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Abstract
We present an approach for recovering a global surface

model of an object from the deformation of the occluding
contour using an active (i.e., mobile) observer able to con-
trol its motion. In particular, we consider two problems:
(1) How can the observer’s viewpoint be controlled in or-
der to generate a dense sequence of images that allows
incremental reconstruction of an unknown surface, and (2)
how can we construct a global surface model from the
generated image sequence? Solving these two problems
is crucial for automatically constructing models of objects
whose surface is non-convex and self-occludes. We achieve
the first goal by purposefully and qualitatively controlling
the observer’s instantaneous direction of motion in order
to control the motion of the visible rim over the surface. We
achieve the second goal by using a calibrated trinocular
camera rig and a mechanism for controlling the relative
position and orientation of the viewed surface with respect
to the trinocular rig.

1 Introduction

There has been considerable interest in approaches that
recover information about the structure of a scene from se-
quences of images, assuming an observer in motion (e.g.,
work on optical flow and shape-from-motion [1]). One
common feature of these approaches is that they use a dense
sequence of images produced by an observer undergoing
arbitrary, but known, motion. Unfortunately, arbitrary mo-
tion implies that the parts of the scene reconstructed are not
under the observer’s control, limiting the applicability of
such approaches to the automated construction of accurate
object models for non-convex and self-occluding objects.
In this paper we combine the shape-from-motion

paradigm with the purposive vision paradigm [2] in or-
der to recover a global surface description of an object by
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purposefullycontrolling the viewpoint of an active observer
and by using the occluding contour. In particular, we an-
swer two questions: (1) How can the observer’s viewpoint
be controlled in order to generate a dense sequence of im-
ages that allows incremental surface construction, and (2)
how can we build a global object model from the generated
sequence of images?
Contrary to previous shape-from-motion approaches

which attempt to derive quantitative local surface shape
information using an arbitrarily generated sequence of im-
ages, the central idea of our approach comes from studying
the global model construction problem at two levels of ab-
straction: At the higher, qualitative level we consider the
task of “intelligently” controlling the observer’s viewpoint
in order to generate a dense image sequence permitting
global reconstruction of an object’s surface. At the lower,
quantitative level we consider the task of building a global
object model from the generated sequence. We achieve
our higher-level goal by employing simple observer behav-
iors [3] for controlling viewpoint that allow the observer to
maintain specific geometric relationships with the viewed
scene [4, 5]; we achieve our lower-level goal by using a
calibrated trinocular camera rig and a mechanism for con-
trolling the relative position and orientation of the object
with respect to the rig.
Our viewpoint control behaviors are developed in the

context of three increasingly more general reconstruction
tasks: The local reconstruction task, where the observer
must control viewpoint to reconstruct a patch around a se-
lected point on the object; the incremental reconstruction
task, where the observer must control viewpoint to itera-
tively “grow” a reconstructed regionon the object’s surface;
and the global reconstruction task, where an entire recon-
structible region on the surface must be reconstructed. All
these tasks require the use of multiple viewpoint control
behaviors that must be appropriately integrated.
Our work builds directly on work on the occluding con-

tour byGiblin andWeiss [6], Cipolla andBlake [1], Vaillant
and Faugeras [7], and Koenderink[8]. The occluding con-
tour is the projection of the visible rim, the set of visible
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Figure 1: Viewing geometry. The projection, , of a point can be thought of either as a point on the unit sphere or as a unit vector
in the direction of the ray passing through and the observer’s viewpoint, . The visible rim and the occluding contour corresponding to
the projection of a bean-shaped surface are shown [6]. The occluding contour consists of a single curve whose endpoints are a T-junction
and a cusp. For simplicity, we show the visible rim projected to a planar image perpendicular to .

points at which the line of sight is tangent to the surface.
Under continuous observer motion the visible rim slides
over the object’s surface, affecting the geometry of the oc-
cluding contour and revealing shape information for the
parts of the surface over which the visible rim slides. This
evolution of the visible rim depends on the local and global
shape of the surface as well as the motion of the observer.
Previous shape-recovery approaches using the occluding

contour studied how its deformation over a dense sequence
of frames can be used to recover local shape information
for points projecting to the occluding contour [1, 7]. Un-
til now, however, this work has not been extended to re-
construct complete object models and assumes arbitrary
observer motion: Since the contour’s deformation can be
used only for reconstructing the parts of the object’s surface
overwhich the continuously-evolvingvisible rim slides, the
shape recoverycapabilities of the observer become severely
constrained if the observer’s motion cannot be controlled.
In this paper we show that by combining a collection

of qualitative viewpoint control behaviors with a method
for recovering quantitative shape information from the oc-
cluding contour a model of the viewed object can be in-
crementally constructed. This allows us to provably per-
form the local reconstruction and the incremental recon-
struction tasks when the the object’s surface is completely

