
Affine Object Representations for Calibration-Free Augmented Reality

Kiriakos N. Kutulakos
kyros@cs.rochester.edu

James Vallino
vallino@cs.rochester.edu

Computer Science Department
University of Rochester

Rochester, NY 14627-0226

Abstract

We describe the design and implementation of a video-
basedaugmented reality system capable of overlaying three-
dimensional graphical objects on live video of dynamic en-
vironments. The key feature of the system is that it is com-
pletely uncalibrated: it does not use any metric information
about the calibration parameters of the camera or the 3D
locations and dimensions of the environment’s objects. The
only requirement is the ability to track across frames at least
four feature points that are specified by the user at system ini-
tialization time and whose world coordinates are unknown.
Our approach is based on the following observation: Given
a set of four or more non-coplanar 3D points, the projection
of all points in the set can be computed as a linear com-
bination of the projections of just four of the points. We
exploit this observation by (1) tracking lines and fiducial
points at frame rate, and (2) representing virtual objects in
a non-Euclidean, affine frame of reference that allows their
projection to be computed as a linear combination of the
projection of the fiducial points.

1. Introduction

Recent advances in display technology and graphics ren-
dering techniques have opened up the possibility of mixing
live video from a camera with computer-generated graph-
ical objects registered in a user’s three-dimensional envi-
ronment. Applications of this powerful visualization tool
include overlaying clinical 3D data with live video of pa-
tients during surgical planning [3, 17, 28] as well as devel-
oping three-dimensional user interfaces [14]. While several
approaches have demonstrated the potential of augmented
reality systems for human-computer interaction [11], the
process of embedding three-dimensional “virtual” objects
into a user’s environment raises three issues unique to aug-
mented reality:

Object-to-World

World-to-Camera

Camera-to-Image

Figure 1. Calibration of a video-based augmented reality sys-
tem requires specifying three transformations that relate the
coordinate systems of the virtual objects, the environment,
the camera, and the image it produces. This paper focuses
on how specification of the top two transformations in the
figure can be avoided.

Establishing 3D geometric relationships between phys-
ical and virtual objects: The locations of virtual objects
must be initialized in the user’s environment before user
interaction can take place.

Rendering virtual objects: Realistic augmentation of
a 3D environment can only be achieved if objects are
continuously rendered in amanner consistentwith their
assigned location in 3D space and the camera’s view-
point.

Dynamically modifying 3D relationships between real
and virtual objects: Animation of virtual objects rela-
tive to the user’s environment should be consistent with
the objects’ assigned physical properties (e.g., rigidity).

At the heart of these issues is the ability to describe the
camera’s motion, the user’s environment and the embed-
ded virtual objects in the same frame of reference. Typical
approaches rely on 3D position tracking devices [31] and
precise calibration [27] to ensure that the entire sequence of
transformations between the internal reference frames of the
virtual and physical objects, the camera tracking device, and
the user’s display is known exactly (Figure 1). In practice,
camera calibration and position tracking are prone to errors
which accumulate in the augmented display. Furthermore,
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initialization of virtual objects requires additional calibra-
tion stages [17, 22], and camera calibration must be per-
formedwhenever its intrinsic parameters (e.g., focal length)
change.
Our approach is motivated by recent approaches to video-

based augmented reality that reduce the effects of calibration
errors through real-time processing of the live video images
viewed by the user [31]. These approaches track a small
number of fiducial points in the user’s 3D environment to
either weaken the system’s calibration requirements [22, 28]
or to compensate for calibration errors in the system [4].
This paper describes the design and implementation of

a novel video-based augmented reality system. The key
feature of the system is that it allows operations such as vir-
tual object placement, real-time rendering, and animation to
be performed without relying on any information about the
calibration parameters of the camera, the camera’s motion,
or the 3D locations and dimensions of the environment’s
objects. The only requirement is the ability to track across
frames at least four features (points or lines) that are speci-
fied by the user during system initialization andwhoseworld
coordinates are unknown.
Our approach is based on the following observation,

