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Abstract

In this paper we consider the problem of recovering the
3D motion and shape of an arbitrarily-moving, arbitrarily-
shaped curve from multiple synchronized video streams ac-
quired from distinct and known points in space. By studying
the 3D motion and shape constraints provided by the input
video streams, we show that (1) shape and motion recov-
ery is equivalent to the problem of recovering the differen-
tial properties of the Spatio-Temporal Curve Manifold that
describes the curve’s trace in space-time, and (2) a local
analytical description of this manifold can be computed di-
rectly from the spatio-temporal volumes defined by the input
video streams. Our experimental results suggest that this
manifold-based approach to joint shape and motion estima-
tion yields shape estimates of higher accuracy that those
obtained from stereo alone, allows accurate recovery of 3D
curve motion, and provides significant robustness against
image noise and camera calibration errors.

1. Introduction

There has been considerable interest in recovering the
three-dimensional shape and motion of an unknown dy-
namic scene from sequences of images—e.g., work on opti-
cal flow [1], structure-from-motion [2], and 3D motion esti-
mation [3]. One common characteristic of these approaches
is the assumption that all images are acquired by a single
camera. Unfortunately, because the scene is viewed from
just a single viewpoint at a time, this assumption imposes
strong constraints on the types of motion that can be recov-
ered and on the scenes that can be analyzed. Existing work
has therefore used a variety of additional assumptions to
make 3D shape and motion estimation tractable (e.g., rigid
[2,4,5], articulated [6], parametric [7], or isometric motion
[8], known 3D shape [9], or known shape dynamics [3]).

In this paper we consider the problem of recovering the
3D shape and motion of a dynamic scene that is observed
simultaneously by multiple cameras. In particular, we focus
on the case where (1) the scene is composed of one or more
smooth 3D curves that are moving rigidly or non-rigidly in
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space, (2) the curves’ 3D shape and motion are completely
unknown, and (3) the curves are viewed simultaneously by
two or more synchronized cameras with known projection
matrices. To study this problem, we introduce the notion
of the Spatio-Temporal Curve Manifold, which is the trace
of a moving 3D curve in space-time. We show that com-
puting the shape and motion of an arbitrarily-moving 3D
curve from multiple views is equivalent to the problem of
recovering the local shape of this manifold at every point.
Furthermore, we provide an efficient algorithm for recover-
ing the manifold’s shape directly from the spatio-temporal
image volumes given as input. Our experimental results on
both simulated and real scenes suggest that our manifold-
based approach to joint shape and motion estimation yields
shape estimates of higher accuracy that those obtained from
stereo alone, leads to significant improvements in the accu-
racy of 3D motion measurements, and provides robustness
against noise and camera calibration errors.

Little is currently known about how to recover the shape
and motion of moving 3D curves in the multi-view case and
about the constraints and ambiguities that this problem em-
bodies. In a preliminary analysis, we showed that only two
out of three components of the 3D motion of a curve point
can be recovered from multi-view sequences, regardless of
the number of cameras observing the scene [10]. Here
we generalize that analysis by developing a differential-
geometric framework in which the Spatio-Temporal Curve
Manifold is used to capture implicitly all the shape and mo-
tion information about the scene that is recoverable from
a multi-view sequence. Importantly, because this manifold
can be estimated directly from the input images, the result-
ing algorithm does not rely on the accuracy of edge detec-
tion, linking, tangent estimation, and curve matching oper-
ations, which are sensitive to calibration errors and noise.

Our approach offers four key contributions over the ex-
isting state of the art. First, even though several systems
have been developed for acquiring and processing multi-
view sequences of dynamic scenes [11,12], existing re-
covery methods emphasize the mutual independence of the
scene information available at different time instants. Ap-
proaches have therefore focused on (1) recovering 3D shape
rather than motion, and (2) decomposing the 3D shape re-