This is a major reason why previous work on surface reconstruction
from the occluding contour has not considered the problem of recovering
a description of an entire object. Experimental work on the subject has
either been applied to uncluttered scenes containing geometrically-trivial
objects such as ovoids, or has been applied to more complicated objects
such as those bounded by surfaces of revolution under the assumption
that the motion of the observer was not arbitrary (e.g., the observer moves
roughly perpendicular to the axis of revolution [1]).

unknown, is non-convex, and even self-occludes. Our ap-
proach therefore uses a very simple principle: Since any
attempt at reconstruction from the occluding contour using
arbitrary observer motion will miss parts of the object’s
surface, we simply let the object itself determine how to
view it. It is quite fortunate that the occluding contour pro-
vides all the information necessary to achieve the global
reconstruction goal: Recent results demonstrate that the
occluding contour can be efficiently tracked [10], and that
shape information can be recovered from the deformation
of the occluding contour even with a monocular observer
[1, 11, 12]. Furthermore, our experimental results show that
the occluding contour can be reliably detected in edge im-
ages, can be used to recover quantitative shape information
and, moreover, can guide the purposive viewpoint adjust-
ment process. Consequently, instead of using mechanisms
that require sophisticated sensors (e.g., range sensors or
laser scanners) to reconstruct the scene from a single view-
point or a small number of viewpoints [13, 14], we control
viewpoint in a simple and efficient manner that allows us
to use the occluding contour for reconstruction.
The significance of our approach lies in the use of an

active observer that purposefully controls viewpoint in or-
der to achieve and maintain a well-defined geometric re-
lationship with respect to an unknown 3D shape. This
relationship is characterized by simple image-computable
quantities derived from the occluding contour (tangent at a
contour point). We show how the motion of the visible rim
over the object’s surface can be characterized qualitatively
and how the observer can control this motion by controlling

For a general treatment of the global reconstruction task see [9].



Figure 2: Epipolar parameterization for a surface patch around point . The parameterization defines a mapping from to .
Curves and are curves on the visible rim of the surface corresponding to observer positions and ,
respectively. The tangent to the curve for is along the line through and . The curve’s normal is in the epipolar
plane, defined by the direction of motion, , and the line connecting and .

viewpoint in a simple and efficient manner. This makes it
possible to force the visible rim to slide over previously-
unreconstructedparts of the surface. Furthermore,we show
how the generated sequence of images can be used to reli-
ably construct a global object model and discuss the lim-
itations of current reconstruction approaches that assume
arbitrary observer motion. Because our approach sepa-
rates the issue of controlling the observer’s viewpoint from
the issue of reconstructing the surface, i.e., processing the
images produced during the observer’s motion, the devel-
oped viewpoint control behaviors can be used for other
more qualitative visual exploration tasks (e.g., searching
for markings on an object, or inspecting its surface); the
common underlying problem in such exploration tasks is
how to control viewpoint to make new points on an ob-
ject’s surface visible without necessarily reconstructing the
surface itself. Our purposive approach is therefore a ma-
jor step toward efficient and reliable exploration and model
generation for complex objects whose structure cannot be
predicted beforehand.

The rest of this paper is organized as follows. The next
section reviews basic terminology. Section 3 presents the
basic step of our approach, developing a collection of sim-
ple and qualitative viewpoint control behaviors that allow
the shape of the object’s surface to be recovered in a whole
patch of points around a selected visible rim point. The
behaviors developed follow principles similar to those in
[5]. These basic behaviors are used in Section 4 to de-
fine an incremental reconstruction behavior that guides the
observer’s motion in order to expand the set of surface
points reconstructed. To demonstrate the applicability and
effectiveness of our approach, we apply the developed be-

haviors to synthetic scenes. Finally, Section 5 presents our
approach to the model construction problem and Section 6
presents results from applying this approach to real scenes,
briefly discussing in the context of these results the limi-
tations of approaches using arbitrary observer motion for
model construction.

