
Global Surface Reconstruction by Purposive Control of Observer Motion 

Kiriakos N. Kutulakos Charles R. Dyer 
kyros @cs.wisc.edu dyer@cs.wisc.edu 

Computer Sciences Department 
University of Wisconsin 

Madison, Wisconsin 53706 

Abstract 
What real-time, qualitative viewpoint-control behaviors 

are importantforpelfarming global visual exploration tasks 
such as searching for  specijic su$ace markings, building 
a global model of an arbizrary object, or recognizing an 
object? In this paper we consider the task of purpose- 
fully controlling the motion of an active, monocular ob- 
server in order to recover a global description of a smooth, 
arbitrarily-shaped object using the occluding contoul: By 
studying the epipolarparameterization, we develop two ba- 
sic behaviors that allow reconstruction of a patch around 
any point in a reconstructible suface region. These behav- 
iors rely only on information extracted directly from images 
(e.g., tangents to the occluding contour), and are simple 
enough to be executed in real time. We then show how 
global surface reconstruction can be provably achieved by 
( I )  integrating these behaviors to iteratively “grow” the 
reconstrueted regions, and (2) obeying four simple rules. 

1 Introduction 

In this paper we use an active (i.e., mobile) observer that 
purposefully controls its viewpoint to derive a global, three- 
dimensional description of an object. Our approach solves 
the following problem: How should the viewpoint of the ob- 
server be controlled in order to generate a dense sequence of 
images maximizing the area of the region reconstructed on 
the object’s surface? We call this the global su$ace recon- 
struction task. We consider this task for smooth surfaces of 
arbitrary shape; the object is unknown, can be non-convex, 
and can self-occlude. We use a shape-from-motion mod- 
ule for extracting surface shape information [l]; we assume 
that the ob.ject is stationary and the observer is able to freely 
move on a sphere around it. 

Our goal is to control the observer’s viewpoint so that 
global surface reconstruction is guaranteed. When trying to 
perform tasks that depend on an object’s appearance, prov- 
able correctness is critical: ‘The appearance of objects can 
drastically change dependin,g on the observer’s viewpoint, 
making ad hoc viewpoint control mechanisms unpredictable 
and incomplete. Furthermore, like many others (e.g., [2,3]), 
we are interested in mechanisms that tightly couple sensing 
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and action and allow real-time execution. This is because 
our purpose is to exploit the ability to quickly control view- 
point to achieve simple and efficient solutions for a given 
task, rather than rely on the availability of large amounts of 
computational power [3]. To emphasize this point we refer 
to such mechanisms as viewpoint control behaviors. 

Very little work has been published on the use of view- 
point control behaviors for reconstruction, exploration or 
recognition tasks. However, the few recent approaches tak- 
ing advantage of viewpoint-control behaviors demonstrate 
their importance and generality. We showed in an earlier 
paper [4] that the shape recovery problem for smooth sur- 
faces becomes considerably simplified if the observer uses 
a simple viewpoint-control behavior to move to a special 
viewpoint, which for the case of surfaces of revolution cor- 
responds to their side view. The work of Wilkes and Tsotsos 
[SI illustrates how the ability to purposefully and quickly 
change viewpoint can simplify the task of object recognition 
in a simple world of Origami objects. Gross0 and Ballard 
[6] are currently designing a head-eye system capable of 
implementing such viewpoint controls. Recent work by 
Blake et al. [7] showed that shorter paths can be achieved 
in robotic navigation tasks if the shape of the obstacles is 
taken into account during navigation. 

Apart from the above approaches, viewpoint control 
for performing various tasks has been treated as a com- 
plex and computationally-intensive optimization problem 
(i.e., “where to look next”), where the best next view- 
point is searched for within the space of all possible view- 
points [8]. In tasks involving global surface reconstruction, 
the viewpoint-control mechanisms assumed that a three- 
dimensional representation of the visible surfaces can be 
recovered independently from each viewpoint [&lo], rul- 
ing out their applicability in more qualitative visual explo- 
ration tasks. Another disadvantage of such mechanisms is 
that they do not take into account how the global geometry 
of the surface (e.g., self-occlusions) affects the correctness 
of the global reconstruction algorithms. This makes the re- 
constructed regions unpredictable. Moreover, in the context 
of animate [3] and purposive [2] vision, their major draw- 
back is their inability to exploit real-time viewpoint control 
to simplify the reconstruction process (e.g., by utilizing 
shape-from-motion approaches, which have been shown to 
considerably simplify shape recovery computations [I]). as 
well as to simplify the viewpoint control process itself. 
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Figure 1 : Forcing the visible rim curve (I, shown as a white circle 
in (a), to slide over the dark curve drawn on the torus. 