pointed out by Koenderink and van Doorn [18] and Ullman
and Basri [29]: Given a set of four or more non-coplanar
3D points, the projection of all points in the set can be com-
puted as a linear combination of the projections of just four
of the points. We exploit this observation by (1) tracking
lines and fiducial points at frame rate, and (2) representing
virtual objects so that their projection can be computed as
a linear combination of the projection of the fiducial points.
The resulting affine virtual object representation is a non-
Euclidean representation in which the coordinates of points
on a virtual object are relative to an affine reference frame
defined by the fiducial points.
Affine object representations have been a topic of active

research in computer vision in the context of 3D reconstruc-
tion [18, 30] and recognition [20]. While our results draw
heavily from this research, the use of affine object models
in the context of augmented reality has not been previously
studied. Here we show that placement of affine virtual ob-
jects, visible-surface rendering, as well as animation can be
performed efficiently using simple linear methods that op-
erate at frame rate and exploit the ability of the augmented
reality system to interact with its user.
Very little work has been published on augmented reality

systems that reduce the effects of calibration errors through
real-time processing of the live video stream [4, 22, 28, 31].
To our knowledge, only two systems have been reported
[22, 28] that operate without specialized camera tracking
devices and without relying on the assumption that the cam-
era is always fixed [11] or perfectly calibrated. The system
of Mellor [22] is capable of overlaying 3D medical data

over live video of patients in a surgical environment. The
system tracks circular features in an known 3D configu-
ration to invert the object-to-image transformation using a
linear method. Even though the camera does not need to
be calibrated at all times, camera calibration is required
at system initialization time and the exact 3D location of
the tracked image features is recovered using a laser range
finder. The most closely related work to our own is the work
of Uenohara and Kanade [28]. Their system allows overlay
of planar diagrams onto live video by tracking feature points
in an unknown configuration that lie on the same plane as
the diagram. Calibration is avoided by expressing diagram
points as linear combinations of the feature points. Their
study did not consider uncalibrated rendering, animation
and interactive placement of 3D virtual objects.
Our approach both generalizes and extends previous ap-

proaches in three ways. First, we show that by representing
virtual objects in an affine reference frame and by perform-
ing computer graphics operations such as projection and
visible-surface determination directly on affine models, the
entire video overlayprocess is described by a single ho-
mogeneous view transformation matrix [15]. Furthermore,
the elements of this matrix are simply the image - and -
coordinates of feature points. This not only enables the effi-
cient estimation of the view transformation matrix but also
leads to the use of optimal estimators such as the Kalman
filter [2, 5, 32] to both track the feature points and compute
the matrix. Second, the use of affine models leads to a
simple through-the-lens method [16] for interactively plac-
ing virtual objects within the user’s 3D environment and
for animating them relative to other physical or virtual ob-
jects. Third, efficient execution of computer graphics oper-
ations on affine virtual objects is achieved by implementing
affine projection computations directly on dedicated graph-
ics hardware.

2. Geometrical Foundations

Accurate projection of a virtual object requires knowing
precisely the combined effect of the object-to-world, world-
to-camera and camera-to-image transformations [15]. In
homogeneous coordinates this projection is described by
the equation

(1)

where is a point on the virtual object, is its
projection, and are the matrices corresponding
to the object-to-world and world-to-camera homogeneous
transformations, respectively, and is the matrix mod-
eling the object’s projection onto the image plane.
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Eq. (1) implicitly assumes that the 3D coordinate frames
corresponding to the camera, the world, and the virtual ob-
ject are not related to each other in any way. The main
idea of our approach is to represent both the object and the
camera in a single, non-Euclidean coordinate frame defined
by fiducial points that can be tracked across frames in real
time. This change of representations, which amounts to a

homogeneous transformation of the object and camera
coordinate frames, has two effects:

It simplifies the projection equation. In particular, Eq.
(1) becomes

(2)

where are the transformed coordinates of
point and models the combined effects
of the change in the object’s representation as well
as the object-to-world, world-to-camera and projection
transformations.