2 Local Shape from Occluding Contour

Let be an opaque, smooth and oriented surface bound-
ing a volume in . We assume that is viewed under
spherical projection. The space of viewpoints in this case
is identical to the set of observer positions, i.e., the set

. If is a local parameterization of a patch
of , the partial derivatives of with respect
to and define , the plane tangent to at .
The local shape of the surface at is determined by the first
and second fundamental forms at which can
be computed from [15].
The rim of is the set of surface points for which

contains the line segment connecting and the observer’s
viewpoint, . The visible rim consists of the rim points that
are visible. The occluding contour of is the projection
of the visible rim on the image (Figure 1). Generically,
the occluding contour is a collection of open and closed
smooth curves for almost all (in a measure-theoretic sense)
positions of the observer. The endpoints of open occlud-
ing contour curves are either cusps or T-junctions [8]. The

The occluding contour’s topological changes are associated with a
collection of special curves on the surface, the visual event curves [9, 16].
In [9] we show that a subset of these curves bounds the reconstructible
regions on the surface.



Figure 3: Inducing the visibility of points in a neighborhood of an ordinary hyperbolic point . (a) The curve is the curve of intersection
of with the epipolar plane . If , the visible rim point contained in will move toward the previously-occluded portion
of under an infinitesimal viewpoint change along . (b) A face-on view of the plane . The outward normal of at is the
projection of on the plane . The geometry of the intersection of with the epipolar planes corresponding to visible rim points
close to is also similar to the one shown.

shape and topology of this collection of curves depends on
and the observer’s viewpoint [17]. Under continuous ob-

servermotion andwhen the topologyof the visible rim does
not change, the visible rim “slides” over the surface, tracing
patches. These surface patches can be represented using
the epipolar parameterization which describes the motion
of the visible rim over the surface (see Figures 2 and 8(a)).
This parameterization has been used by several researchers
[1, 6] to derive the fundamental forms of the surface for all
points lying on these patches from the deformation of the
visible rim’s projection, i.e., the occluding contour.

3 Local Reconstruction by PurposiveMotion

In our approach,both global and incremental reconstruc-
tion is performed by integrating a collection of qualitative
viewpoint control behaviors, each of which performs an
instance of the following local reconstruction task: Sup-
pose the observer is at position , and let be a visible
rim point on the surface that is identified by its projection,

, on the occluding contour. The task of the observer is
to continuously control viewpoint, starting from point , in
order to reconstruct the surface in some neighborhood of
using the epipolar parameterization. Given a collection

of basic behaviors that provably perform this task, incre-
mental surface reconstruction is achieved by appropriately
combining them (Section 4).

The formulation of the local reconstruction task is similar to the one
reported in [5], where a visible rim point was selected and the surface
shape at was recovered by controlling the observer’s viewpoint. The
difference here is that the shape of the surface in a whole patch around
is recovered, instead of just the shape at .

Our approach is based on the following three observa-
tions:

If is not the endpoint of a visible rim curve and
the topology of the visible rim does not change in the
neighborhood of when the observer’s viewpoint is
infinitesimally perturbed, the motion of the observer
can be controlled so that there exists a neighborhood
of such that the surface in can be described by

the epipolar parameterization.

If is the endpoint of a visible rim curve, the epipo-
lar parameterization cannot describe the surface in the
neighborhood of . Although belongs to the visi-
ble rim when viewed from a two-dimensional set of
viewpoints on the tangent plane of the surface at , the
position of within the visible rim curve it belongs to
is not fixed when the viewpoint of the observer varies
in this set: There are positions on the tangent plane
of such that belongs to the visible rim and is not
the endpoint of a visible rim curve when viewed from
those positions.

The point and the observer’s viewpoint may be such
that the occluding contour’s topology changes in the
neighborhood of under an infinitesimal viewpoint
perturbation. For all points except those lying on a
collection of special sets (which are curves for generic
surfaces), the observer can move to other viewpoints
on ’s tangent plane at which the contour’s topology
does not change in the neighborhood of when these
viewpoints are infinitesimally perturbed. The special
sets for which this cannot be achieved bound the re-



constructible surface regions [9].