covery problem for dynamic scenes into a collection of in-
dependent recovery problems, one for each instant in time.
Unlike these approaches, our analysis leads to algorithms
that recover 3D motion information from such sequences
and exploit their spatio-temporal coherence to improve 3D
shape estimates. Second, even though techniques for multi-
view motion estimation have been proposed recently (e.g.,
[13,14]), these techniques rely on the availability of an a
priori shape model to compute 3D motion. In contrast, our
work does not rely on the availability of shape or motion
models. Third, our work is specifically aimed at the analysis
of 3D curve motion and, hence, it is closely related to previ-
ous work on curve-based stereo in static scenes [15, 16] and
on recovering shape from a single sequence of projections
of a moving 3D curve [8,17-20]. Our analysis therefore
generalizes these approaches to the case where the scene
is dynamic, non-rigid, and simultaneously viewed by many
cameras. Fourth, the Spatio-Temporal Curve Manifold rep-
resents the set of all 3D shape and motion solutions that
are simultaneously consistent with the 2D shapes and im-
age motions observed at every camera viewpoint. As such,
our approach can be thought of as a novel application of the
“intersection of constraints” paradigm [21,22] to the multi-
view 3D shape and motion estimation problem.

2. The Spatio-Temporal Curve Manifold

Let v be a regular curve [23] undergoing an unknown,
smooth, and possibly non-rigid motion in space. We as-
sume that v is viewed simultaneously from /N > 2 distinct
viewpoints,0;,2=1,... , N, by perspective cameras whose
projection matrices are known. Our goal is to compute the
3D shape and motion of  from its time-varying projections
at the input viewpoints.

In particular, let (s, t) : I x (0,00) — 3 be the un-
known parameterization of -y that describes the 3D position
and motion of every point in . Given a time ty € (0, 00),
v(s,to) is the curve’s shape at ¢, (Figure la). Similarly,
the curve 7y(so, t) is the spatio-temporal trajectory of an in-
dividual point on . We define the velocity, v, of a point
P = (o0, to) to be equal to ~y;(so, to), where 7, is the par-
tial derivative of v with respect to ¢.

As the curve v moves and deforms, it can be thought of
as sweeping a surface in space. Mathematically, this surface
is described by a two-dimensional manifold [24], T, that is
embedded in space-time, i.e., R® x (0, 00). We use the term
Spatio-Temporal Curve Manifold to refer to this manifold;
it generalizes to 3D curves the notion of the spatio-temporal
surface, which has often been used to describe the temporal
trajectory of 2D curves in the image plane [4,8,25,26].

The parameterization describing +’s shape and motion
induces a parameterization of the manifold:

[:1x(0,00) = R x (0,00) (1)
[(s,t) = [v(s, 1) 1]. 2

normal plane
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Figure 1. 3D motion geometry for a point p on ~.

The partial derivatives, I's and I';, of this parameteriza-
tion define T (L), the tangent space of ' at p = [p to].
T3(T) is a plane embedded in space-time. Intuitively, it de-
scribes the curve’s orientation at p as well as the way in
which p’s position changes through time.

The manifold T' can always be expressed as the enve-
lope of its tangent spaces [27]. As a result, the local shape
of T" at p is completely described by T;(I") as well as the
way in which T (T") varies in p’s neighborhood. Here we
exploit this observation in two ways. First, we show that
the plane T;(I") captures all the information we can com-
pute about the 3D shape and motion of 7y at p from multiple
views. Second, we formulate the problem of reconstructing
the manifold I' as the problem of (1) computing its tangent
spaces directly from the image data, and (2) computing their
envelope. We make this approach precise in the next sec-
tion, where we relate the tangent space at p to the curve’s
local 3D shape and motion at p.

3. Differential Multi-View Constraints on
3D Shape & Motion

A basic step of our method for recovering 3D shape and
motion from a multi-view image sequence is to establish
a parameterization for the Spatio-Temporal Curve Mani-
fold that captures all the 3D shape and motion constraints
this sequence provides. When estimating this parameteri-
zation from images, the significance of this step becomes
two-fold. First, it ensures that all the 3D shape and mo-
tion constraints provided by the input views are captured in
the solution of the resulting estimation problem. Second, it
ensures that this solution depends only on those geometric
quantities of the curve’s shape and motion that can be esti-
mated from the input views. Both issues are important from
a practical standpoint— the simultaneous satisfaction of all
image constraints provides increased resistance to measure-
ment errors, and parameterizations that are free of ambigu-
ous quantities avoid instabilities in the estimation process.