It allows the elements of the projectionmatrix, , to
simply be the image coordinates of the fiducial points.
Hence, the image location of the fiducial points con-
tains all the information needed to project the virtual
object; the 3D position and calibration parameters of
the camera as well as the 3D location of the fiducial
points can be unknown. Furthermore, the problem of
determining the projection matrix corresponding to a
given image becomes trivial.

To achieve these two effects, we use results from the
theory of affine-invariant object representations which was
recently introduced in computer vision research. These rep-
resentations become important because they can be con-
structed for any virtual object without requiring any in-
formation about the object-to-world, world-to-camera, or
camera-to-image transformations. The only requirement is
the ability to track across frames a fewfiducial points,at least
four of which are not coplanar. The basic principles behind
these representations are briefly reviewed next. We will
assume in the following that the camera-to-image transfor-
mation can modeled using the weak perspective projection
model [25] (Figure 2).

This assumption is not crucial, however. The analysis presented in this
paper can be directly generalized to account for the perspective projection
model. In particular, Eq. (2) still holds when the object is represented in a
projective frame of reference defined by 5 fiducial points [12]. The use of
projective-invariant representations for re-projecting virtual objects under
perspective projection is currently under investigation.

Figure 2. Projection models. (a) Perspective projection.
Point is projected to ,
where is the point’s distance from the center of projection
and is the camera’s focal length. (b) Weak perspective pro-
jection. Point is projected to avg avg where
avg is the average distance of the object’s points from the

center of projection. Weak perspective projection amounts
to first projecting the object orthographically and then scaling
its image by avg; it is a good approximation to perspec-
tive projection when the camera’s distance to the object is
much larger than the size of the object itself.

2.1. Affine Point Representations

A basic operation in our method for computing the pro-
jection of a virtual object is that of re-projection [6, 26]:
given the projection of a collection of 3D points at two posi-
tions of the camera, compute the projection of these points
at a third camera position. Affine point representations al-
low us to re-project points without knowing the camera’s
position and without having any metric information about
the points (e.g., 3D distances between them).
In particular, let , be a collec-

tion of points, at least four of which are not coplanar. An
affine representation of those points is a representation that
does not change if the same non-singular linear transfor-
mation (e.g., translation, rotation, scaling) is applied to all
the points. Affine representations consist of three compo-
nents: The origin, which is one of the points ;
the affine basis points, which are three points from the col-
lection that are not coplanar with the origin; and the affine
coordinates of the points , expressing the points

in terms of the origin and affine basis
points. We use the following two properties of affine point
representations [18, 23, 30] (Figure 3):

Property 1 (Re-Projection Property) When the projection of the
origin and basis points is known in an image , we can compute
the projection of a point from its affine coordinates:

(3)
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(a) (b)

(c)

Figure 3. Properties of affine point representations. Three
views of a real wireframe object are shown. Points

define an affine coordinate frame within
which all world points can be represented: Point is the
origin, and points are the basis points. The
affine coordinates of a fifth point, , are computed from its
projection in images (a) and (b) using Property 2. ’s projec-
tion in image (c) can then be computed from the projections
of the four basis points using Property 1.

where is the projection of ; are the basis
points; is the projection of the origin; and
is the homogeneous vector of ’s affine coordinates.

Property 1 tells us that the projection process for any
camera position is completely determined by the matrix col-
lecting the image coordinates of the affine basis points in Eq.
(3). This equation, which makes precise Eq. (2), implies
that if the affine coordinates of a virtual object are known,
the object’s projection can be trivially computed by tracking
the affine basis points. The following property suggests that
it is possible, in principle, to extract the affine coordinates
of an object without having any 3D information about the
position of the camera or the affine basis points:

Property 2 (Affine Reconstruction Property) The affine coor-
dinates of can be computed using Eq. (3) when their
projection along two viewing directions is known.

