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Abstract
We present an approach for building an affine represen-

tation of an unknown curved object viewed under ortho-
graphic projection from images of its occluding contour. It
is based on the observation that the projection of a point
on a curved, featureless surface can be computed along a
special viewing direction that does not belong to the point’s
tangent plane. We show that by circumnavigating the object
on the tangent plane of selected surface points, we can (1)
compute two orthogonal projections of every point project-
ing to the occluding contour during this motion, and (2)
compute the affine coordinates of these points. Our ap-
proach demonstrates that affine shape of curved objects can
be computed directly, i.e., without Euclidean calibration or
image velocity and acceleration measurements.

1 Introduction

There has been a growing interest recently in performing
tasks such as recognition [1], navigation [2], and shape re-
covery [3–6] using one or more uncalibrated cameras. One
feature of these approaches is that they avoid sensitivity to
errors in camera position and motion estimates by recov-
ering non-Euclidean scene representations for which such
measurements are unnecessary. Unfortunately, while tech-
niques have been developed for recovering non-Euclidean
representations of 3D point sets whose projection can be
tracked across frames [1, 3, 7] (e.g., corners, surface mark-
ings, and discontinuities), the recovery of such representa-
tions for unknown curved objects with sparsely-distributed
markings and discontinuities remains open.
In this paper we employ a mobile observer that purpose-

fully controls its motion in order to build an affine repre-
sentation of a curved object from images of its occluding
contour. The approach is motivated by the purposive [8]
and animate [9] vision paradigms, and combines elements
from the study of the occluding contour of smooth surfaces
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[10] and previousworkon affine reconstruction [1,4, 7]. We
show that by appropriately controlling the observer’smotion
during a circumnavigation of the object, we can compute
the affine coordinates of every surface point projecting to
the occluding contour during this motion. The assump-
tions are that (1) the object is viewed under orthographic
projection, (2) the observer’s motion is planar, (3) a cor-
respondence can be established between occluding contour
curves in consecutive images, and (4) the projection of at
least four points on the object’s surface can be tracked across
frames. These assumptions enable an analysis similar to the
one of Weinshall and Tomasi [4] and allow affine shape to
be recovered from the occluding contour without the need
for Euclidean calibration or image velocity and acceleration
measurements. Furthermore, we show that by selecting the
observer’s motion plane to be tangent to an automatically-
selected point on the surface, the fourth assumption can be
reduced to simply identifying four occluding contour points
with parallel tangents in the initial image and tracking those
points across frames.
The occluding contour of a smooth surface is defined

as the projection of the visible rim, which is the one-
dimensional set of visible surface points at which the line
of sight is tangent. This set depends on the shape of the
surface and the observer’s viewpoint. Under continuous
observer motion the visible rim “slides” over the surface,
affecting the geometry of the occluding contour [10–12]. It
is well-known that the deformation of the occluding con-
tour uniquely determines surface shape. At issue is how to
recover shape accurately. For example, previous methods
measure the speeds and accelerations of image curves and
relate them to the speeds and accelerations of the observer
[11, 13–15]. As a result, sensitivity to camera calibration
and motionmeasurement errors remains an important issue,
especially in active vision systems where one or more of the
camera’s intrinsicand extrinsic parameters may change dur-
ing the reconstruction process [16].
While the visible rim’s dependency on viewpoint has

proved very useful for extracting Euclidean representations
of curved objects, this dependency is the main reason exist-
ing techniques for recovering the affine or projective shape



of such objects are not applicable. A basic requirement
for extracting non-Euclidean representations of an arbitrary
3D point set is that the projections of all points in the set
are known at at least two viewpoints. Unfortunately, the
sliding motion of the visible rim implies that even when
correspondence between occluding contour curves can be
established in images taken at different viewpoints, their
points are not, in general, projections of the same points on
the surface. Previous approaches have thus focused on ex-
tracting invariant descriptions of curved objects from just a
single image of their occluding contour. These approaches
are applicable only to restricted classes of objects (e.g., gen-
eralized cylinders [17], or algebraic surfaces [18]), where
the sparse information provided by the contour is sufficient
to uniquelydetermine the object’s affine or projective shape.
In this paper we show that when viewpoint is controllable,