More specifically, the velocity v of p can be decomposed
into two components, t and n, one along the curve’s tangent
and one on a plane that is normal to that tangent (Figure
1b). This decomposition leads to a parameterization of the
tangent space T3 (L) that is defined in terms of p and the
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Figure 2. (a) The t—n parameterization of T;(I"). (b)
The projected displacement of p is decomposed into two
orthogonal components, t; and fi;, along the tangent and
normal of the projected curve at p;, respectively. Only 1y
is recoverable from the curve’s time-varying projection [8].

two vectors ﬁ and n (Figure 2a):
Definition 1 (t—n Tangent Space Parameterization) The
tangent space T (T') can described by the orthogonal parameter-
ization

(A, p) =P+ At +pn, 3)

where \,u € R; p = [p to]; t = [t 0]; and i = [n 1].

Corollary 1 (Local Manifold Parameterization) A local pa-
rameterization of I can be derived from its first-order Taylor series
expansion around p = 11(0, 0):

(s, t) = I(s—so,t—to). )

A key property of the t-n parameterization is that p, H:_H ,

as well as n can be directly related to image measurements:
p and Hz_\l depend on the instantaneous projection of the
curve at the input viewpoints, while n depends on image
velocities. We consider the geometry of these relationships
below and show that these are the only relationships that can
be recovered from images. In the following we assume that
the image projections of p and t along viewpoint o; are p;
and t;, respectively, and that the normal image velocity at
P is n; (Figure 2b).

3.1. Multi-View Constraints on 3D Shape

It is well known that two or more images of a static 3D
curve taken from distinct viewpoints are sufficient to deter-
mine the curve’s shape uniquely [15,28]. Intuitively, this is
because the curve’s projection at a given viewpoint, along
with the camera’s center of projection, define a ruled sur-
face [23] that contains the curve; when many input views
are available, the intersection of these ruled surfaces is the
3D curve itself. More precisely, the following observation
relates the tangent t at p to the tangents at p’s projection in
the input views:

motion constraint
plane

%

motion constraint
plane 1

(b)

Figure 3. (a) Motion constraints from a single image [10].
The 3D component b; of p’s displacement is completely
determined by p, its projection p;, the image displacement
n;, and the camera’s projection matrix. (b) The point p+tv
is always contained in the Motion Constraint Line. The mo-
tion component n in Figure 1b is the limit of vector ¢(t),
which connects p to its closest point on the Motion Con-
straint Line.

Observation 1 (Multi-View Shape Constraint) If P; is the
plane defined by o;, pi, and ﬁ, t=1,...,N, and the planes
Pi,...,Py are not all identical, their intersection is a line
tangent to «y at p.

3.2. Multi-View Constraints on 3D Motion

In order to establish the relationship between the veloc-
ity component n and the input views, we consider an al-
ternative decomposition of p’s velocity that is viewpoint-
specific: v can be decomposed into a component a; that
lies on the plane P; and a component b; that is perpendic-
ular to this plane (Figure 3a). This decomposition leads to
three observations that relate the vector n to the input views.
In particular, let p + tv be a first-order Taylor series expan-
sion of p’s trajectory through time. Observation 2 tells us
precisely what constraints on a point’s 3D motion can be
extracted from a single image and relates these constraints
to the point’s 3D position in space:

Observation 2 (Motion Constraint Plane) [/0] Every view-
point o; defines a unique Motion Constraint Plane that contains
p + tv and is determined by p, p;, ni, and the i-th camera’s
projection matrix. Moreover, this plane is the only constraint that
can be imposed on p + tv from the image at o;; it degenerates if
and only if the optical ray through p contains the curve’s tangent
at p.

Intuitively, Observation 2 is based on the fact that the im-
age at o; provides no information about the component a;;
the component b;, on the other hand, is completely deter-
mined by p and the curve’s time-varying image at o;.

