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Abstract

We present an approach for identifying the occluding
contour and determining its sidedness using an active (i.e.,
moving) observer. It is based on the non-stationarity prop-
erty of the visible rim: When the observer’s viewpoint is
changed, the visible rim is a collection of curves that ““slide,”
rigidly or non-rigidly, over the surface. We show that the
observer can deterministically choose three views on the
tangent plane of selected surface points to distinguish such
curves from stationary surface curves (i.e., surface mark-
ings). Our approach demonstrates that the occluding con-
tour can be identified directly, i.e., without first computing
surface shape (distance and curvature).

1 Introduction

This paper presents a new approach employing a mobile
observer that purposefully controls its motion in order to
identify the image curves corresponding to the occluding
contour of a surface. The approach is motivated by the pur-
posive [1] and animate [2] vision paradigms, and combines
elements from the study of the occluding contour of smooth
surfaces [3—-6] and previous work on non-metric scene re-
construction [7-9]. We show that by using at least three
distinct views of the surface we can (1) identify the occlud-
ing contour curves in an image, and (2) determine on which
side of these curves the surface lies (i.e., the “sidedness” of
the contour). The only requirements of this approach are
that (1) a correspondence can be established in the three
views for the image curves whose identity is sought (i.e.,
“surface marking” or “occluding contour”), (2) at least four
image curve points with parallel tangents can be identified,
and (3) the motion of the observer has a specific relationship
with the geometry of the viewed scene. We show that this
relationship is characterized by specific image-computable
quantities and enables an invariant-based analysis [8]. Our
approach does not require knowledge of observer velocities
or object models, uses a world-centered coordinate frame,
and can incorporate multiple views to improve stability.

The occluding contour of a smooth surface is defined
as the projection of the visible rim, which is the one-
dimensional set of visible surface points at which the line
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of sight is tangent. This set depends on the shape of the
surface and the observer’s viewpoint and is a rich source of
both quantitative and qualitative surface information [3, 4].
Under continuous motion of the observer the visible rim
possesses two important properties: (1) The curves com-
prising the visible rim “slide” rigidly or non-rigidly over
the surface, possibly changing their connectivity, and (2)
the deformation of the visible rim’s projection, the occlud-
ing contour, uniquely determines the shape (i.e., curvature)
of the surface regions over which the visible rim slides [3, 6].

Most previous work on identifying the occluding contour
of smooth surfaces focused on the second property: Be-
cause occluding contour deformations uniquely determine
shape, one can check whether the deformations of an im-
age curve determine the shape of a smooth surface. Since
the deformation of the projection of a surface marking cor-
responds to a surface of infinite curvature coinciding with
the marking itself [3, 5], this test is sufficient for identify-
ing the occluding contour curves in a sequence of images.
Unfortunately, the test involves comparing the speeds and
accelerations of the curves in the image sequence to the
speed and acceleration of the observer, and hence, requires
accurate measurement of these quantities (or an accurately
calibrated stereo system [5]). In fact, it has been shown that
(1) the robustness of the surface reconstruction process itself
can be greatly improved by a priori distinguishing between
the occluding contour and the surface markings [3], and (2)
specialized viewpoint control strategies can be used to sim-
plify the recovery of surface curvature information once the
occluding contour has been identified [10]. Another draw-
back of recovering shape before identifying the occluding
contour is that when the occluding contour is used only for
describing the scene qualitatively, e.g., for model indexing
or for grasping an object, accurate shape information and
knowledge of viewer motion is not necessary.

In this paper we show how the occluding contour can
be identified directly, i.e., without first computing surface
shape (distance and curvature). We achieve this, as in [11],
by exploiting the first property of the visible rim: Unlike
the visible rim curves, surface markings are stationary,
i.e., their position on the surface is fixed and viewpoint-
independent. Instead of attempting to accurately measure
the speeds and accelerations of the visible rim curves over
the surface, we utilize the stationarity property of the sur-



face markings; by determining which curves in the image
are projections of stationary curves we factor out the need
for recovering metric properties about the surface or the
observer’s motion.!

Our approach is based on a simple observation: Suppose
a curve on the visible rim coincides with a surface marking.
Because the position of the visible rim curve depends on
viewpoint while the position of the surface marking does
not, the coincidence relationship between the projections of
the two curves will not be preserved when the observer’s
viewpoint changes. So, if we are able to compute how
a visible surface curve would project at other viewpoints
assuming it is stationary, we can simply change viewpoint
and compare its projection with the one predicted under the
stationarity assumption. When the predicted projection of a
curve does not coincide with the actual one, the curve must
be on the visible rim.