In this paper we use the occluding contour to control 
viewpoint and to derive shape information. The occlud- 
ing contour is the projection of the visible rim, the one- 
dimensional set of visible surface points at which the line 
of sight is tangent. The occluding contour is a rich source 
of shape information [ 1 1,121. Moreover, contrary to ap- 
proaches that use sophisticated sensing mechanisms to re- 
construct the scene from a single viewpoint or a small num- 
ber of viewpoints [9, lo], recent results demonstrate that the 
occluding contour can be reliably detected in edge images 
[13], and that shape (e.g., curvature) can be efficiently and 
accurately recovered from the occluding contour [ 1,7]. 

An important property of the visible rim is that it de- 
pends on the viewpoint of the observer and the shape of the 
surface: Under continuous observer motion the visible rim 
“slides” over the surface and may change its connectivity, 
affecting the geometry and topology of the occluding con- 
tour and revealing shape information for the parts of the 
surface over which the visible rim slides. We exploit this 
property by formulating global surface reconstruction as the 
qualitative task of controlling the observer’s viewpoint so 
that the visible rim slides over the maximal connected and 
reconstructible surface regions intersecting the visible rim 
at the initial viewpoint. This formulation is particularly 
important because it separates the issue of controlling the 
observer’s viewpoint from the issue of reconstructing the 
surface, i.e., processing the images produced during the ob- 
server’s motion. Consequently, the mechanisms developed 
in this paper can be used for other visual exploration tasks 
(e.g., inspection) where the central problem is how to con- 
trol viewpoint to make new points on an object’s surface 
visible without necessarily reconstructing its surface. 

Our approach is developed in the context of three increas- 
ingly more general reconstruction tasks: The focal surface 
reconstruction task, where the observer must control view- 
point to reconstruct a patch around a selected visible rim 
point; the incremental surface reconstruction task, where 
the observer must control viewpoint to iteratively “grow” 
the reconstructed patches on the surface; and the global 
surfuce reconstruction task, where the entire reconstructible 
regions intersecting the visible rim at the initial viewpoint 
are reconstructed. In [14] we showed how the observer 
can control viewpoint to perform the local and incremen- 
tal surface reconstruction tasks under the assumption that 
topological changes on the visible rim do not occur in the 

vicinity of the reconstructed patch. In this paper we con- 
sider the global surface reconstruction task, showing how 
to control viewpoint to ensure that the reconstructed patch 
covers an entire reconstructible region on the surface. This 
involves paying specific attention to the global shape of the 
surface and to the topological changes of the visible rim that 
may occur during the observer’s motion. 

Intuitively, the main difficulty in solving the global sur- 
face reconstruction task is that although the observer has 
some control over the motion of the visible rim over the 
surface, this control is not complete; the motion of the vis- 
ible rim also depends on the shape of the surface itself. In 
addition, the visible rim’s topology can change unexpect- 
edly, further complicating the reconstruction process. To 
illustrate the difficulties involved in globally reconstructing 
an object, consider the torus shown in Figure l(a). In order 
to reconstruct the torus, the observer must force the visible 
rim to slide over all points along the dark curve drawn on its 
surface. One way to proceed is to move downward, forcing 
the smooth curve a, which is part of the visible rim, to slide 
over the segment of the dark curve that is initially occluded. 
As the observer moves downward, however, cy shrinks to a 
point and disappears (Figure l(c)), changing the topology 
of the visible rim and making any further downward mo- 
tion ineffective. The observer must now move differently 
to continue the reconstruction process. Similar difficulties 
occur due to geometrical changes in the visible rim (i.e., 
even when no topological changes of the visible rim occur). 

This simple example illustrates that a number of basic 
steps are necessary to achieve global surface reconstruction. 
It is therefore necessary to ask how many times such actions 
need to be executed, whether the whole surface is always 
reconstructed, and whether the reconstruction process is 
guaranteed to terminate. These issues are precisely the 
reasons why provably-correct viewpoint control behaviors 
are necessary: Since the answers to these questions are not 
evident even for geometrically-simple surfaces such as the 
torus, such behaviors are necessary if one hopes to use them 
for reconstructing the surface of real objects. 

2 Local Shape from Occluding Contour 

Let S be a smooth, generic surface bounding a finite 
volume in IR3. We assume S is viewed under spherical 
projection and that the observer moves on a motion sphere 
surrounding the surface. The visible rim of S at a viewpoint 
c is the set of visible surface points p for which the tangent 
plane, Tp(S) ,  contains the line segment connecting p and 
c. The occluding contour is the projection of the visible 
rim on the image. For almost all positions of the observer, 
the visible rim is a collection of closed and open smooth 
curves whose endpoints project to cusps or T-junctions on 
the occluding contour [ 121. 