Based on these observations, for any given viewpoint
we distinguish four types of visible rim points: Ordi-

nary points, which are not endpoints of a visible rim curve;
cusp points, which are visible rim endpoints projecting to
a cusp on the occluding contour; T-junction points, which
are visible rim endpoints projecting to a T-junction on the
occluding contour; and degenerate points, where the oc-
cluding contour’s topology changes in the vicinity of their
projection if the viewpoint is infinitesimally perturbed.
The basic step of our approach is to control the motion of
the observer in order to deal with the case where is an
ordinary visible rim point; this step is described in Section
3.1. The other three cases are treated by (1) controlling
the observer’s position to reach a viewpoint where is an
ordinary visible rim point, and (2) applying the basic step in
order to recover the shape of the surface in a neighborhood
of that point. In Section 3.2 we only present how the first
of these three cases is handled. The other two cases can be
handled by following a similar approach [9].

3.1 Local reconstruction around ordinary points

This section presents the crucial link between the ability
to control the motion of the observer and the problem of
guiding the surface reconstruction process. We assume
that the observer is initially positioned at point and has
selected an ordinary visible rim point . The observer’s
task is to move in a way that forces the visible rim to slide
over all points in a neighborhood of . This corresponds
to the tasks of controlling motion in order to (1) force the
visible rim to slide over all points in this neighborhood that
are occluded from viewpoint , and (2) force the visible rim
to slide over all points in this neighborhood that are visible
from .
To see how these two tasks can be performed, suppose

the observer moves in a continuous fashion by tracing a
smooth curve , and let be the in-
stantaneous direction of motion. Given a segment of
the visible rim at viewpoint , the epipolar parameteriza-
tion allows us to define the segment of the visible
rim at that corresponds to . The following
result provides a qualitative characterization of the motion
of the visible rim over the surface (Figure 3):

Theorem 1 (Visibility transition dynamics) Suppose
is the surface normal at point . If and

are two visible rim segments satisfying and
, respectively, then

1. all points of are occluded from position
,

See the Appendix for a proof.

2. all points of are visible from position ,

3. all visible rim points satisfying will
remain on the rim at .

When the observer continuously changes viewpoint
along a smooth curve ( ), and the
topology of the visible rim does not change, the seg-
ment will trace a patch on the surface around
that can be described using the epipolar parameteriza-

tion. The boundary of this patch consists of the segments
contained in the visible rim at viewpoints
, respectively, and the traces of the end-

points of . The endpoints of will either be points
satisfying , or will be the endpoints of a
visible rim curve. The following simple, qualitative strat-
egy for controlling the motion of the observer can now be
used to perform the local reconstruction task for an ordinary
point (Figure 4):

Ordinary Patch Reconstruction Behavior

Step 1: Let be an ordinary visible rim point projecting
to point on the occluding contour.

Step 2: Compute the surface normal at . The normal is
given by , where is the tangent to the
occluding contour at [8].

Step 3: (Reconstructing the occluded points near .) Se-
lect a direction that satisfies the inequality
. Perform a small viewpoint adjustment along
while monitoring the deformation of the occluding
contour curve that initially contains .

Step 4: (Reconstructing the visible points near .) Move
back to the initial viewpoint and reapply Step 3 by
selecting a vector that satisfies the inequality

.

3.2 Local reconstruction around cusp points

In this section we consider the local reconstruction task
around cusp points by studying the geometrical changes
on the occluding contour as the observer moves on the se-
lected point’s tangent plane. The main idea is similar to the
one in [5]: If the observer moves along specific directions
on the tangent plane of the selected point , will remain
on the visible rim but will cease to be the endpoint of the
visible rim curve containing it. Hence, after the observer
performs such a viewpoint adjustment, the reconstruction
problemaround is transformed to the reconstructionprob-
lem around an ordinary visible rim point.
In particular, let be the projection of and let
be the occluding contour curve containing , with
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Figure 4: Reconstructing a patch around an ordinary visible rim point on a torus. The leftmost image shows the edges
detected in the initial view, . The small triangle in the middle of the torus points toward the direction of the line
connecting the initial viewpoint of the observer and the center of the torus. The point selected is point , shown in the
rightmost figure, in which the torus is viewed from below. The point is selected by selecting its projection, , on the
occluding contour from the initial viewpoint, . The figure shows the views of the surface as the observer executes Step
3 of the Ordinary Patch Reconstruction Behavior. The tangent to the occluding contour at is horizontal and, hence, the
projection of the surface normal at in the image is a vertical line. The observer adjusts viewpoint by moving vertically
downward. is the projection of the visible rim segment that contains and moves toward the initially-occluded portion
of the torus in the neighborhood of according to Theorem 1. Here the observer moves until the visible rim curve
corresponding to disappears, i.e., until becomes occluded. The endpoints of are T-junction points. Since
disappears in this case, after the execution of Step 3 the patch reconstructed on the surface is bounded by the curves traced
by the endpoints of and by (i.e., a triangle-like patch). The patch is shown as the lightly-shaded area on the
rightmost figure. Step 4 completes the reconstruction process around by reconstructing a patch on the other side of
(shown as the darkly-shaded area on the rightmost figure).