The crucial issue one must address to exploit this observa-
tion is how to predict the projection of a surface curve under
the stationarity assumption. Previous work on predicting
novel views of a three-dimensional object either assumed
the existence of a collection of “model” views in which the
projections of either the surface markings or the visible rim
curves have been identified [12], or the existence of a small
number of easily-identifiable point features on the surface
of an unknown object that could be matched across frames
[11,13]. Here we present a detailed geometrical analysis
of this prediction problem that (1) shows how to distin-
guish stationary from non-stationary surface curves using
an active observer and discusses under what conditions this
discrimination can be achieved, (2) shows how this ability
can be used to detect the occluding contour as well as the
contour’s sidedness when no surface markings have been a
priori identified, and (3) takes into account errors in image
measurements.

The basic assumption used in previous approaches for
identifying the occluding contour and for predicting novel
views of an object was that the observer motion was arbi-
trary. This means that the motion of the observer between
any two views of the scene is not related in any way to the
geometry of the scene. This is a reasonable approach, how-
ever, only when the observer cannot control its viewpoint.
When the observer’s motion can be controlled, the choice
of viewpoint(s) does not have to be arbitrary.

The significance of our method lies in the use of purposive
observer motion to achieve and maintain specific geometric
relationships with the viewed surface in order to distinguish
the occluding contour from the projections of surface mark-
ings. We show how we can use an active observer to obtain
a collection of views in which the image of a stationary
surface curve can be accurately predicted, and then use this
predictive power to classify image curves either as occlud-
ing contour curves, or as projections of stationary surface
curves. Throughout this paper we assume that each image
has been processed to extract a collection of curves.

TWhen the position of the light source and the object is fixed, image
curves corresponding to shadows are also stationary. We do not distinguish
here between such image curves and the projections of surface markings.

2 Viewing Geometry

Let S be a smooth, oriented surface in 3, viewed under
orthographic projection along a viewing direction £&. The
visible rim of S along ¢ is the set of the visible surface points
p for which the tangent plane, 7', (S), contains a line parallel
to £. The occluding contour is the projection of the visible
rim on the image plane. The occluding contour and the
visible rim each consist of a collection of open and closed
smooth curves for almost all viewpoints of the observer [4].

The shape and position of the visible rim depends on the
shape of S and the observer’s viewpoint. This is the fun-
damental difference between visible rim curves and surface
markings; the surface position of the curves corresponding
to such markings is independent of the observer’s viewpoint.
We qualitatively characterize the difference between these
two types of curves with the notion of stationarity:

Definition 1 A surface curve is stationary if its position on the
surface does not change when the observer’s viewpoint changes.
It is non-stationary if its position is viewpoint-dependent.

Our goal is to exploit the non-stationarity of the visible rim
to identify the occluding contour. This operation requires
a correspondence between points on the surface at different
viewpoints, and between points in images. We use the
epipolar plane correspondences [3, 5, 6] for this purpose.

In particular, suppose the observer’s viewing direction
changes according to £(¢) on a motion plane with normal
ng. Thismotion defines a family of planes parallel to the ob-
server’s motion plane called the epipolar planes. If B(tg) is
an image curve attime ¢, the epipolar plane correspondence
matches a point ¢ € B(to) to the intersection of B(tq + 6t)
with the epipolar plane through ¢. This correspondence
induces a correspondence between points belonging to the
surface curve 8(t) projecting to B(t) (Figure 1).

Figures 1(a),(b) make explicit the non-stationarity prop-
erty characterizing the visible rim curves: When the tangent
of an occluding contour curve at a point ¢ does not belong to
an epipolar plane, we can think of the point ¢(¢) correspond-
ing to ¢ at time ¢ as being the projection of a point p(¢) that
“moves” on the intersection of the surface with the epipolar
plane through ¢. We call such points p(t) non-stationary.

The key property of the epipolar correspondences used
in our approach is derived from the geometry of Figure
1(c): Even though, in general, we cannot determine which
points in the image are projections of stationary points, we
can force the stationarity of specific points by appropriately
controlling viewpoint; the observer simply needs to move
in a plane parallel to the tangent plane at those points.