The shape and topology of the visible rim and the occlud- 
ing contour depends on S and the observer’s viewpoint. A 
suitable surface parameterization relating the shapes of S, 
the visible rim, and the occluding contour is the epipolar 
parameterization [ 1,111. Intuitively, the epipolar param- 
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Figure 2: The epipolar Parameterization. Curves x(s, to) and 
x(s, to + At) are curves on the visible rim of the surface corre- 
sponding to observer positions c(t0) and c(t0 + At) ,  respectively. 
The tangent to the curve x(s0, t) for t = t o  is along the line 
through c(t0) and p .  The curve’s normal is in the epipolarplane, 
defined by the direction of motion, v(t), and the line c( t0)p.  

eterization captures the idea that under continuous motion 
of the observer (and when the topology of the occluding 
contour does not change), the set of points comprising the 
visible rim consists of smooth curves that “slide” over the 
surface. This allows the non-concave parts of the surface 
to be considered as a collection of patches, each of which 
is a family of visible rim curves (Figure 2). The epipolar 
parameterization was used in [ 1, l  I ]  to recover the funda- 
mental forms of all points in II from the deformation of the 
occluding contour during the observer’s motion. 

The crucial point in the definition of the epipolar parame- 
terization is that the epipolar parameterization imposes four 
strong constraints on the observer’s ability to recover a patch 
II around a visible rim point p :  

Epipolar Reconstructibility Constraints 
CO: p must be visible from some viewpoints on its tangent plane. 
C1: p must not be the endpoint of a visible rim curve. This is 

because it was assumed that p is not on II’s boundary. 
C2: If v(t) is the observer’s velocity, Tp(S)  must not contain 

v(t). This is because in that case point p remains on the 
visible rim. 

Ck The topology of the visible rim curve containing p must 
not change in the neighborhood of p under an infinitesimal 
motion of the observer. Only a finite collection of curves on 
the surface cannot satisfy this constraint. These curves bound 
the surface points not satisfying constraint CO (Section 4). 

The Epipolar Reconstructibility Constraints show that the 
epipolar parameterization cannot be used to describe the 
surface in the neighborhoodof every visible rim point. They 
also show that the surface patch II depends on how the 
visible rim curvex(s, to  + At) slides over the surface when 
At varies continuously. Consequently, the dynamics of 
the visible rim curves determine the patches reconstructed. 
These dynamics depend on the local and global shape of the 
surface as well as the observer’s motion. 

The Epipolar Reconstructibility Constraints characterize 
the reconstructible regions on the surface, i.e., they tell us 
what is the most we can expect from any viewpoint-control 
behavior that uses the occluding contour for reconstruction: 

Reconstructible surface regions: The reconstructible 
regions are the maximal connected sets of points for 
which all Epipolar Reconstructibility Constraints can 
be simultaneously satisfied. 

We will see that the reconstructible regions are bounded 
by points that can satisfy constraint CO but not constraint 
C3. Constraint C3 applies only to surface points belonging 
to visual event curves, briefly discussed below. 

2.1 Visual Event Curves 

The topology of the occluding contour of a smooth sur- 
face is stable for almost all viewpoints. Results from singu- 
larity theory show that the space of viewpoints can be par- 
titioned into a collection of maximal connected cells within 
which the occluding contour’s topology remains constant 
[ 12,151. Visual events occur when the observer’s viewpoint 
belongs to the boundaries of these cells. An infinitesimal 
perturbation of such a viewpoint results in changes in the 
occluding contour’s topology. A catalog of the visual events 
can be found in [ 151. For generic surfaces, the visual events 
are associated with a collection of surface curves, called the 
visual eventcurves.l The visual event curves relevant to our 
analysis are (1) the parabolic surface curves, (2) the curves 
~ ( s ) ,  associated with triple-point events, such that the line 
segment T ( S ) C  touches the surface at three distinct points 
for some viewpoint c, (3) the curves y(s), associated with 
tangent-crossing events, such that the line segment y(s)c 
touches the surface at two distinct points with identical tan- 
gent planes for some viewpoint c,  and (4) the curves CT(S), 

associated with cusp-crossing events, such that the line seg- 
ment a(s)c  touches the surface at two distinct points and 
is an asymptote at a(s )  for some viewpoint c. A subset of 
these curves bounds the reconstructible regions. We char- 
acterize this subset precisely in Section 4. 

3 Local Surface Reconstruction 

In this section we consider the local surface reconstruc- 
tion task Suppose the observer is at position c, and let p 
be a visible rim point on the object’s surface that is identi- 
fied by its projection, p,,,, on the occluding contour. The 
observer’s task is to continuously control viewpoint, start- 
ing from point c,  in order to recover the local shape of the 
surface for all points in some neighborhood II of p .  We use 
the following two observations: 

0 If p is the endpoint of a visible rim curve, the epipo- 
lar parameterization cannot describe the surface in the 
neighborhood of p .  However, there are other view- 
points on p’s tangent plane at which p is not the end- 
point of a visible rim curve, i.e., at which Epipolar 
Reconstructibility Constraint C1 is satisfied. 

