are mapped to the range
indicated (white=near, black=far). Surfel views: For each pixel, we render a shiny square patch centered on the reconstructed 3D
point and oriented along the reconstructed normal. Facet measurements: The average normal for each facet was computed by
averaging the reconstructed normal for all pixels in the facet’s footprint. The best-fit plane was computed by fitting a plane to the
reconstructed depths at those pixels using least squares.

5. Concluding Remarks
While our experimental results are promising, many

practical questions remain open. These include (1) how
to best compute correspondences between reference points
and pixels, (2) how to reconcile point and normal measure-
ments, and (3) how to find the optimal depth at a pixel. Fi-
nally, our theoretical analysis can be thought of as a “worst-
case” scenario for reconstruction, where no constraints are

placed on nearby scene points. Since real scenes exhibit
spatial coherence, it might be possible to incorporate this
constraint into an algorithm that remains tractable even for
scenes that refract light more than twice.
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