Tangential Motion Property: Ifapoint g on animage
curve has its tangent parallel to the observer’s motion
plane, and epipolar plane correspondences have been
established for g across frames, all points correspond-
ing to ¢ must be projections of the same surface point.
This property does not depend on whether or not the
image curve containing q is the projection of a surface
marking.
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Figure 1: Point correspondences induced by the epipolar geom-
etry. Point ¢’ is the point corresponding to ¢q. (a) When g is the
projection of a point p on a surface marking at Viewpoint 1, ¢ is
the projection of p at Viewpoint 2. (b) When p is on the visible
rim and the tangent of the image curve at ¢ does not belong to
an epipolar plane, T,(S) is not an epipolar plane and ¢ is the
projection of p’, not p. (c) When the tangent of the image curve
at ¢ belongs to an epipolar plane, 7,,(.S) is an epipolar plane and
both ¢ and ¢ are projections of p [10, 14].

In the following, if p is a surface point projecting to ¢ at
the initial viewpoint, we denote by p(t) and ¢(t) the points
corresponding to p and ¢, respectively, at viewpoint £(t).

2.1 Affine-lnvariant Representations

A basic step in our method for determining the non-
stationarity of the visible rim is that of re-projection [12, 13]:
Given the projections of a collection of 3D points along a
sequence of viewing directions, compute the projection of
those points along a viewing direction that is not contained
in the sequence. Affine-invariant representations are im-
portant because they allow us to re-project points without
knowing the observer’s motion and without recovering any
metric properties of the corresponding surface points.?

Let p1,...,pn € R3,n > 4, be a collection of points
at least four of which are not coplanar. An affine-invariant
representation of those points consists of three components:
The origin, p,, which is one of the points p;,i = 1... ,n;
the affine basis points, py, , p»,, Pss, Which are three points
from the collection that are not coplanar with the origin;
and the affine coordinates of the points p;, which are the co-
ordinates of p; — p, with respect to the affine basis vectors
b; = py;, — po,j = 1,2,3. To re-project, we use the fol-
lowing two properties of affine-invariant representations:?

Property 1 When the projection of the origin and basis points
is known along a viewing direction £(¢ ), we can compute the

2The use of affine invariants for detecting the occluding contour was
also suggested in [11].

3See [7, 8, 15] for the related theory, details on these properties, and for
algorithms to compute the affine representation of a collection of points.

projection of a point p from its affine coordinates using
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where (uy',vy") is the projection of p and Ay, is the vector col-
lecting the affine coordinates of p.

Property 2 The affine coordinates of pi, ... ,p, can be com-
puted using Eq. 1 when their projection along at least two viewing
directions is known.

3 Detecting Point Non-Stationarity

The previous section showed that a fundamental prop-
erty distinguishing the visible rim from surface markings is
non-stationarity: Except for a finite (and, in practice, small)
collection of points that depends on the observer’s mo-
tion plane, the points on the visible rim are non-stationary.
Hence, we can identify the occluding contour curves by
using an active observer to determine which image curves
contain projections of non-stationary points.

Our approach is based on a theorem that allows us to
distinguish between the projection of stationary and non-
stationary points by exploiting a few simple properties of
smooth surfaces and their occluding contours. In particular,
suppose the observer’s viewing direction changes according
to a smooth function £(t), let p(0) be the surface point
projecting to ¢(0), and let E be the epipolar plane through
p(0). Theorem 1 characterizes the distance between ¢(t)
and the projection, ¢(t), of p(0) along £(t):

Theorem 1 Points p(t), q(t), and ¢(t) have three properties:

(1) Suppose that the curves in .S N E are parameterized so that
their curvature is positive when their normal is toward the
surface interior. Then, p(t) is contained in the maximal,
connected, convex subset of S N E that contains p(0).

(2) Let A be the smooth curve corresponding to the set in (1).
The distance between ¢(t) and ¢(t) is non-zero only if p(0)
is non-stationary, and is equal to | [p(t) — p(0)] - n(p(t))|,
where n(p(t)) is the normal of A at p(¢).

(3) If p(0) is non-stationary, ||g(t) — G(¢)|| is zero along at most
three viewing directions on E, including £(0).