0 The point p and the observer’s viewpoint may be such 
that the occluding contour’s topology changes in the 

‘ S e e  [15] for details on the definition of these curves. 
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neighborhood of p under an infinitesimal viewpoint 
perturbation. For all points p except those lying on 
a subset of the visual event curves, the observer can 
satisfy Epipolar Reconstructibility Constraint C3 by 
moving to other viewpoints on p’s tangent plane at 
which the contour’s topology does not change in the 
neighborhood of p if these viewpoints are infinitesi- 
mally perturbed. 

Based on these observations, for any given viewpoint 
we distinguish four types of visible rim points: Ordinary 
points, which satisfy constraint C3 and are not endpoints 
of a visible rim curve; cusp points and T-junction points, 
which satisfy constraint C3 and are visible rim endpoints 
projecting to a cusp and a T-junction on the occluding con- 
tour, respectively; and degenerate points, which are visible 
rim points not satisfying constraint C3. These four types 
of visible rim points are exhaustive and give rise to four 
instances of the local surface reconstruction task. 

To perform the local surface reconstruction task we use 
a basic behavior that controls the observer’s motion to deal 
with the case where p is ordinary. The other three cases are 
treated by (1) reaching a viewpoint where p is ordinary, and 
(2) using the basic behavior in order to recover the shape 
of the surface in a neighborhood of that point. Below we 
outline the behavior handling the case of ordinary points for 
completeness (see [ 141 for details), and focus on the case of 
degenerate points which is central for obtaining the global 
results of Sections 4 and 6. The interested reader is refered 
to [ 14,161 for a detailed treatment of the remaining cases. 

3.1 Reconstruction Around Ordinary Points 

Ordinary Patch Reconstruction Behavior 

Step 1: Select a point p on the visible rim that is not the endpoint 
of a visible rim curve. This selection is done indirectly 
by selecting p’s projection, pocc, on the occluding contour. 
Point pocc must not be the endpoint of an occluding contour 
curve. 

Step 2: Compute the surface normal at p .  The normal is given by 
T A pocc, where T is the tangent to the occluding contour 
at pocc HI.  

Step 3: (Reconstructing the occluded points near p . )  Select a 
direction VI for moving on the motion sphere that satisfies 
the inequality n(p) . v1 > 0. Change viewpoints along 
v1 while continuously monitoring the deformation of the 
occluding contour curve that initially contains pocc. 

Step 4: (Reconstructing the visible points near p . )  Move back to 
the initial viewpoint and reapply Step 3 by selecting another 
direction of motion v2 that satisfies the inequality n(p) . 
v2 < 0 .  

Two components of the above behavior are purposely left 
unspecified: The choice of directions v1 and va in Steps 
3 and 4, respectively, and the condition for terminating the 
observer’s motion in these two steps. In Section 6, where we 
consider the global surface reconstruction task, we show that 

1 

\ 
1 

Figure 3: Surface geometry around a degenerate point p .  A 
top view of the tangent plane of p is shown. Shaded regions 
correspond to the intersections of Tp(S )  with the object. In this 
example, p belongs to a visual event curve associated with a triple- 
point event: the line through p and the observer’s viewpoint, c, 
touches the surface at three points. (a) A small viewpoint change 
on Tp(S )  makes p ordinary. (b) The geometry of the intersection 
Tp(S)  f l  S forces p to become occluded when small viewpoint 
changes are performed. However, there are viewpoints on Tp(S) 
at which p is ordinary. (c) The geometry of Tp(S)  n S forces p to 
be occluded at all viewpoints except c. 

when executing the Ordinary Patch Reconstruction Behav- 
ior the observer must obey a number of rules that “ground” 
these steps. 

3.2 Reconstruction Around Degenerate Points 

Suppose that the observer is moving along a curve c ( t ) ,  
and that the topology of the visible rim changes in the vicin- 
ity of a degenerate visible rim point p at viewpoint c = c( to ) .  
This can happen only if the line connecting c and p has a 
high order contact with the surface or if it contacts the sur- 
face at multiple points [12], i.e., if and only if p belongs to 
a visual event curve. If the observer makes an infinitesimal 
viewpoint change to a new viewpoint, c’, on T p ( S ) ,  the line 
connecting c’ and p will either have lower order contact 
with the surface or will touch the surface at fewer points. 
Hence, i f p  is visible from the new viewpoint, p will become 
an ordinary visible rim point (Figure 3(a)). Unfortunately, 
p may no longer be visible (Figure 3(b)). In this case, in 
order to make p ordinary the observer must move to distant 
viewpoints on Tp(S)  from which p is visible. We therefore 
need to specify how the observer should move and when to 
stop. 