the affine coordinates of every point projecting to the visible
rim can be computed directly, i.e., without computing the
visible rim’s motion over the surface or the observer’s mo-
tion parameters. We achieve this by controlling viewpoint
on a single plane so that the projection of every surface
point over which the visible rim slides can be determined
along two viewing directions on that plane. Once these pro-
jections are determined, the points’ affine coordinates are
computed using existing reconstruction methods [4, 7].
The main question we address is how to compute the

projection of a point on an unknown curved object along a
direction where the point does not project to the occluding
contour. To achieve this we use the following observation:
Suppose there is a special point on the observer’s motion
plane whose projection can be computed along every di-
rection on that plane. Then, for every surface point on that
plane there is a unique viewingdirection at which the point’s
projection coincides with the projection of the special point.
So if we can somehow adjust our viewing direction to align
it with that direction, we can compute the point’s projection
even though the pointmay not project to the occluding con-
tour. In this paper we show that such a viewing direction
adjustment is indeed possible. We develop a deterministic
strategy for performing this viewing direction adjustment
for every surface point that can project to the occluding
contour. The strategy is driven directly by the image data
and relies on maximizing or minimizing a specific geomet-
ric quantity (distance of the special point’s projection from
the contour). Furthermore, we show how the affine coordi-
nates of the special points employed by the strategy can be
computed from the object’s occluding contour.
The significance of our method lies in the use of purpo-

sive observer motion to maintain specific geometric rela-
tionships with the viewed object in order to derive an affine
representation of the object’s surface. Consequently, ob-
server motion is not used to merely change the shape of

Figure 1: Point correspondences induced by the epipolar geom-
etry. Point is the point corresponding to . When
is on the visible rim and its tangent plane is not an epipolar plane,

is the projection of , not . The lines through
along , respectively, intersect at a virtual

point (Section 5).

the occluding contour (as in previous approaches), but it is
used to change it in a well-defined way, factoring out the
need for differential image measurements and for Euclidean
calibration.

2 Viewing Geometry

Let be a smooth, oriented surface in , viewed under
orthographic projection along a viewing direction . The
visible rim of is the set of visible points whose tangent
plane, , contains a line parallel to . The occluding
contour of is the projection of the visible rim on the
image plane. When viewpoint changes along a continuous
path, the visible rim curves slide over the surface. Our goal
is to obtain a representation for all points on the surface
over which the visible rim slides. This operation requires
a correspondence between points on the surface at different
viewpoints, and between points in images. We use the
epipolar plane correspondences [11, 13, 14] for this purpose.
In particular, suppose the viewing direction changes ac-

cording to on a motion plane with normal . This
motion defines a family of planes parallel to the motion
plane called the epipolar planes. If is an occluding
contour curve at time , the epipolar plane correspondence
matches a point to the intersection of
with the epipolar plane through (Figure 1). This cor-
respondence induces a correspondence between points be-
longing to the visible rim curve that projects to . In
the following, if is a surface point projecting to at the
initial viewpoint, we denote by and the points
corresponding to and , respectively, at viewpoint .
When viewpoint moves on a single plane, the point

In the followingwe use the terms “viewing direction” and “viewpoint”
interchangeably.



slides over a curve in the intersection of the surface with the
epipolar plane through . In general, this intersection
may contain points that do not lie on the visible rim for any
viewpoint on the motion plane. Given an epipolar plane ,
the potentialvisible rim points on are the points of
that lie on the visible rim for some viewpoint in the motion
plane. Our goal is to control viewpoint on a single plane in
order to build a representation for all potential visible rim
points.

2.1 Affine Point Representations

Previous work on recovering surface shape from the oc-
cluding contour considered how the surface can be rep-
resented as a collection of local surface patches that are
combined in a Euclidean frame of reference [11, 14]. Un-
like previous approaches, we derive a surface representa-
tion consisting of a collection of points that are put in an
object-centered, affine reference frame. The basic princi-
ples behind this representation are briefly reviewed next.
Let , be a collection of points

at least four of which are not coplanar. An affine repre-
sentation of those points is a representation that does not
change if the same non-singular linear transformation (e.g.,
translation, rotation, scaling) is applied to all the points.
Affine representations consist of three components: The
origin, which is one of the points ; the affine
basis points, which are three points from the collection that
are not coplanar with the origin; and the affine coordinates
of the points .
The key advantage of affine point representations is that

they can be recovered from two images of the pointswithout
any information about the camera’s calibration or about its
motion between the two images. Specifically, we use the
following two properties of affine point representations:

Property 1 (Re-Projection Property) When the projection
of the origin and basis points is known along a viewing direction

, we can compute (1) the epipolar correspondences, and (2)
the projection of a point from its affine coordinates using

(1)

where is the projection of , is the projection
of the origin, and is the vector collecting ’s affine coordinates.