Proofs can be found in [16]. Theorem 1 motivates the use
of a prediction-verification scheme for determining the sta-
tionarity of a point p(0): If we are able to compute p(0)’s
projection along any viewing direction on the observer’s
motion plane, we can assume that p(0) is stationary and
check the validity of that assumption. p(0)’s can be ver-
ified by moving to a new viewing direction £(t) and then
verifying that ¢(t), i.e., the predicted position of ¢(¢) under
the stationarity assumption, coincides with ¢(¢) in the new
image. If ¢(¢) and ¢(¢) do not coincide, p(0) must be non-
stationary. Intuitively, if non-zero, the distance ||q(¢) —g(¢)||
measures the “degree” of non-stationarity of p(0).

The following corollary to Theorem 1 goes a step further,
showing that the position of () can serve as a qualitative
indicator of the occluding contour’s sidedness (Figure 2):
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Figure 2: Determining the occluding contour’s sidedness. (a)
Since )\ is convex, the vector ¢(t) — ¢(¢) points in the direction of
A’s normal, n(p(t)), at p(¢). The corresponding image is shown
in (b). The epipolar plane is always viewed “edge-on”, and hence
it projects to a line in the image.

Corollary 1 If p(0) is non-stationary and &(to) is such that
llg(t) — G()]] # 0 for 0 < t < to, the surface must lie on
the side of ¢(to) containing G(to).

Theorem 1 and Corollary 1 tell us that even an arbitrarily
small change in viewing direction on E will force ||q(t) —
G(t)|| to become non-zero. Even though, in theory, this
should be sufficient for identifying the non-stationary points
in an image, in practice we must allow for errors in image
measurements and the inability to measure arbitrarily small
distances in an image. The next corollary to Theorem 1
characterizes the effectiveness of this prediction-verification
approach by specifying how large ||q(t) — ¢(¢)|| can be:

Corollary 2 The function f(t) = |lq(t) — 4(¢)| is maximized
when [p(t) — p(0)]-£(t) = 0, i.e.,whenp(t) isatalocal maximum
distance from p(0). (1) If at least one such point exists on A and
that point is not one of its endpoints, then there is a point p(¢*)
corresponding to a maximum of f, such that
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where kmqz 1S the maximum absolute principal curvature of the
surface, and ¢ is the minimum angle between E’s normal and the
surface normal along \. (2) If f(t) is maximized at \’s endpoints,

(3) f(t*) > min{D(pmida ll)7 D(pmid; lz)}

where p1, p» are the two endpoints of \; 1, [> are the tangent lines
at p1, p2, respectively; pmiq is the midpoint of A; and D(p, [) is
the distance from point p to line [.

4 Active Occluding Contour Detection

The goal of our approach is to control the observer’s
viewpoint so that the identity (visible rim or surface mark-
ing) of the surface curves projecting to the image can be
determined. We do this by assuming the curves projecting
to the image are stationary, selecting a motion plane, and
then controlling viewpoint on that plane to verify the sta-
tionarity assumption. This process involves verifying that
the actual projection of the surface curves coincides with

that predicted under the assumption that they are station-
ary. To completely specify our occluding contour detection
strategy we therefore need to answer three questions: (1)
How to select the motion plane, (2) how to control viewing
direction on that plane, and (3) how to predict the projec-
tion of the selected curves from viewpoints on that plane
under the stationarity assumption? Below we first outline
the main ideas, and in Sections 5 and 6 present more details.

In particular, suppose that the observer’s motion plane
has been selected and that we want to control the observer’s
viewing direction to determine the non-stationarity of a sin-
gle point p(0) on the visible rim at the observer’s initial
viewpoint. Let ¢(0) be p(0)’s projection. Theorem 1 tells
us that there are viewing directions on the observer’s mo-
tion plane from which the non-stationarity of p(0) can be
established by verifying that p(¢)’s projection does not co-
incide with that of p(0). Since the distance between the
two projections can be arbitrarily small depending on the
observer’s viewpoint, we use a strategy to reach viewpoints
for which this distance is large. Corollary 2 shows that
in most cases, the maximum distance can be characterized
by only two parameters, one of which depends only on the
intrinsic surface geometry. When the observer’s goal is to
identify the type of each curve in a collection of curves in
an image, this process can be applied simultaneously to all
points on the selected curves. These considerations lead to
the following strategy for identifying the occluding contour:

Active Occluding Contour Detection Strategy

Step 1 Let By, ..
sought.

Step 2: Select the motion plane E.
Step 3: Perform a small clockwise viewing direction change.