Intuitively, Property 2 shows that this process can be in-
verted if at least four non-coplanar 3D points can be tracked
across frames as the camera moves. More precisely, given
two images , the affine coordinates of a point can be
recovered by solving an over-determined system of equa-
tions

(4)

In Section 5 we consider how this property can be ex-
ploited to interactively “position” a virtual object within an
environment in which four fiducial points can be identified
and tracked.

3. Affine Augmented Reality

The previous section suggests that once the affine coordi-
nates of points on a virtual object are determined relative to
four features in the environment, the points’ projection be-
comes trivial to compute. The central idea in our approach is
to ignore the original representation of the object altogether
and perform all graphics operations with the new, affine
representation of the object. This representation is related
to the original object-centered representation by a homoge-
neous transformation: if are the coordinates of
four non-coplanar points on the virtual object expressed in
the object’s coordinate frame and are their cor-
responding coordinates in the affine frame, the two frames
are related by an invertible, homogeneous object-to-affine
transformation such that

(5)

The affine representation of virtual objects is both power-
ful and weak: it allows us to compute an object’s projection
without requiring informationabout the camera’s position or
calibration. On the other hand, this representation captures
only properties of the virtual object that are maintained un-
der affine transformations—metric information such as the
distance between an object’s vertices and the angle between
object normals is not captured by the affine model. Nev-
ertheless, our purpose is to show that the information that
ismaintained is sufficient for correctly rendering the virtual
object. The augmented reality system we are developing
based on this principle currently supports the following op-
erations:

Object rendering: Efficient and realistic rendering of vir-
tual objects requires that operations such as point projection
and z-buffering can be performed accurately and can exploit
graphics rendering hardware when available. This is made
possible by describing the entire projection process with a
view transformation matrix expressed directly in terms of
measurements in the image (Section 4).
Interactive placement of virtual objects: This operation
allows virtual objects to be “placed” in the environment with
a simple through-the-lens interaction of the user with the sys-
tem. The operation effectively determines the object-to-affine
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Figure 4. Real time visible-surface rendering of texture-
mapped affine virtual objects. The objects were represented
in OpenInventorTM. Affine basis points were defined by the
intersections of lines on the wireframe object which were
tracked in real time. The virtual objects were defined with
respect to those points (see Section 5). The wireframe was
rotated clockwise between frames. Note that hidden-surface
elimination occurs only between virtual objects; correct oc-
clusion resolution between real and virtual objects requires
information about the real objects’ 3D structure [31].

transformation that maps points on the virtual object into the
affine frame of the feature points being tracked (Section 5).
Real-time affine basis tracking: Determination of the pro-
jection matrix for rendering virtual objects requires tracking
the affine basis points reliably and efficiently across frames.
Our system tracks lines in real time and uses line intersections
to define the basis points (Section 6).
Object animation: Because virtual objects are represented
in terms of objects physically present in the environment,
their motion relative to such objects becomes particularly
easy to specify without any metric information about their
3D locations or about the camera (Section 7).

4. Visible Surface Rendering

The projection of points on an affinely-represented vir-
tual object is completely determined by the location of the
feature points defining the affine frame. One of the key
aspects of affine object representations is that even though
they are non-Euclidean, they nevertheless allow rendering
operations such as z-buffering and clipping [15] to be per-
formed accurately. This is because both depth order as well
as the intersection of lines and planes is preserved under
affine transformations.
More specifically, z-buffering relies on the ability to order

in depth two object points that project to the same pixel
in the image. Typically, this operation is performed by
assigning to each object point a z-value which orders the
points along the optical axis of the (graphics) camera. The
observation we use to render affine objects is that the actual
z-value assigned to each point is irrelevant as long as the
correct ordering of points is maintained. To achieve such an
ordering we represent the camera’s optical axis in the affine

frame defined by the feature points being tracked, and we
order object points along this axis.
The optical axis of the camera can be defined as the 3D

line whose points project to a single pixel in the image. This
is expressed mathematically by representing the optical axis
of the camera with the homogeneous vector where
is given by the cross product

(6)

and are the image locations of the
affine basis points. To order points along the optical axis we
assign to each point on the model a z-value equal to the
dot product . Hence, the entire projection process
is described by a single homogeneous matrix.