Property 2 (Affine Reconstruction Property) The affine
coordinates of can be computed using Eq. (1) when
their projection along at least two viewing directions is known.

See [1, 4, 7, 19] for the related theory, details on these properties, and
for algorithms to compute the affine representationof a collection of points.

3 Affine Shape From Contour

The Affine Reconstruction Property allows us to recover
the affine coordinates of a set of 3D points from two im-
ages of the points. Unfortunately, this property cannot be
used directly for computing an affine representation of a
curved and featureless surface from its occluding contour.
The reason is that corresponding occluding contour points
in two images are not projections of the same point on the
surface (Figure 1). The main idea of our approach is that
for any potential visible rim point there is always a pair
of orthogonal viewing directions along which the point’s
projection can be determined. Hence, we use an active ob-
server that purposefully changes viewpoint in order to reach
these viewing directions. Once these viewing directions are
reached and the point’s projection is determined, its affine
coordinates can be computed fromEq. (1). In the following
we assume that the projection of four basis points has been
identified a priori and can be tracked across frames. In
addition to providing an affine basis frame, this assumption
allows epipolar correspondences to be established. This
assumption is lifted in Section 4.
Suppose the observer is constrained to move on a single

plane. Let be a potential visible rim point, and let
be the epipolar plane through . Point projects to the
occluding contour only for viewing directions in ;
if and do not coincide (which is the case for all
but a collection of isolated points), this intersection is a
line . In order to compute ’s affine coordinates using
Eq. (1) we determine ’s projection along and along
an additional viewing direction that is perpendicular to .
We use the following simple observationwhich suggests an
indirect method for determining the projection of along
such a viewing direction (Figure 2(a)):

Observation 1 Let be the line through that is perpendicular
to and lies on ’s epipolar plane. If is a point on , the
projections of and coincide for viewing directions parallel to
.

Observation 1 tells us that ’s projection along line
can be determined even though does not project to the
occluding contour from such a viewpoint: It suffices to
know the projection of any point along that line. In the
following, we refer to viewing directions parallel to and
as ’s tangentialand normal directions, respectively, and

to ’s projection along these directions as its tangential and
normal projections.
Observation 1 imposes two important requirements for

indirectly determining the normal projection of a potential
visible rim point : The observer must be capable of (1)
defining a point that belongs to , and (2) computing ’s
projection along the normal direction of . The key idea



(a) (b)

Figure 2: (a) Computing the projection of a potential visible rim
point along two orthogonal viewing directions. Point projects
to the occluding contour along . is the normal of at
. Even though does not project to the occluding contour along
viewing directions that are not parallel to , its projection along
can be determined indirectly from the projection of point . (b)

Reaching the tangential direction of a point . belongs to
the visible rim along , where the distance between and
’s projection are maximized.

used in our approach is that if we simplywant to compute the
tangential and normal projection of an unspecified point in

, can be almost arbitrary. In particular, suppose that
the observer circumnavigates the object either clockwise
or counter-clockwise by changing viewing direction on a
single plane according to . We use the
following theorem (Figure 2(b)):

Theorem 1 Let be an arbitrary point on and let be its
projection along . Suppose is the set of potential visible
rim points for which is along . (1) is equal to the non-
empty set of potential visible rim points whose distance from is
locally extremal. (2) Suppose is an occluding contour point
on when the viewing direction is . The image separation

exhibits a local extremum at if and only if
the visible rim point projecting to is in .

So assume that we can select a point on the epipo-
lar plane and can compute its projection along arbitrary
viewing directions on . The first part of Theorem 1 guar-
antees the existence of at least one potential visible rim point
whose normal projection can be determined indirectly from
the projection of . Furthermore, the theorem’s second part
gives us a way to reach the viewpoint where a point
belongs to the visible rim, and to determine ’s tangential
projection: It suffices to circumnavigate the object on the
motion plane until the distance between an occluding con-
tour point on and ’s projection is either minimized
or maximized. ’s projection will be the point . Once

See [20] for a proof.