Observation 3 (Multi-View Motion Constraint Line) [10]
Given a time t, the intersection of any collection of non-
degenerate and distinct Motion Constraint Planes is a unique
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Figure 4. Manifold shape recovery strategy. Each view-
point defines a spatio-temporal image volume depicting the
moving curve. Our algorithm computes an analytical de-
scription of I'’s local shape directly from those N volumes.

line, called the Multi-View Motion Constraint Line at p, that is
independent of the input viewpoints. This line contains the 3D
position of p + tv and is parallel to the curve’s tangent at p.

Observation 3 tells us that the Motion Constraint Planes
associated with a single point will in general form a pencil
that constrains p + tv to a single line (Figure 3b). This line
captures all constraints on p’s motion that can be derived
from an arbitrary collection of views of a smooth curve and
defines vector n uniquely:

Observation 4 (Multi-View Motion Constraint) If c(t) is the
vector that (1) starts at p, (2) ends at the Motion Constraint Line,
and (3) is perpendicular to it, the limit lim;_o @ is the vector
n.

4. Manifold Reconstruction from
Spatio-Temporal Image Volumes

The previous section suggests that we can estimate a
curve’s 3D shape and motion from multiple views by re-
constructing the Spatio-Temporal Curve Manifold. Using
this as a starting point, we describe a method for recovering
a local analytic representation of this manifold at a point
P- An important feature of the method is that it recovers
the manifold’s shape directly from the pixels in the multi-
view sequence, i.e., without relying on intermediate edge-
or curve-based representation stages to build the final recon-
struction.

In order to achieve this, we treat each input video se-
quence as a 3D spatio-temporal volume of pixels and for-
mulate manifold reconstruction as the problem of recover-
ing a local analytical description of the manifold at p from
these volumes (Figure 4). The local shape at p is recovered
by first constructing an approximate, initial analytical de-
scription of the manifold, and then using this description to
bootstrap a minimization procedure that refines it.

At the heart of this approach lies an image-based error
functional that measures the consistency between the man-
ifold’s analytical description at p and the pixels in the N
spatio-temporal volumes. Intuitively, the functional com-
pares pixels in these volumes to the values predicted by the
current estimate of the manifold’s shape. The functional
is therefore fully specified by answering three questions:
(1) how do we map points on the manifold to points in
the spatio-temporal volume of each camera, (2) how do we
identify which pixels in this volume are projections of the
moving curve, and (3) how do we enforce consistency be-
tween the re-projected and actual images of the manifold?

To map an arbitrary 4D point p in space-time to a
unique 3D point in the i-th spatio-temporal volume, we
use a trivial generalization of the perspective projection
transformation—the three spatial coordinates of p are
mapped to two image coordinates using the known projec-
tion matrix of the ¢-th camera, while its temporal component
remains unchanged:

Prj;(p) = [bi ]-

Under ideal conditions, the image of I' under this trans-
formation should be identical to the spatio-temporal sur-
face, S;, traced by the deforming projection of v in the i-
th camera. Our strategy is to recover an implicit analyti-
cal description of this surface from the pixel data, use the
transformation Prj; to “re-project” the manifold into each
volume, and then define an error functional that compares
the re-projected volume to the image measurements. More
details about these steps are given below.

4.1. Recovering the Edge-Proximity Field

The first step in our method involves reconstructing from
the spatio-temporal volume of camera ¢ an analytical scalar
field, F;, whose zero level set [29] is the spatio-temporal
surface S;. The method does not depend on a specific def-
inition of F;; the only requirements are that (1) (F;)? is
differentiable in the neighborhood of S;, and (2) the zero
set of F; is identical to the projection of v at the ¢-th view-
point. In practice, we obtain the field by applying a Marr-
Hildreth edge detector to each image in the spatio -temporal
image volume. This edge detector convolves its input with
a Laplacian kernel, producing a discrete scalar field whose
zero-crossings are at the image intensity edges.

For every zero-crossing point, [ugvg tp], we use the
field’s discrete samples in the neighborhood of the point to
compute a first-order analytical description of the underly-
ing continuous field:

Fi(u,v,t) = Fi(uo,vo,to) +
(u—up) &t + (v—vo) 2t + (t—to) 2=, (5)

where the partial derivatives are all evaluated at [ug v o).