Figure 5: (a) Moving on the tangent plane of a cusp point . The bold curve on the surface is the visible rim curve containing . is
the initial position of the observer. is a motion direction on satisfying the conditions of Theorem 2: is an ordinary visible rim
point when viewed from viewpoint . (b) A top view of the tangent plane at is shown. is the first principal direction of the surface
at . is the Dupin indicatrix at . The line segment connecting and is along an asymptote of . is occluded when lies in the
shaded areas.

being the last point on . The following
result characterizes the special directions for adjusting the

observer’s viewpoint that force to become an ordinary



point (Figure 5):

Theorem 2 Let be the tangent to the occluding contour
at point defined as the limit . If the
observer performs an infinitesimal viewpoint change along
a direction in such that , will be an
ordinary visible rim point at the observer’s new viewpoint.

Theorem 2 gives a qualitative strategy for adjusting the
viewpoint of the observer in order to recover the shape in
a neighborhood of . We only need to answer two addi-
tional questions to completely specify such a strategy: how
to move and when to stop. The only computation neces-
sary for selecting the direction of motion is the tangent to
the occluding contour at . This decision is particularly
simple if the distance between the observer and is kept
constant. In this case, the motion decision corresponds to
deciding whether to move clockwise or counterclockwise
on the unit circle centered at . Although will become
an ordinary point after an infinitesimal viewpoint adjust-
ment, such an adjustment can leave arbitrarily close to
the visible rim’s endpoint. A simple stopping condition is
to continuemoving on until the distance between ’s
projection and the two endpoints of the occluding contour
curve containing it is maximized. This analysis results in
the following simple viewing strategy (Figure 6):

Cusp Patch Reconstruction Behavior

Step 1: Compute the tangent to the occluding contour
at the selected occluding contour point .

Step 2: Compute the normal of the surface at the
corresponding visible rim point .

Step 3: Determine whether a clockwise or counterclock-
wisemotion on satisfies the inequality
.

Step 4: Consider the occluding contour curve containing
the projection of as consisting of two segments,

, one to the left and one to the right of ’s
projection. Move while fixating at until the length
of the shortest of the two segments is maximized.

Step 5: Apply the Ordinary Patch Reconstruction Behav-
ior to reconstruct a surface patch around .

See the Appendix for a proof.
This strategy gracefully degrades when approximates parabolic

points on the surface, where the angle between the point’s asymptotes
can tend to zero, or when the line connecting and approaches a line
with one third-order and one second-order contact with the surface [8].
See [9] for a description of a stopping condition that guarantees global
reconstruction.

4 Incremental Surface Reconstruction

An incremental reconstruction strategy must guide the
motion of the observer so that new patches on the surface
are reconstructed. In order to achieve this using only the
occluding contour we need to answer two questions: (1)
How can the observer force points on the boundary of the
already-reconstructed patches to lie on the visible rim, and
(2) how can the observer control its motion so that new
patches around those points can be recovered? We briefly
explain below how these questions can be answered using
the behaviors developed in the paper.
The first question can be answered by considering the

fact that the boundaries of the already-reconstructed patches
were points on the visible rim from previous viewpoints.
From the discussion at the end of Section 3.1 we know
that the points on this boundary are either the endpoints of
a visible rim curve, or are ordinary or degenerate visible
rim points from some previous position of the observer.
Hence, it suffices for the observer to move back to the po-
sition where a given boundary point belongs to the visible
rim. This can be achieved by recording, along with each
occluding contour image, the viewpoint corresponding to
that image during the execution of the Ordinary Patch Re-
construction Behavior. Since there is a correspondence
between the points on the reconstructed patch boundaries
and the images they project to, this information is sufficient
to guide the observer to the position where a particular
boundary point was on the visible rim. Furthermore, since
any patch boundary point can be forced to become a visible
rim point, and the behaviors developed in Section 3 can be
used to reconstruct a surface patch around any visible rim
point in a reconstructible surface region, the second ques-
tion is easily answered by the behaviors already developed
in this paper. These considerations lead to the following
strategy (Figure 7):

Incremental Reconstruction Behavior

Step 1: If there exists a portion of the surface that has not
been reconstructed, select a point on its boundary
and let be the viewpoint for which projected to the
occluding contour.