’s tangential direction is reached, its normal direction can
be reached by performing a viewing direction change of
radians; ’s normal projection can then be determined

indirectly from the projection of .
The potentialvisible rimpointswhose normal projections

can be computed in this fashion are not under the observer’s
control; they depend on as well as the shape of the surface.
The following corollary to Theorem 1 goes a step further,
showing that if we can compute the projection of every point
on a curve surrounding the surface at every viewpoint, we
can compute the tangential and normal projection of every
potential visible rim point on the observer’s motion plane:

Corollary 1 Let be a closed curve on the epipolar plane .
If contains in its interior and is a potential visible rim
point on , there is at least one point on such that .

4 Active Affine Shape Recovery

Our goal is to control the observer’s viewpoint in order
to recover the affine coordinates of all potential visible rim
points. We do this by (1) selecting a motion plane, (2) se-
lecting an affine basis, and (3) circumnavigating the object
on that plane so that the tangential and normal projections
of all potential visible rim points can be determined. The
motion plane and affine basis selection problems were stud-
ied in [12]: If four occluding contour points with parallel
tangents can be identified in the image and the observer’s
motion plane is selected parallel to the points’ tangents,
those points define a valid affine basis.
The basic step of ourmethod is to determine the tangential

and normal projections of all potential visible rim points on
a single epipolar plane; this step can then be applied in
parallel to all epipolar planes intersecting the initial image.
Below, we first outline the main ideas of this step, and in
Sections 5 and 6 present more details.
Suppose that the observer’s motion plane has been se-

lected. Let be a point on the occluding contour at the
initial image, and let be the epipolar plane through .
Observation 1 tells us that if we can define a point on
and can compute its projection along arbitrary viewing

directions on the selected motion plane, we can compute
the tangential and normal projection of a potential visible
rim point by moving to its tangential and normal
directions. Furthermore, Corollary 1 says that if we repeat-
edly perform this process by selecting the points from an
a priori defined curve on surrounding the object, we will
obtain increasingly more complete representations of the
potential visible rim points on . We consider how such a
representation can be built by circumnavigating the object.
Viewing directions on can be thought of as positions

on a unit circle , defined by the intersection of the unit
sphere with . As the observer changes viewing direction



on the corresponding point moves on . Let be an a
priori defined curve on surrounding the object, and let

. Since represents the set of all possible
viewing directions on , the tangential direction of every
potential visible rim point in , corresponds
to a position on . Hence, to determine the tangential
projection of some point in a specific set , it suffices
to detect when the corresponding position on is reached
during a circumnavigation of the object. Theorem 1 allows
us to perform this detection using a simple extremum-based
method: The observer’s viewing direction will be aligned
with the tangential direction of when the distance between
’s projection and an occluding contour point on is either

minimized or maximized.
Once ’s tangential direction has been detected, its nor-

mal direction is determined by detecting when the ob-
server’s viewing direction becomes perpendicular to ’s
tangential direction. This allows the tangential and nor-
mal directions of all potential visible rim points in

, to be detected after total viewing direction change
of at most radians. These considerations lead to the
following strategy for computing the affine coordinates of
potential visible points on a single epipolar plane:

Active Affine Shape Recovery Strategy

Step 1: Select a motion plane and an affine basis.
Step 2: Compute a continuous curve containing in its

interior, and sample it to obtain points .
Step 3: Perform a small clockwise viewing direction change.
Step 4: Let be the occluding contour points on

along .

Step 5: For every and every ,
a. compute the projection, , of along ,
b. compute the distance ,
c. if is a local extremumof , the tangential direction

of a point in has been reached. Store the tuple
along with the projections of the

affine basis points.
Step 6: If is perpendicular to the direction in a stored

tuple , the normal direction of the point
projecting to has been reached. Solve Eq.

(1) with and
to compute ’s affine coordinates.

Step 7: Repeat Steps 3-6 until the total viewing direction change
is at least radians.

In the next section we introduce the notion of virtual
points, and briefly discuss how virtual points enable us to
perform Step 6 of the Active Affine Shape Recovery Strat-
egy. Section 6 then studies the extremum detection process
of Step 5c in the presence of noise in image measurements.