4.2. Parameterizing the Manifold’s Tangent Space

We rely on the t—n parameterization of Section 3 to de-
fine the manifold’s tangent space in the neighborhood of a
point p € I'. This parameterization has six degrees of free-
dom and is completely determined by (1) the parameters of
the 3D line through p in the direction of t, and (2) the pa-
rameters of the vector n, which is perpendicular to this line.
To specify the line’s direction in space we use two angles, 6,
¢; its position is specified by two coordinates, p; , p, repre-
senting the point of intersection with a plane that is normal
to the line and contains p. The vector n, is specified by
two coordinates, mj, my, corresponding to a vector that is
normal to the direction defined by 6 and ¢.

4.3. Defining the Re-Projection Error Functional

Given the t—n parameterization of the tangent space at a
point p = II(0, 0), the projection transformation Prj; of the
i-th camera, and analytical descriptions of the edge prox-
imity fields, 7,7 = 1,..., N, the re-projection error func-
tional is defined as follows:

N

£(0,9,p1,p2,m1,m2) = //Zﬁi(S,t) ds dt, (6)
i=1

where €;(s,t) = F7 (Prj; (TI(s,1))), (7)

and the double integration is performed in a neighborhood
of I around p whose extent is specified a priori.

From a practical standpoint, this functional has two use-
ful features. First, it can be evaluated very efficiently be-
cause a closed-form, analytical description of the functional
is always available. Second, it does not impose restrictions
on the number of input viewpoints and hence is particularly
applicable to the analysis of shape and motion when large
collections of cameras are observing the scene [11].

4.4. Reconstructing the Tangent Space

We use the re-projection error functional defined above
to recover the parameters of a tangent space T(I') of T
that “passes near” an arbitrary 4D point in space-time. The
Jacobian of £ with respect to its parameter vector, x =
[0 & p1 p2 m1 ms], is given by the chain rule:

e, OF, OPrj, T Ox ®

ox 4
=1
Since an analytical description of €;(s,t) and its Jacobian
are available, it is possible to use a variety of derivative-
based optimization techniques to adjust x until £ converges
to a minimum value. We chose Levenberg-Marquardt [30]
to perform this step.

5. Multi-View 3D Shape & Motion Recovery by
Manifold Reconstruction

Section 4 leads directly to an algorithm for reconstruct-
ing the tangent spaces of the Spatio-Temporal Curve Man-
ifold, for reconstructing the manifold itself, and for con-
verting these reconstructions into 3D shape and motion es-
timates. The algorithm consists of the following steps:

Step 1: Apply the Marr-Hildreth edge detector to all input images
and find all zero-crossings.

Step 2: Reconstruct the edge-proximity field in the neighborhood
of every zero crossing, using Eq. (5).

Step 3: Choose a reference camera, o, and repeat the following
steps for every zero-crossing, pi1, in the spatio-temporal vol-
ume of that camera:

a. establish  approximate  stereo  correspondences,
p2,...,P~n, for p; using the known epipolar
geometry between cameras; use these correspon-
dences to compute a 4D point P near the manifold;

b. compute approximate tangents and normal velocities,
”%,ﬁi,i =1,...,N,at the points pi, ... , P use
these vectors to compute an initial estimate for the pa-
rameters of the tangent space of I near p;

c. compute the tangent space parameters that minimize
5(9, ¢,p1,p2,m1,m2).

Step 4: Reconstruct the manifold I as the envelope of all tangent
spaces computed for zero crossings in the reference camera.
Step 5: Convert every reconstructed pair (p,T3(I")) to a 3D
curve point p, a local tangent H:_H’ and a normal velocity
vector, n, using Eq. (3).

6. Experimental Results

6.1. Synthetic Scenes

In order to determine the applicability of our manifold-
based approach, we performed experiments with several
synthetic multi-view sequences. The purpose of our sim-
ulations was to test two hypotheses:

1. Joint estimation of 3D shape and motion yields motion
estimates of significantly higher accuracy than those
obtained by treating 3D motion computation as a post-
processing step (i.e., after computing 3D shape from
stereo).