The first question can be answered by moving either 
clockwise or counterclockwise on a circle in T p ( S )  around 
p.  The direction of motion on this circle is not important. 
The observer should stop when p becomes ordinary. It is 
easy to see that if there is an open arc of viewpoints on the 
observer’s motion circle from which p is visible, any view- 
point on that arc guarantees that p is an ordinary visible rim 
point at that viewpoint. To completely specify the observer’s 
motion it remains to give a way of detecting when p becomes 
visible again. A quantitative approach to this problem is to 
first determine the three-dimensional coordinates of p ,  and 
then continuously check, during the observer’s motion, if 
any visible rim point with tangent plane coincident to Tp( S) 
matches those coordinates. To avoid dependence on such 
coordinate information we simply observe that the occlud- 
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Figure 4: Forcing a degenerate point on the torus to become 
ordinary. Top row: The observer moves downward until the vis- 
ible rim segment pointed by the triangle shrinks to a degenerate 
point p. The tangent plane at p is horizontal. The visual event 
corresponding to the disappearance of that segment is a tangent- 
crossing event. Bottom row: Moving on Tp(S)  in order to make 
p ordinary. The black horizontal line is the projection of Tp(S)  in 
the image. The observer performs a clockwise viewpoint change 
on Tp(S)  until an ordinary visible rim point with tangent plane 
identical to Tp (S) is detected. 

ing contour must be tangent to Tp( S) at p’s projection. This 
leads to the following qualitative viewpoint control behavior 
for reconstructing the surface around p (Figure 4): 

Degenerate Patch Reconstruction Behavior 
Step 1: Letp(t0-Gt) be the visible rim point at position c(t0 -at)  

that is matched top by the epipolar parameterization. Com- 
pute the tangent plane at pas the limit limst-0 Tp(tO 4) (S) .  

Step 2: Perform a small counterclockwise motion on Tp(S) .  If p 
remains visible, set q = p and continue with Step 5.  Other- 
wise, return to c( t0) .  

Step 3: Perform a small clockwise motion on Tp(S) .  If p remains 
visible, set q = p andcontinue with Step 5. Otherwise, return 

Step 4: Move clockwise on Tp (S) while continuously monitoring 
the occluding contour, until either c(t0) is reached or there is 
an ordinary visible rim point q whose tangent plane coincides 
with Tp(S).  

Step 5: If c ( t 0 )  is reached, stop. Otherwise, apply the Ordinary 
Patch Reconstruction Behavior to reconstruct a patch around 
q, and continue with Step 4. 

Using the above behavior, local reconstruction is not 
achieved forp if and only if p is occluded from all but a finite 
set of viewpoints on its tangent plane. Such points never 
become ordinary during the observer’s motion on Tp(S)  
(Figure 3(c)). This is not a limitation of the Degenerate 
Patch Reconstruction Behavior; Epipolar Reconstructibil- 
ity Constraint C3 cannot be satisfied, and there are simply 
no observer motions that force the visible rim to slide over 
a neighborhood of such a point to allow reconstruction. 

to c( t0) .  

4 The Reconstructible Surface Regions 

The analysis of the local surface reconstruction task gives 
us a way to characterize the reconstructible regions on the 

Figure 5: The visibility arcs of a pointp. A top view of the tangent 
plane of p is shown. Shaded areas correspond to the intersections 
of Tp( S) with the object. (a)-(c) Approaching a visual event curve 
T associated with a triple-point event. Point p has two visibility 
arcs. As p approaches 7, one of the visibility arcs of p degenerates 
to a point. In this case, the point p in (c) belongs to T ,  but is 
not contained in the boundary of a reconstructible surface region; 
the neighborhood around p can be reconstructed by moving to a 
viewpoint in the remaining visibility arc of p. (d)-(f) Approaching 
a visual event curve T associated with a triple-point event. Point p 
now has one visibility arc. Asp approaches 7 ,  the visibility arc of 
p degenerates to a point. In this case, p asymptotically approaches 
the boundary of a reconstructible surface region. 

surface by characterizing their boundaries. In particular, 
the patch reconstruction behaviors in Section 3 allow us to 
reconstruct a surface patch around all surface points except 
for (1) points that are never visible from viewpoints on 
their tangent plane, and (2) points on visual event curves 
that are visible only from a finite number of viewpoints 
on their tangent plane. For these points, there is no path 
the observer can follow that forces the visible rim to slide 
over their neighborhood. This leads directly to the following 
characterization of the reconstructible regions on the surface 
[16]: 

Reconstructible surface regions: The reconstructible 
surface regions are the maximal connected sets of 
points that are visible from a one-dimensional set of 
viewpoints on their tangent plane. 