Observation 1 (Projection Equation) Visible surface rendering
of a point on an affine object can be achieved by applying the
following transformation to :

(7)

where and are the image coordinates of ’s projection and
is ’s assigned z-value.

The matrix in Eq. (7) is an affine generalization of the
view transformation matrix, which is commonly used in
computer graphics for describing arbitrary orthographic and
perspective projections of Euclidean objects and for speci-
fying clipping planes. A key practical consequence of the
similarity between the Euclidean and affine view transfor-
mation matrices is that graphics operations on affine objects
can be performed using existing hardware engines for real-
time projection, clipping and z-buffering. In our experimen-
tal system the matrix of Eq. (7) is input directly to a Silicon
Graphics RealityEngine2 for implementing these operations
efficiently in OpenGL (Figure 4).

5. Interactive Object Placement

Before virtual objects can be overlaid with images of
a three-dimensional environment, the geometrical relation-
ship between these objects and the environment must be
established. Our approach for placing virtual objects in the
3D environment borrows from a few simple results in stereo
vision [13]: given a point in space, its 3D location is uniquely
determined by the point’s projection in two images taken at
different positions of the camera (Figure 5(a)). Rather than
specifying the virtual objects’ affine coordinates explicitly,
our system allows the user to interactively specify what the
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Figure 5. Positioning virtual objects in a 3D environment. (a)
Any 3D point is uniquely specified by its projection in two
images along distinct lines of sight. The point is the inter-
section of the two visual rays, that emanate from the
camera’s center of projection and pass through the point’s
projections. (b) In general, a pair of arbitrary points in two
images does not specify two intersecting visual rays. A suf-
ficient condition is to require the point in the second image
to lie on the epipolar line, i.e., on the projection of the first
visual ray in the second image. This line is determined by
the projection matrix.

objects should “look like” in two images of the environ-
ment. In practice, this involves specifying the projection of
points on the virtual object in two images in which the affine
basis points are also visible. The main questions here are
(1) how many point projections need to be specified in the
two images, (2) how does the user specify the projection of
these points, and (3) how do these projections determine the
objects’ affine representation?
The number of point correspondences required to deter-

mine the position and shape of a virtual object is equal to
the number of points that uniquely determine the object-to-
affine transformation. This transformation is uniquelydeter-
mined by specifying the 3D location of four non-coplanar
points on the virtual object that are selected interactively
(Eq. (5)).
To fix the location of a selected point on the virtual

object, the point’s projection in two images taken at distinct
camera positions is specified interactively using a mouse.
The process is akin to stereo triangulation: By selecting
interactively the projections, , of in two images in
which the projection of the affine basis points is known,
’s affine coordinates can be recovered using the Affine
Reconstruction Property.
The two projections of point cannot be selected in an

arbitrary fashion. In general, the correspondence inducedby
and may not define a physical point in space. Once

’s projection is specified in one image, its projection in
the second image must lie on a line satisfying the epipolar
constraint [25]. This line is computed automatically and is

used to constrain the user’s selection of in the second
image. In particular, if are the projection matrices
associated with the first and second image, respectively, and

are the corresponding optical axes defined by Eq.
(6), the epipolar line can be parameterized by the set [24]

(8)