2. Besides providing accurate 3D motion estimates, a
joint estimation of 3D shape and motion improves the
accuracy of 3D shape estimates as well.

More specifically, we used OpenInventor to generate
three-view sequences consisting of six consecutive snap-
shots of a textured sphere that rotates and shrinks in front
of a static background (Figure 5a). The distances between
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Figure 5. (a) Snapshots at the first time instant in a synthetic multi-view sequence used for our experiments. (b) Effects of camera
calibration errors on the computed Shape (ShpE) and normal velocity estimates (MotE) obtained by our manifold reconstruction
algorithm (StM), and by curve-based stereo (CSter). Camera calibration errors denote the norm of random displacement vectors
added to the ground-truth position of the input cameras. A displacement parallel to the image plane of 30mm, which is 1% of
the distance between the sphere’s center and the cameras, roughly corresponds to a 5-pixel displacement in every input image. In
addition to these simulated errors, the output of the Marr-Hildreth edge detector was corrupted with noise whose variance was 25%
of the detector’s maximum response on the input images. Shape reconstruction errors are measured as the RMS distance between
points in the recovered curve and the ground-truth curve; motion errors are measured as the norm of the RMS difference between
the recovered and ground-truth normal 3D motions of these points. All errors were averaged over 50 randomly-generated trials.
For comparison purposes, the graph also plots reconstruction results for the point-based stereo-motion algorithm reported in [10]
(PointStM). (c) Ratios between the errors obtained by our algorithm and those obtained by a curve-based stereo implementation.

the cameras and the center of the sphere were 3.6m, 3.2m
and 3.0m, respectively, and the sphere’s initial radius was
Im. The actual sequences were generated by (1) keeping
constant the position of the input viewpoints, (2) simulat-
ing camera calibration errors by assigning a projection ma-
trix to each camera that was derived by adding a random
displacement to the camera’s ground truth position, and
(3) adding zero-mean Gaussian noise to the output of the
Marr-Hildreth edge detector to simulate noise in the edge-
proximity field (Section 4.1). This allowed us to evaluate
the performance of our approach in the presence of both
image intensity noise, which can affect localization of a
curve’s projections, and camera calibration errors.

To test our first hypothesis, we compared the mani-
fold reconstruction algorithm of Section 5 to a curve-based
stereo algorithm that differs from it only in Steps 3c, 4, and
5. Instead of employing these steps, we refined the ini-
tial shape estimates (i.e., 3D position and tangent at every
point) using a curve-based stereo algorithm that fits a spline
to these estimates. To compute motion estimates, we used
a post-processing step in which planes normal to the recon-
structed curve at each time ¢ were intersected with the curve
reconstructed at time ¢+ dt. Both this technique as well as
the algorithm of Section 5 were applied to approximately
250 points along the edge that separates the black and white
regions on the synthetic sphere, at each of five consecutive
time instants.

Figures 5b,c show how the 3D shape and motion re-
construction errors vary as a function of calibration errors.
These results show that the estimates of the normal velocity,
n, reconstructed by our manifold-based algorithm are much

more precise than those obtained by computing shape and
motion independently. The improvements achieved through
simultaneous estimation of shape and motion range from
67%, with calibration errors of 3mm, to 665%, with cali-
bration errors of 300mm.

Our results suggest that the manifold-based approach
also yields improvements in the accuracy of the recon-
structed 3D shapes. For calibration errors of up to 6mm
(which generate displacements of about a pixel in every in-
put image), our algorithm’s shape estimates are over 15%
more accurate than those obtained through curve-based
stereo. Improvements in shape estimates are reduced as cal-
ibration errors increase, but they remain close to 5% even
for calibration errors as large as 300mm. Note that the
manifold-based algorithm generates shape measurements of
significantly higher accuracy than the point-based algorithm
in [10], with relative improvements ranging from 20% to
37% for calibration errors of Smm to 40mm, respectively.
Importantly, this improvement was despite the fact that the
errors in Figure 5b for the point-based algorithm occur for
“ideal” input images with no noise in pixel intensities.