Step 4: For every point ¢(0) on Bi(0),...,By(0) for which
a correspondence ¢(¢) can be established along the current
viewing direction,

., By, be the image curves whose identities are

a. compute ¢(t),
b. compute the distance 6(q(t)) = ||q(t) — G(¢)]|-

Step 5: Repeat Steps 3-5 until either the initial viewing direction
is reached, or no correspondences can be established for
curves B;(0), ..., Bn(0).

Step 6: If the initial viewing direction is not reached, repeat Steps
4-5 while changing viewing direction in a counter-clockwise
fashion.

Step 7: Given the computed distances §(¢(t)),0 < ¢t < T, for
each point ¢(0) onthe curves By, . .. , By, label these curves
as either type surface markings or type occluding contour.

The next section shows how we can use affine invariant
representations to perform Step 4, and how that step also
determines the observer’s motion plane. Section 6 then
discusses the curve classification process in Step 7, which
takes into account noise in image measurements.



5 A Prediction Mechanism for Detecting
Non-Stationarity

The occluding contour detection strategy described in the
previous section made an important assumption: Given a
point p(0) on the surface, the observer can compute p(0)’s
projection along arbitrary viewing directions on its motion
plane. In general, this computation cannot be performed
unless the three-dimensional coordinates of that point are
known. Here we show that by exploiting the Tangential
Motion Property (Section 2) to select the observer’s motion
plane we can formulate this computation as a re-projection;
this allows the assumption to be slightly relaxed without
affecting the correctness of the strategy given in Section 4.

Suppose we want to determine whether or not a point
p(t1) projecting to ¢(¢1) is non-stationary. Theorem 1 says
that if we select a plane through p(¢;) that is not tangent
to p(t;) and change our viewing direction on that plane
to £(t), we can determine that p(¢,) is non-stationary by
verifying that the predicted projection, ¢(t), of p(t) along
&(t) does not coincide with the measured one, i.e., g(t). To
exploit this theorem without having to explicitly compute
G(t) we simply note that the exact distance between ()
and ¢(t) is not important, as long as it is non-zero. We use
the following result, which is similar to Theorem 1:

Theorem 2 Let p(t1) be a surface point and let (1) be its pro-
jection along &(t1). Let q(¢2) be the point corresponding to g(t1)
along a viewing direction £ (¢2) on the observer’s motion plane, F.
If (1) the projections, 71(t1),. .. ,74(t1), of four stationary and
non-coplanar surface points can be identified in the image along
&(t1), and (2) A is the affine coordinate vector computed using
Property 2 and Eq. 1 with (uy'vy") = ¢(tm),m = 1,2, and
(up,vp;) = 1i(tm) — ri(tm),j = 2,3,4, then the point g(t)
defined by
(4) q(t) = [r2(t) = ru(t) ra(t) —ri(t) ra(t) —ri()]A
has the following two properties:
1. Let \ be defined as in Theorem 1, and let 5 be the 3D point
with affine coordinates A. The distance between ¢(t) and
G(t) is non-zero only if p(¢1) is non-stationary, and is equal
to | [p(t) — p] - n(p(t))|, where n(p(t)) is the normal of A
at p(t).
2. Ifp(t1) is non-stationary, ||q(t) — ¢(t)|| is zero along at most
four viewing directions on E.

Theorem 2 implies that if we can identify the projections
of four non-coplanar stationary points in the image, we can
replace the computation of ¢(¢) in Step 4a of the Active
Occluding Contour Detection Strategy by computing ¢(t)
without compromising the correctness of the strategy. The
first property of G(t) ensures that by computing ¢(¢) instead
of ¢(t) we do not introduce any “false positives” in our
occluding contour detection process. The second property
shows that the distance ||¢(t) — G(t)|| behaves almost identi-
cally to the “true” distance ||q(¢) — G(¢)||, allowing us to use
the Active Occluding Contour Detection Strategy to iden-
tify the occluding contour. The following corollary, which
generalizes Corollaries 1 and 2, makes this explicit:

Corollary 3 (1) The function f(t) = |lq(t) — G(¢)|| is max-
imized when [p(t) —p] - £(t) = 0, i.e., when p(t) is a local
maximum distance from p. If at least one such point exists on A
and that point is not one of its endpoints, then there is a point p(¢*)

corresponding to a local maximum of f, such that

©) Fary >

"imaz
where km,qz IS the maximum absolute principal curvature of the
surface, and ¢ is the minimum angle between E’s normal and the
surface normal along A. (2) Let £(t*) be the viewing direction
maximizing f. If p(0) is non-stationary, the surface must lie on
the side of ¢(¢*) containing ¢(t).