Theorem 1 (Reconstructible region boundaries) A point p is 
on the boundary of a reconstructible sugace region if and only 
if (1) it belongs to either a parabolic curve bounding a suface 
concavity, a curve T ( t )  associated with a triple-point event, a 
curve r(t) associated with a tangent-crossing event, or a curve 
~ ( t )  associated with a cusp-crossing event, and ( 2 )  is visiblefrom 
only a jnite number of viewpoints on its tangent plane. 

An intuitive description of Theorem 1 can be given as 
follows. To each point p in a reconstructible surface region 
we can associate a collection of visibility arcs. These arcs 
are simply the open and connected one-dimensional sets 
of viewpoints on p’s tangent plane from which p is visible 
(Figure 5) .  When p asymptotically approaches one of the 
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above visual event curves, the length of at least one of 
its visibility arcs decreases, diminishing to zero (Figure 
5(a)-(c)); this can only happen for the visual event curves 
listed above. Now, if the length of all visibility arcs of p 
diminishes to zero, the visual event curve approached by 
p belongs to the boundary of the reconstructible regions 
on the surface (Figure 5(d)-(f)). The visual event curves 
listed in Theorem 1 are therefore potential boundaries of 
a reconstructible surface region. They bound such regions 
only if they contain points with no visibility arcs. 

5 Incremental Surface Reconstruction 

The goal of the global surface reconstruction task is to 
reconstruct the reconstructible surface regions that inter- 
sect the visible rim at the initial viewpoint. To achieve 
this, we incrementally “grow” the patches initially recon- 
structed on the surface. The following composite behav- 
ior is based on the observation that the boundaries of the 
already-reconstructed patches were endpoints of the visible 
rim at previous viewpoints. See [14] for more details. 

Incremental Reconstruction Behavior 

Step 1: If there exists a portion of the surface that has not been 
reconstructed, select a point p on its boundary and let c be 
the viewpoint at which p projected to the occluding contour. 

Step 2: Move to c,  use the viewpoint control behavior appropriate 
for performing the local surface reconstruction task around 
p ,  and continue with Step 1. 

The specific algorithm for selecting the points p on the 
boundary of the already-reconstructed surface regions is 
not important for guaranteeing their successive expansion. 
However, in order to perform the global surface reconstruc- 
tion task the observer must obey an additional rule when 
doing this selection; we discuss this rule in Section 6. 

6 Global Surface Reconstruction 

What kinds of‘ behaviors can perform global surface re- 
construction? In the Introduction we motivated the need for 
behaviors for which (1) the reconstruction process does not 
terminate (i.e., at least one of the component behaviors is 
executed an infinite number of times) if and only if there 
is no finite-length path the observer can follow that allows 
global surface reconstruction (finite termination), and (2 )  
if the reconstruction process terminates, the reconstructed 
points must be the union of the reconstructible regions inter- 
secting the visible rim at the initial viewpoint, and if it does 
not terminate the reconstructed points must asymptotically 
approach that set (completeness). 

In this section we show that global surface reconstruction 
can be achieved by (1) using the Incremental Reconstruc- 
tion Behavior, while (2) obeying a number of simple rules 
that constrain how that behavior is executed. Motivated by 
our characterization of the reconstructible regions and the 
examples of Figures 1 and 6, we develop these rules by 

Figure 6: Difficulties involved in globally reconstructing a 
dimple-shaped surface. In the n-th iteration of the Incremental 
Reconstruction Behavior the observer is moving upward in order 
to reconstmct points in the neighborhood of point a(t7) on cy, 
which lies on the visible rim. The visible rim eventually shdes 
to the right, making the observer’s upward motion ineffective for 
reconstructing the surface in the vicinity of a(tF). 

considering the following three increasingly more general 
global reconstruction tasks: 

Semi-global curve reconstruction task: Suppose a curve is 
drawn on the surface so that it intersects the visible rim at the 
initial viewpoint (Figure 6(a)). The task of the observer is to 
reconstruct the segments of this curve that are connected, re- 
constructible, intersect the visible rim at the initial viewpoint, 
and terminate on a visual event curve that porenriully bounds 
a reconstructible surface region, as in Figures S(c),(f). 

Global curve reconstruction task: Suppose a curve is 
drawn on the surface so that it intersects the visible rim at the 
initial viewpoint. The task of the observer is to reconstruct 
the segments of this curve that are connected, reconstructible, 
intersect the visible rim at the initial viewpoint, and terminate 
on the boundary of a reconstructible region. 
Global surface reconstruction task: Global surface recon- 
struction is a generalization of the global curve reconstruction 
task in the following sense. It is equivalent to reconstruct- 
ing for every surface curve that intersects the visible rim at 
the initial viewpoint, a connected, reconstructible segment 
terminating on the boundary of a reconstructible region. 