6.2. Discussion

Our algorithm’s increasing advantage in estimating 3D
motion in the presence of large calibration errors can be un-
derstood by considering how a curve’s projection in mul-
tiple views constrains its 3D shape at a point p (Section
3.1). Ideally, the IV planes defined by the image tangents at
P’s projection form a pencil whose common intersection is
the curve’s 3D tangent line. In the presence of calibration



errors, however, these planes will not have a single intersec-
tion and, due to the independent feature localization noise,
it will only be possible to constrain the tangent’s position
to the interior of an uncertainty volume in the 3D scene
space. If the positions of these tangents are computed in-
dependently at each time instant, the errors in the resulting
normal velocity computations will be roughly proportional
to the maximum extension of this uncertainty volume. On
the other hand, if the tangent lines at times ¢ and ¢+ dt are
estimated jointly, the maximum displacement between them
will be limited by the additional 3D motion constraints, re-
gardless of the tangents’ position within the uncertainty vol-
ume. Since the uncertainly volume is much larger than the
inter-frame motions when the calibration errors are large
and the sequences dense, a larger relative improvement in
motion accuracy will be attained by an approach that ex-
plicitly enforces the (tighter) motion constraints.

Our results on 3D shape recovery suggest that a coupled
estimation of shape and motion counteracts shape errors
due to the localization of projected curve points. Specif-
ically, since errors due to point localization are generally
independent across images, the coupled estimation of shape
and motion allows us to include images from multiple time
instants in the shape estimation process, therefore provid-
ing additional independent constraints to counteract these
errors. Large calibration errors, on the other hand, intro-
duce a bias in shape reconstruction [31] that cannot be com-
pletely resolved from the additional constraints provided by
image motion. As a result, the relative 3D reconstruction
improvements obtained through joint shape/motion estima-
tion is reduced as these errors increase.

6.3. A Real Scene

In order to evaluate the accuracy of our approach in
practice, we used a 3-view image sequence displayed in
Figure 6. The sequence was acquired using three cali-
brated Pulnix TMC-9700 progressive-scan color video cam-
eras, each connected to a separate networked PentiumlIl PC
equipped with a Matrox Meteorll real-time video capture
card. All cameras were frame-synchronized using a Vie-
Core video synchronization board. The cameras were posi-
tioned in a triangular configuration approximately 2m above
the ground, approximately 50cm away from each other, and
looking downward. A 15-frame (0.5sec) sequence was then
captured while a letter-size sheet of paper was moved man-
ually in the cameras’ field of view so that one of the sheet’s
edges (the longer one, closer to the image center at Cam-
era 1) remained in contact with the floor. We then used our
manifold reconstruction algorithm to recover the shape and
motion of this edge at each time instant.

Figure 7a shows ¢t = constant slices of the recon-
structed spatio-temporal curve manifold. The manifold con-
tains 4855 individual neighborhoods and took 2 minutes
and 30 seconds to compute on an SGI Indigo2 workstation.

Camera 1 Camera 2 Camera 3

Figure 6. Snapshots at the first and last instants of a 15-
frame, 3-view sequence used in our experiments.

Even visually, it is possible to verify that these slices form a
planar surface, as expected. Using a Singular Value Decom-
position, we determined the plane that most tightly fits all
the reconstructed points; the average distance of the recon-
structed points from this plane was only 0.5mm, confirm-
ing the almost-planar reconstruction. Figure 7b shows the
computed normal motion field. This field is mostly com-
posed of vectors with similar orientations and magnitudes,
which is consistent with the fact that the paper sheet was
roughly translated along a fixed direction, with a roughly
fixed velocity. Note that the computed 3D shape and mo-
tion measurements are accurate and consistent throughout
the sequence, despite the fact that all computations in our
algorithm are purely local and assume no prior shape or mo-
tion models to drive the reconstruction process.

7. Concluding Remarks

A key remaining open question is how to recover the
3D shape and motion of dynamic scenes composed of
arbitrarily-shaped and textured surfaces rather than curves.
Toward this end, we are combining the geometric analysis
in this paper with recent surface- and volume-based meth-
ods for multi-view shape recovery [22,32] in order to inves-
tigate problem’s underlying geometry and develop practical
spatio-temporal reconstruction algorithms.
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