5 Virtual Points

The Active Affine Shape Recovery Strategy described in
the previous section made an important assumption: Given
an epipolar plane , the observer must be able to define
points on whose projection can be computed along view-
ing directions on . We call such points , because
they are not required to correspond to any surface markings,
or required to lie on the object’s surface (Figure 1):

Definition 1 (Virtual Points) If are correspond-
ing occluding contour points and and are not parallel,
there is a unique point , called a virtual point, whose projec-
tion along is , andwhose affine coordinates are
computedby solvingEq. (1) with .
Furthermore, is the point of intersection of the ray through
along , and the ray through along .

The affine coordinates of a virtual point on a given epipolar
plane can be computed by selecting an occluding contour
point on that plane, changing viewing direction, and apply-
ing the above definition.
In our approach, we use virtual points to detect orthogo-

nal viewing direction adjustments without requiring viewer
motion measurements (Step 6 of the Active Affine Shape
Recovery Strategy). Specifically, suppose the observer is
circumnavigating the object according to and consider
the problem of detecting when becomes perpendicular
to . We use the following observation which allows
us to perform this detection using a simple maximization
approach (Figure 3):

Observation 2 Let be two distinct virtual points along
. The separation between the projections of at , as

a function of , has exactly two maxima corresponding to viewing
direction changes of and radians relative to .

Observation 2 allows detection of orthogonal viewing di-
rection changes by first computing the affine coordinates of
two virtual points on a line parallel to the initial viewing di-
rection and then detectingwhen their distance ismaximized
in the image (Figure 3).
Virtual points can also be used to define a planar curve

enclosing the object without having to explicitly extract
information about the object’s shape (Step 2 of the Active
Affine ShapeRecovery Strategy). We show in [20] that such
a curve can be defined as the convex hull of a collection
of virtual points whose coordinates are computed during a
preliminary circumnavigation of the object.

6 Measurement Errors

Our Active Affine Shape Recovery Strategy relies on two
extremum-finding operations: (1) Determining at which



Figure 3: Detecting orthogonal viewing direction changes. The
virtual points are the intersections of the ray through
along with the ray through along , and the ray
through along , respectively. The orthogonal direc-
tion is reached when the separation of the virtual points’
projection is maximized.

viewpoint during an object’s circumnavigation the projec-
tion of a virtual point is at an extremal distance from the
occluding contour (Step 5c of the Active Affine Shape Re-
covery Strategy), and (2) determining at which viewpoint
the distance between the projections of two virtual points is
maximized (Step 6). Since errors in image measurements
can influence these operations, they should be taken into
consideration. Below we consider the effect of measure-
ment errors in the extremum-finding operation of Step 5c.
Specifically, we show that the position of the virtual points
defined by the strategy influences the strategy’s sensitivity
to noise. We also show how sensitivity can be improved
through an iterative process that modifies the positions of
the virtual points.
Suppose is a virtual point on epipolar plane , and

suppose we want to compute the affine coordinates of a
point in . Let be the projection of along ,
and let be an occluding contour point for which the
image separation, , exhibits a local extremum
at . We consider effects of corrupting
with a measurement error . Theorem 2 gives a second-
order approximation to the reconstruction error, :

Theorem 2 Let be the distanceof from the reconstructed
point. If is locally extremal at and

is small, is given by

(2)

where is the radius of curvature of at the point
corresponding to ; is the distance between
and the center of the osculating circle [21] of at ; and is
the angle between and .

Theorem 2 tells us that the distance between a virtual
point and the surface can have a dramatic effect on the qual-
ity of the reconstruction results: When is near the center
of the osculating circle of at , the reconstruction
error is only linearly dependent on the error . On the
other hand, if ’s distance from the center of the osculating
circle is large, the reconstruction error is dominated by this
distance (Figure 4). Resistance to noise can therefore be
improved by selecting a point close to the center of ’s
osculating circle.
So suppose the reconstructed point is and let be

the center of the osculating circle at . We use a method
which relies on the fact that when is near ,
the position of relative to and can be determined
from the behavior of . This quantity exhibits
a local minimum at if and only if lies between

and , and exhibits a local maximum if and only if
lies between and . To decrease the distance between
points and , we perform a binary search on the line
through and the reconstructed point. Depending on the
extremum type of , is repositioned
either mid-way between and its current position, or
at twice its current distance from . Both operations
can be performed through linear combinations of the affine
coordinates of and .