By taking the epipolar constraint into account, we can ensure
that the points specified by the user provide a physically valid
placement of the virtual object.
Once the projections of a point on a virtual object are

specified in the two images, the points’ affine coordinates
can be determined by solving the linear system of equations
in Eq. (4). This solves the placement problem for virtual
objects. The entire process is shown in Figure 6.
Affine object representations lead naturally to a through-

the-lens method for constraining further the user degrees of
freedom during the interactive placement of virtual objects.
Such constraints have been used in vision-based pointing in-
terfaces [10]. An example of such a constraint is planarity:
if are three points on a physical plane in the envi-
ronment and is a point on the virtual object, the constraint
that lies on the plane of implies that ’s projec-
tion is a linear combination of the projections of .
This constraint completely determines the projection of in
a second image in which are visible. The planarity
constraint allows virtual objects to be “snapped” to physi-
cal objects and “dragged” over their surface by forcing one
or more points on the virtual object to lie on planes in the
environment that are selected interactively (Figure 7).

6. Affine Basis Tracking

The ability to track the projection of 3D points under-
going rigid transformations with respect to the camera be-
comes crucial in any method that relies on image informa-
tion to represent the position and orientation of the camera
[1, 4, 22, 28]. Real-time tracking of image features has been
the subject of extensive research in computer vision (e.g.,
see [7–9]). Below we describe a simple approach that ex-
ploits the existence of more than the minimum number of
feature points to increase robustness, tracks lines rather than
points, and automatically provides an updated projection
matrix used for rendering virtual objects.
The approach is based on the following observation: Sup-

pose that the affine coordinates of a collection of non-
coplanar feature points is known. Then, the changes in the
projection matrix caused by a change in the camera’s posi-
tion, orientation, or calibration parameters can be modeled
by the equation

(9)
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(a) (b)

(c) (d)

Figure 6. Steps in placing a virtual cube on top of a work-
station. (a) The mouse is used to select four points in the
image at the position where four of the cube’s vertices should
project. In this example, the goal is to align the cube’s corner
with the right corner of the workstation. (b) The camera is
moved to a new position and the epipolar line corresponding
to each of the points selected in the first image is computed
automatically. The epipolar line corresponding to the lower
right corner of the cube is drawn solid. Crosses represent
the points selected by the user. (c) View of the virtual cube
from a new position of the camera, overlaid with live video.
(d) Lines being tracked in (c) for defining the affine frame.
The affine basis points used for representing the cube are
the intersections of the tracked lines. No information about
the camera’s position or the 3D location of the affine basis
points is used in the above steps.

where is the change in the image position of the feature
points, is the change in the projection matrix, and
is the matrix holding the affine coordinates of the feature
points. Eq. (9) leads directly to a Kalman filter based
method for both tracking the feature points and for continu-
ously updating the projection matrix. We use two indepen-
dent constant acceleration Kalman filters [5] whose states
consist of the first and second rows of the projection matrix

, respectively, as well as their time derivatives. The
filter’s measurement equation is given by Eq. (9).
Feature points and their affine coordinates are determined

at system initialization time. Tracking is bootstrapped by
interactively specifying groups of coplanar linear features
in the initial image of the environment. Feature points are
defined to be the intersections of these lines. Once feature

When only four feature points are available the matrix degenerates
to a unit matrix.

points have been tracked over several frames their affine
coordinates are computed using the Affine Reconstruction
Property. Eq. (9) is used to update the affine basis and the
projection matrix. During the tracking phase, the first two
rows of the affine view transformation matrix are contained
in the state of the Kalman filters. The third row of the matrix
is computed from Eq. (6).

7. Rigid Animation By Example

The problem of animating a virtual object so that it ap-
pears to undergo a rigid transformation is particularly chal-
lenging when the camera’s position and calibration param-
eters are unknown because metric information is lost in the
projection process. In general, one cannot distinguish,based
solely on an object’s affine coordinates, between arbitrary
homogeneous transformations that cause shear and
scaling of a virtual object from those that transform the
object rigidly.
Our approach for rigidly animating affine virtual objects

is twofold. First we note that pure translations of a virtual

(a) (b)

(c)