By obeying the rules we develop in this section, the ob- 
server can “ground” the steps in the Incremental Recon- 
struction Behavior and the Patch Reconstruction Behaviors 
that we left unspecified in their earlier presentation. In the 
following, due to space limitations, we only consider the 
semi-global curve reconstruction task and the global sur- 
face reconstruction task. We keep our analysis at a fairly 
intuitive level, working through specific examples to moti- 
vate the rules used. Further insight into the theorems, an 
analysis of the global curve reconstruction task, and formal 
proofs of correctness can be found in [ 161. 

6.1 Semi-Global Curve Reconstruction Task 

Recall that during the execution of the Incremental Re- 
construction Behavior the observer selects a point p on the 
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boundary of the already-reconstructed regions and appro- 
priately controls motion to reconstruct a new patch around 
p .  To achieve semi-global curve reconstruction, the length 
of the curve segment reconstructed at each iteration must 
diminish if and only if it asymptotically approaches a visual 
event curve potentially bounding a reconstructible region. 
The following theorem gives the three rules the observer 
must obey for the semi-global curve reconstruction task. 

Theorem 2 (Semi-global curve reconstruction rules) Let a be 
akite-length curve drawn on the surface. va  intersects the visual 
event curves at most ajinite number of times, and the following 
three rules are obeyed by the observe6 the observer will provably 
perform the semi-global curve reconstruction task: 
Rule 1: When choosing the point p on which to apply the Patch 

Reconstruction Behaviors, always select a point of intersec- 
tion of a with the visible rim. 

Rule 2: Always execute the Ordinary Patch Reconstruction Be- 
havior afterfirst moving to a viewpoint c corresponding to 
the middle of a visibility arc of p. 

Rule 3: When executing the Ordinary Patch Reconstruction Be- 
havior to reconstruct a patch around p starting from a view- 
point c, move around the sugace on the normal plane at p 
and stop only i f c  is reached again, or i f  the endpoint of 
the segment of a being reconstructed coincides with a cusp, 
T-junction or degenerate visible rim point. 

The explanation of Rules 1 and 3 is simple and is omitted. 
The key to the solution of the semi-global curve reconstruc- 
tion task lies in Rule 2, which constrains the long-range 
effect of the observer's motion on the set of reconstructed 
curve points. More specifically, suppose the viewpoints cor- 
responding to Figures 6(a)-(c) are c ( t y ) ,  c ( t z )  and ~ ( t ; ) ,  
respectively, and the line through c ( t )  and a(t)  is E @ ) .  To 
achieve semi-global curve reconstruction, the length of the 
segment between a(ty) and a(tg) must diminish if and only 
if a(t;") asymptotically approaches a visual event curve that 
potentially bounds a reconstructible surface region. Now 
consider Figure 7. Since a(t?) is a cusp point, the line 
Z(t:) is along an asymptote at a(t?). Therefore, if +(t) is 
the angle between l(t) and the corresponding asymptote at 
a@), we can conclude that a necessary and sufficient condi- 
tion for the curve point a(tg) to become a cusp visible rim 
point is that $(t)  goes to zero as t approaches tg. 

Clearly, if $(ty) is large, the length of the segment be- 
tween a(ty) and a(t:) will also be large. It is therefore 
necessary to require +(ty) to be large. But how large can 
we make $(tT)? If $(ty) is too large, the line E(ty) may ap- 
proach the other asymptote at a(ty); the best we can do is to 
ensure that c ( t y )  is in the middle of the visibility arc, which 
in this case is bounded by the two asymptotes at a(t;"). 
At that viewpoint, $(t;") will form equal angles with both 
asymptotes at a(t1). Obeying Rule 2 is quite easy: The 
observer determines the extent of the visibility arc contain- 
ing c(t;"),  and then moves to the middle of that arc. TO 
measure the extent of the visibility arc, the observer can 
simply move on T,(t;) (S) first in a clockwise and then in 
a counterclockwise direction, terminating its motions when 
a cusp or T-junction is formed at the projection of a(ty). 

Figure 7: Geometry of the reconstruction of a segment of curve 
Q in Figure 6. Viewpoints c( t ; ) ,  c(tg) correspond to Figures 6(a) 
and (c), respectively. The tangent plane and Dupin's indicatrix of 
points a(tF) and a(tT) is also shown. 

~~ ~~~ 

By following Rules 1-3, the observer is able to achieve 
semi-global curve reconstruction: The distance between 
a(t?) and diminishes if and only if the visibility arc at 
a ( 4 )  degenerates to a point. This occurs only when a(t;") 
approaches one of the visual event curves in Theorem 1. 