7 Experimental Results

To demonstrate the effectiveness of our affine shape re-
covery approach we have performed preliminary experi-
ments using both simulated and real data. Simulations
were used to investigate the method’s behavior for differ-
ent shapes of the object’s cross-section and in the presence
of noise. We considered cylindrical objects with elliptical
cross-sections. Simulated data were generated by (1) ran-
domly selecting four points on the object to be the affine
basis points, and (2) computing the occluding contour and
the projection of the affine basis points at 100 equally-
spaced viewpoints corresponding to a rotation of radians
about the object’s axis. The occluding contour and the pro-
jected affine basis points were the only inputs to the system.
Measurement noise was incorporated by perturbing the im-
age coordinates of the affine basis points and the occluding
contour points at every viewpoint by zero-mean, normally-
distributed random values.
Tables 1 and 2 summarize the simulation results. Table

1 shows the reconstruction errors when the position of the
virtual points is fixed. The table shows that noise sensitivity
increases considerablywhen the ratio of themajor andminor
axes of the ellipse decrease, exactly as predicted byTheorem

The objects’ axis was kept perpendicular to the plane of the cross-
section and parallel to the image plane.



Figure 4: Recovering elliptical cross-sections. When a virtual
point is positioned close to a high-curvature segment of the
ellipse, the radius of curvature at is much smaller than
the distance between and the center of the osculating circle
at . Theorem 2 tells us that this distance will dominate the
reconstruction error when measurement noise is present.

Noise variance
0% 0.2% 0.4% 0.6% 0.8%

0.5 0.8330 2.0414 15.9003 1.4364 2.7340
0.37 1.5683 1.8512 2.9530 2.3226 6.3211
0.25 2.5076 3.8449 5.3562 5.3207 6.8293
0.1 3.8645 4.3084 6.2938 13.4600 26.3474

Table 1: Reconstruction errors with no virtual point position
updates. Errors are computed by averaging over 20 runs of the
system the mean reconstruction error for 10 points reconstructed
on a single epipolar plane. Errors are shown for different values
of the ratio of the cross-section’s minor and major axes. Noise
variance is given as a percentage of the cross-section’smajor axis.
This axis was kept constant throughout the experiments.

2 (Figure 4). Table 2 shows that these errors can be reduced
by iteratively repositioning the virtual points defined in Step
2 of the Active Affine Shape Recovery Strategy according
to the method outlined in Section 6. This repositioning
operation is particularly effective when the curvature of
the surface varies considerably along the cross-section (i.e.,
when is small).
Figure 5 shows the results of applying our strategy to a

real scene. The object was placed on a platformmounted on
the end-effector of a PUMA 700 manipulator. Four easily-
identifiable markers were rigidly attached to this platform
to define the affine basis. The occluding contour edges and
the four affine basis points were then automatically tracked
while the object was rotated about a vertical axis. A total

Noise variance
0% 0.2% 0.4% 0.6% 0.8%

0.5 0.4807 0.8022 1.2538 1.4810 1.7735
0.37 1.0403 1.2550 2.5328 4.0618 1.4557
0.25 1.8557 1.9900 2.5822 3.6199 4.3595
0.1 2.4174 6.8125 3.6932 4.5535 8.4308

Table 2: Reconstruction errors after two iterations of the virtual
point repositioning method of Section 6.

of 256 images were obtained corresponding to a rotation
of approximately radians. No information about the
object’smotion or about the camera’s calibration parameters
was used. The position of the virtual points was updated
using two iterations of the method outlined in Section 6.
The reconstruction results can be evaluated by re-

projecting reconstructed cross-sections along different
viewing directions. Figures 5(b),(c) show that the object’s
circular cross-section was correctly reconstructed. The re-
constructed points do not lie on a single plane, however, as
evidenced by the points’ re-projection in Figure 5(d). Such
errors can be reduced by incorporating a constraint in the re-
construction of individual points that enforces the planarity
of the cross-section. In addition to simply recovering the po-
sitions of points on the cross-section, Figure 5(d) shows that
our shape recovery strategy can be used to obtain surface
curvature information: The projection of the center of the
osculating circle at different points on the cross-section can
be localized by iteratively updating the position of virtual
points according to the method of Section 6.

8 Concluding Remarks

We are currently considering a number of extensions to
the basic approach described in this paper. These include
(1) studying how robustness to noise can be improved by
constraining the reconstruction of nearby points, (2) ex-
tending our active shape recovery approach to the case of
perspective projection, and (3) studying how accurate planar
motions on the tangent plane of arbitrary visible rim points
can be achieved with an uncalibrated hand-eye system.
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