Figure 7. Aligning a virtual quadrangle with a mousepad.
Crosses show the points selected in each image. Dotted
lines in (b) show the epipolars associated with the points
selected in (a). The constraints provided by the epipolars,
the planar contact of the cube with the table, as well as the
parallelism of the cubes’ sides with the side of the workstation
allows points on the virtual object to be specified interactively
even though no image feature points exist at any four of the
object’s vertices. (c) Real time overlay of virtual cube.
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Figure 8. Configuration of our augmented reality system.

object do correspond to rigid translations in the world coor-
dinate frame. Second, to realize arbitrary rigid rotations we
exploit the user’s ability to interact with the augmented real-
ity system: the user effectively “demonstrates” to the system
which transformations to use to generate rigid rotations.
Suppose that all feature points defining the affine basis

lie on a single rigid object and that this object is viewed
simultaneously by two cameras. To specify a valid rigid
rotation, the user simply rotates the object containing the
affine basis in front of the two cameras. The image posi-
tions of the feature points at the end of the rotation define
four points in 3D space whose affine coordinates with re-
spect to the original affine basis can be determined using the
Affine Re-Projection Property. Eq. (5) tells us that these
coordinates define a homogeneous transformation
that corresponds to a rigid rotation since the object itself was
rotated rigidly. By repeating this process three times, the
user provides enough information to span the entire space
of rotations. See [19] for more details.

8 Experimental System

We have implemented a prototype augmented reality sys-
tem consisting of a Silicon Graphics RealityEngine2 that
handles all graphics operations using theOpenGLandOpen-
Inventor graphics libraries, and a tracking subsystem imple-
mented in C that runs on a SUN SPARCserver2000. Video
input is provided by a Sony camcorder, a TRC BiSight
stereo head and a Datacube MaxVideo 10 board used only
for frame grabbing (Figure 8). The intrinsic and extrinsic
parameters of the cameras were not computed.
Operation of the system involves three steps: (1) initial-

ization of the affine basis, (2) virtual object placement, and
(3) affine basis tracking and projection update. Initialization
of the affine basis establishes the frame in which all virtual
objects will be represented during a run of the system. Basis
points are initialized as intersections of line segments that
are selected interactively in the initial image. Virtual object
initialization follows the sequence of steps shown in Figure
6. Once the affine coordinates of all points on a virtual ob-
ject are computed, the affine object models are transmitted
to the graphics subsystem where they are treated as if they
were defined in a Euclidean frame of reference.

Upon initialization of the affine basis, the linear features
defining the basis are tracked automatically. Line tracking
runs on a single processor at rates between 30Hz and 60Hz
for approximately 12 lines and provides updated Kalman
filter estimates for the elements of the projection matrix [5].
Conceptually, the tracking subsystem can be thought of as
an “affine camera position tracker” that returns the current
affine projection matrix asynchronously upon request. For
each new video frame, the rows of the projection matrix are
used to build the view transformation matrix. This matrix
is sent to the graphics subsystem. Figure 9 shows snapshots
from example runs of our system. The image overlay was
initialized using the placement method of Section 5 at two
viewpoints close to the view in Figure 9(a). The objects
were then rotated together through the sequence of views in
Figure 9(b)-(e) while tracking was maintained on the two
black squares.
The accuracy of the image overlays is limited by radial

distortions of the camera [4] and the affine approximation
to perspective projection. Radial distortions are not cur-
rently taken into account. In order to assess the limitations
resulting from the affine approximation to perspective we
computed mis-registration errors as follows. We used the
image projection of vertices on a physical object in the en-
vironment (a box) to serve as ground truth and compared
these projections at multiple camera positions to those pre-
dicted by their affine representation and computed by our
system. The image points corresponding to the projection of
the affine basis in each imagewere not tracked automatically
but were hand-selected on four of the box’s corners to es-
tablish a best-case tracking scenario for affine-based image
overlay. These points were used to define the affine view
transformationmatrix. The affine coordinates of the remain-
ing vertices on the box were then computed using the Affine
Reconstruction Property, and their projectionwas computed
for roughly 50 positions of the camera. As the camera’s dis-
tance to the object increased, the camera zoom was also
increased in order to keep the object’s size constant and
the mis-registration errors comparable. Results are shown
in Figures 10 and 11. While errors remain within 15 pix-
els for the range of motions we considered (in a 512
image), the results show that, as expected, the affine approx-
imation to perspective leads to errors as the distance to the
object decreases. These effects strongly suggest the util-
ity of projectively-invariant representations for representing
virtual objects in calibration-free video overlay.
The accuracy of the image overlays generated by our sys-