Corollary 3 shows that the only major impact of com-
puting ¢(t) instead of G(¢) is in the determination of the
contour’s sidedness. Intuitively, the contour’s sidedness
can be correctly determined only along viewing directions
at or close to the global maximum of ||g(t) — G(¢)||. To
use Theorem 2 and Corollary 3 we must be able to identify
the projections of four stationary points in the image. In
general, when the observer cannot control its motion this
is impossible to achieve. However, when the observer can
purposefully select its motion plane, the Tangential Mo-
tion Property can be exploited: If four points in the first
image can be identified whose tangents are parallel, the mo-
tion plane defined by those tangents guarantees the points’s
stationarity. This solves the problem of predicting the pro-
jection, ¢(t), of p(t) in Step 4a of the Active Occluding
Contour Detection Strategy under the assumption that p(0)
is stationary.

6 Measurement Errors

The final step in the Active Occluding Contour Detec-
tion Strategy is the classification of image curves based on
whether or not they contain projections of non-stationary
points. This requires determining if a specific quantity,
namely ||q(t) — G(t)]|, is zero or not. In practice, due to
errors in image measurements, this quantity may not be
zero even for projections of stationary points. It is therefore
necessary to account for such errors in the classification pro-
cess. We accomplish this in three ways: (1) We use many
views to determine the non-stationarity of each point p(0)
projecting to the initial image by solving for A in Eq. 1
using least squares, (2) we estimate the probability that p(0)
is non-stationary under the assumption the image measure-
ment errors have a zero-mean Gaussian distribution, and (3)
to classify a curve, we estimate the above probability for all
points projecting to that curve.

In particular, to classify point p(0) as non-stationary, we
compute the squared Mahalanobis distance, ||q — q||?, of
the residual q — q from 0, assume that this distance is
corrupted by noise in the image measurements, and then
estimate the probability that it is non-zero [17]. To simplify
the error analysis we only allow for errors in the measure-
ment of q.* We also assume the errors in each element of

4A analysis taking into account errors in the projection of the basis



q are independent and have a Gaussian distribution with
zero mean and variance o. Under these assumptions, and
when p(0) is stationary, the distance 2;||q — q||? follows a

x? distribution with three degrees of freedom [17,18]. We
now have the following criteria:

Point Classification Criterion: Classify ¢(0) as an
occluding contour point if

1 . . .
Pr Fllq —q|® > 6 | p(0) is stationary| < m

where m is an a priori defined constant, § is the com-
puted value of —;||q — @||?, and the probability is
computed using a x? distribution table.

Curve Classification Criterion: Classify curve B as
an occluding contour curve if more than M% of B’s
points are classified as being on the occluding contour.

7 Experimental Results

To demonstrate the effectiveness of our active occluding
contour detection approach we have performed preliminary
experiments using both simulated and real data. Figure 3(a)
shows one of the models used in our simulations, a polyhe-
dral representation of a bottle. Four points were randomly
selected from the polyhedron’s vertices to be the affine ba-
sis points. The object was rotated a total of = radians
about a vertical axis through the center of the bottle, and
the projection of the affine basis points was computed for
each of the frames. The generated images and the projec-
tions of the basis points were the only inputs to the system.
The affine coordinate computations were performed using
the first two frames of the sequence. This simulation cor-
responds to the best-case scenario for our strategy: Due
to the model’s symmetry, the occluding contour remains
unchanged throughout the model’s rotation, while the pro-
jection of a stationary surface curve varies with viewpoint.
The simulation results are shown in Figures 3(b),(c). They
show that the difference between the actual and predicted
positions of the image curves can be dramatic, in this case
almost equal to the radius of the bottle. Note also that the
predicted position of the curve is on the side of the contour
where the surface lies, correctly indicating the contour’s
sidedness.