6.2 Global Surface Reconstruction Task 

In the global surface reconstruction task the observer must 
reconstruct not only points lying on a single curve drawn 
on the surface that intersects the visible rim at the initial 
viewpoint, but must also reconstruct points lying on evely 
such curve that can be drawn on the surface. The following 
theorem shows how this task can be performed using the 
Incremental Reconstruction Behavior and the Ordinary and 
Degenerate Patch Reconstruction Behaviors (Figure 8): 

Theorem 3 (Global surface reconstruction rules) Ifthefollow- 
ing four rules are obeyed, the observer will provably perform the 
global surface reconstruction task: 
Rule 1: Always choose the point p on which to apply the Patch Re- 

construction Behaviors so that the boundary of the already- 
reconstructed surface region expands uniformly. 

Rule 2: Always execute the Ordinary Patch Reconstncction Be- 
havior after first moving to a viewpoint c corresponding to 
the middle of a visibility arc of p.  

Rule 3: When executing the Ordinary Patch Reconstruction Be- 
havior starting from an initial viewpoint e, move on a great 
circle around the surface and stop only ifc is reached again or 
the visible rim segment initially containing p (and all visible 
rim segments splitting from or merging with it) disappears. 

Rule 4: To reconstruct a patch around p, apply the Degenerate 
Patch Reconstruction Behavior independently of whether p 
is ordinary, cusp, T-junction, or degenerate. 

Rule 2 is identical to the one used in Theorem 2 treat- 
ing the semi-global curve reconstruction task. Rule 3 is a 
generalization of the corresponding rule in Theorem 2 re- 
construction task in the following sense. When performing 
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Incremental Reconstruction Behavior 
Rules that murt be obeved 

Rule 1: 

Rule 4: 

Select points uniformly on the 
boundary of the reconstructed region 
Always execute the Degenerate 
Patch Reconstruction Behavior 

Rule 2: Always move to the middlk of a visibility arc 
Ordinary Patch Reconstruction Behavior 

Rule that must be obeyed 
Rule 3: Move on a great circle around the surface 

and stop when either the initial position is 
reached again, or the visible rim segment 
initially containing p (and all segments 
splitting from it or merging with it) disappear 

Figure 8: Behaviors used to perform the global surface recon- 
struction task. Also shown are the rules that must be obeyed when 
each of the behaviors are executed. 
~ ~ _ _ _ _  

the semi-global curve reconstruction task, as in the example 
in Figure 6(a)-(c), the observer was required to stop only 
after an endpoint of the visible rim “slid over” the curve 
drawn on the surface. In the global surface reconstruction 
task, the same rule must hold for every curve initially in- 
tersecting the visible rim that we can draw on the surface. 
This would require the observer to move upward until the 
visible rim segment in Figure 6(a) containing a(ty) disap- 
pears (or, equivalently, the two segments PI ,  Pz in Figure 
6(c) disappear), or until the initial viewpoint is reached. 

The key to solving the global surface reconstruction task 
is Rule 4. Rule 4 requires the observer to reconstruct sev- 
eral patches around the selected point p, by moving to the 
middle of all the visibility arcs of p and then executing the 
Ordinary Patch Reconstruction Behavior starting at each 
one of those viewpoints. By obeying this rule, the area of 
the reconstructed patch diminishes only if ull visibility arcs 
at p diminish. Since this occurs only when p approaches 
a reconstructible region boundary, global surface recon- 
struction is guaranteed. Enforcing Rule 4 implies that the 
reconstruction process is simplified: The Ordinary Patch 
Reconstruction Behavior and the Degenerate Patch Recon- 
struction Behavior are sufficient to perform global surface 
reconstruction (Figure 8). 

Rule 1 is a generalization of the corresponding rule in 
Theorem 2. It simply takes care of the fact that if the recon- 
struction process does not terminate and the reconstructed 
region is expanded in only one direction, some pieces of its 
boundary will never be expanded. 

By obeying Rules 1-4, the observer guarantees global 
surface reconstruction. The Incremental Reconstruction 
Behavior terminates after a finite number of steps precisely 
when the whole surface is reconstructible. Otherwise, the 
set of points reconstructed converges to the reconstructible 

surface regions intersecting the visible rim at the initial 
viewpoint. Furthermore, in this case, no behavior can 
achieve global surface reconstruction in a finite number 
of steps: When the visible rim touches the boundary of 
a reconstructible region, it touches it at exactly one point, 
making it impossible to reconstruct the surface in every 
neighborhood of such a curve in a finite number of steps. 

7 Concluding Remarks 

We have demonstrated that an active monocular observer 
can use a combination of simple viewpoint control behav- 
iors to recover a global description of a smooth, arbitrarily- 
shaped surface from the occluding contour. The regions that 
are reconstructed on the surface can be accurately character- 
ized, and depend only on qualitative, global shape properties 
of the surface. Current limitations of the approach are (1) 
the use of an observer constrained to move on a sphere, and 
(2) the inability to reconstruct the entire surface of objects 
with concavities, which is inherent to the use of the visible 
rim as the primary source of shape information. 
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