tem was measured as follows. A collection of line trackers
was used to track the outline of the two black squares on
the object of Figure 12. The affine coordinates of an easily-
identifiable 3D point that was rigidly attached to the object

As a result, mis-registration errors reported in Figure 10 include the
effects of small inaccuracies due to manual corner localization.

8



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Experimental runs of the system. (a) View from the position where the virtual object was interactively placed over
the image of the box. The affine basis points were defined by tracking the outline of the two black squares. The 3D world
coordinates of the squares are unknown. (b)-(d) Image overlays after a combined rotation of the box and the object defining the
affine basis. (e) Limitations of the approach due to tracking errors. Since the only information used to determine the projection
matrix comes from tracking the basis points, tracking errors inevitably lead to wrong overlays. In this example, the extreme
foreshortening of the top square led to inaccurate tracking of the affine basis points. (f)-(h) Three snapshots of an animated
virtual wireframe cube.

were then computed with respect to the basis defined by the
two squares. These coordinates were sent to the graphics
subsystem and used to display in real time a small dot at the
predicted position of the 3D point as the affine basis points
and the 3D point were rotated freely. Two correlation-based
trackerswere used to track in real-time the imageprojections
of the 3D point and the synthetic dot thus providing an on-
line estimate of the ground truth for image overlay. Plots of
the and coordinates of the tracked and re-projected
points are shown in Figure 13.

9 Concluding Remarks

The complete reliance on point tracking for generating
live video overlays is both the strength and the major lim-
itation of our calibration-free augmented reality approach.
On one hand, the approach suggests that real-time tracking
of fiducial points contains all the information needed for
placement, animation and correct overlay of graphical 3D
objects onto live video. Hence, the need for camera posi-
tion measurements and for information about the sizes and
identities of objects in the camera’s environment is avoided.

On the other hand, the approach is limited by the accuracy,
speed, and robustness of point tracking. Significant changes
in the camera’s position inevitably lead to tracking errors or
occlusions of one or more of the tracked fiducial points. In
addition, fast rotational motions of the camera make track-
ing particularly difficult due to large point displacements
across frames. Both difficulties can be overcome by us-
ing recursive estimation techniques that explicitly take into
account feature occlusions and re-appearances [21] and by
using fiducials that can be efficiently identified and accu-
rately localized in each frame [22, 28].
Limitations of our specific implementation are (1) re-

liance on the affine approximation to perspective, which
inevitably introduces errors in the re-projection process and
restricts operation of the system to large object-to-camera
distances, (2) lack of a mechanism for correcting the cam-
era’s radial distortion, and (3) the existence of a 5-10 frame
lag in the re-projection of virtual objects due to communica-
tion delays between the tracking and graphics subsystems.
On a theoretical level, we are extending the basic approach
by representing virtual objects in a projective reference
frame, investigating the use of image synthesis techniques
for shading non-Euclidean virtual objects, and considering

9
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Figure 10. Mis-registration errors. The errors are averaged over three vertices on a box that are not
participating in the affine basis. The line style of the plots corresponds to the camera paths shown in Figure 11.

how information from camera position tracking devices can
be incorporated in the system when they are available. On a
practical level, we are considering techniques for correcting
radial distortion and are planning to use specialized fiducial
trackers [22] to improve tracking accuracy and versatility.
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