Figures 3(d)-(f) and 4 show the results of applying our
strategy to a real scene. The image sequence consisted of
five frames, showing rotation of about 7 /2 radians. No
information about the object’s motion (apart from the di-
rection of rotation) or the camera parameters was used.
Viewing direction was changed in a horizontal plane per-
pendicular to the plane of the page. The system detected
points with horizontal tangents and tracked them across the
frames. The affine basis points were selected by minimizing
the condition number of the affine basis matrix [15]. The
point and curve classifications were performed as described
in Section 6. We used o = 1 and classified a curve as an

points is also possible [5].

occluding contour curve if more than 80% of its points had
a probability greater than 90% of being non-stationary.
The results of the classification process for three of the
image curves can be evaluated using the graphs in Figure
4. The first graph shows the variation of ||q — q||? for
the curve points with respect to their position on the curve.
This quantity must be close to zero for stationary points
and is the basic information used to determine a point’s
identity. Because we employed a very simple method for
establishing point correspondences across frames, i.e., in-
dependently for each point on the curve, the second graph
evaluates tracking performance. The graph plots the vari-
ance of the inter-frame matching distance for every point
on the curve with respect to its position on the curve. Sharp
peaks indicate tracking errors for the associated points. The
third graph shows the input to the final stage of the curve
classification process. It is a histogram of the number of
points on the curve that have a given probability of being
non-stationary. This information is used by the Curve Clas-
sification Criterion (Section 6) to determine the identity of
the image curve. The mass under the histogram should be
concentrated near 100% for non-stationary curves.

The “m” curve on the surface and the upper occluding
contour curve (top of the head) were classified correctly, and
the sidedness of the upper occluding contour curve was cor-
rectly determined. The approach’s success is also indicated
by the dramatic difference in their associated probability
histograms. However, due to the small amount of rota-
tion and the high surface curvature near the visible rim, the
distance between the predicted and actual curves for both
occluding contour curves in Figure 3(e) was not as great as
in the case of the bottle. This resulted in a misclassifica-
tion of the left curve corresponding to the right arm of the
object. In addition, a considerable number of points were
misclassified in the “m” curve. This was due to tracking
errors, indicated by the strong correlation between errors
in ||lg — |2 and sharp peaks in the variance of the inter-
frame point matching distance (e.g., around point position
250). We do not currently use this correlation information
to classify points. In the case of the upper occluding contour
curve, a number of points were assigned low probability of
being non-stationary. This is not an error; these points are
near the top of the head, where the surface normal is close
to that of the motion plane.

A number of observations can be made from these exper-
iments. First, a curve may not contain points of only one
type. For example, the upper occluding contour curve con-
tains points on its bottom end that are not occluding contour
points. However, a sharp drop in the prediction error could
be used to decide where to segment such curves. Second,
the results show that the approach is more effective with
large motions. In effect, the approach factors out the need
for measuring differential properties of the viewed surface
by observing large-scale effects of viewpoint control on the
surface’s occluding contour. Of course, large motions re-
quire reliable curve tracking across many frames, as well
as consistent tracking of points with tangents parallel to the
observer’s tangent plane. Tracking of such points will not,
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Figure 3: (a) Polyhedral model of a bottle and its visible rim. (b) Predictions for 10 frames overlayed with the detected curve which does
not move throughout the rotation. (c) Predictions for the first frame when 10 frames (rotation of /4 radians) and 20 frames (rotation
of 7/2 radians) are used for the least-square affine computations. Note that the distance between the predicted and actual position of
the curves is smaller when least-squares is used due to its smoothing effect. The distance also becomes smaller as the surface normal
approaches the axis of rotation, as stated by Corollary 3. (d) Two images of a rotating toy. (e) The measured and predicted curves for three
of the curves detected in the first frame. (f) Results of the classification process. Horizontal bars denote the occluding contour curves. The
cross is on the side of the surface. The large diamond corresponds to the origin of the affine coordinate frame. The three small diamonds

correspond to the points defining the three affine basis vectors.

in general, persist for large viewing direction changes; how-
ever, if at least four tangency points are visible during the
observer’s motion (not necessarily the same ones through-
out), one can use an approach similar to that of Tomasi
and Kanade [19] to handle occlusions. To improve track-
ing performance and reduce errors in the computation of
lla — q|| we are also implementing a system for tracking
curves rather than points.

8 Concluding Remarks

We are currently studying how this strategy can be used to
derive more robust estimates of surface curvature. Cipolla
and Blake [3] have shown that curvature estimates based

on rate of parallax measurements are insensitive to ob-
server acceleration and rotational velocity. In general, these
estimates require surface markings to be identified in the
vicinity of the occluding contour. We are studying an ap-
proach that eliminates the dependence on surface markings
by computing the rate of parallax between the measured
positions of image curves and the positions predicted by the
stationarity assumption.
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