Step 2: Move to .

Step 3: Use the patch reconstruction behavior appropriate
for performing the local reconstruction task around ,
and continue with Step 1.

The specific algorithm for selecting the points on the
boundary of the already-reconstructed surface regions is
not important for guaranteeing their successive expansion.
This leaves considerable freedom to make a choice that



Figure 6: Forcing a cusp point on the visible rim of a torus to become an ordinary point. The upper-left view corresponds
to the initial position of the observer. The lower-left view was derived by applying an edge detector to the image above it.
The tangent to the selected cusp point is horizontal. The observer moves on the tangent plane of the selected point, which
in this case is a horizontal plane perpendicular to the plane of the page. The sequence of images shows views of the surface
from consecutive positions along the observer’s path. The rightmost image shows a top view of the tangent plane at (i.e.,
“looking down” on the torus), and the five viewpoints where the observer is moving, in clockwise order. Point remains
on the rim throughout the motion and can be tracked by tracking the occluding contour point whose tangent is horizontal
(middle view). The sequence clearly shows that becomes an ordinary visible rim point after the viewpoint adjustments.

satisfies additional requirements [18]. In [9], where the
global reconstruction task is investigated in its generality,
we show that the observer must obey a specific rule that
“grounds” this point selection process.

5 Building a Global Surface Model

In the previous sections we described a set of viewpoint
control behaviors enabling the generation of a sequence
of images that permits incremental reconstruction of the
viewed surface. To show how the images generated by
those behaviors can be used to construct global surface
models we briefly describe in this section the quantitative
component of our approach. This process involves con-
structing a surface model based on the surface’s deforming
occluding contour and is independent of the way the ob-
server’s viewpoint is changed.
The behaviors described in the previous sections can

be combined directly with the reconstruction approach of
Cipolla and Blake [1] which employs a mobile monocular
observer to reconstruct the surface from the deformation
of the occluding contour. However, our viewpoint con-
trol behaviors are not restricted to this specific method for
recovering shape from the occluding contour. In particu-
lar, we extend the work of Vaillant and Faugeras [7] and
employ a stationary calibrated trinocular camera rig. The

rig allows the surface to be viewed from three viewpoints
that are close to each other. The images from the stereo
rig together with the calibration information (the relative
geometry of the cameras to each other and to the scene)
are sufficient to discriminate between occluding contour
edges and surface discontinuities, and enable the recovery
of the position, surface normal, and surface curvature for a
dense set of points that lie in the vicinity of the visible rim
corresponding to the three camera viewpoints [7].

Purposive viewpoint control is achieved by appropri-
ately rotating the viewed surface. Such a rotation corre-
sponds to an instantaneous motion vector . A correspon-
dence between the geometries of the patches reconstructed
from the occluding contour using (1) a monocular observer
in motion and (2) a stationary trinocular rig and an object in
motion can be achieved by ensuring that the epipolar param-
eterizations in both formulations are roughly equivalent. In
particular, we ensure that the epipolar planes defined by the
trinocular rig are approximated by the epipolar plane de-
fined by the instantaneousmotion vector: If is the motion
vector corresponding to the desired viewpoint adjustment,
we can find a rotation transformation such that if is
applied to the viewed surface before the viewpoint adjust-
ment, the desired adjustment will now be along a vector
that defines an epipolar plane approximating those of the
trinocular rig.



Figure 7: Incremental reconstruction of the surface of a torus. The point selected initially is point , which is an ordinary
visible rim point. The small triangle in the middle of the torus points toward the direction of the line connecting the initial
viewpoint of the observer and the center of the torus. Rows 1 & 2: These rows of images show consecutive views of the
torus as the observer executes the Ordinary Patch Reconstruction Behavior. In the first row the observer moves vertically
downward starting from the initial position, while in the second row the observer moves vertically upward after moving back
to the initial position. There are four visible rim segments sliding on the torus as the observer moves. Two of the segments,
whose projections are and , slide over initially-occluded parts of the surface during the observer’s downward motion.
The other two segments, whose projections are , slide over initially-visible parts of the surface. Points are
the endpoints of both and . The figures to the right of these views show the patches traced by these segments.
Lightly-shaded patches correspond to the patches reconstructed during the observer’s downward motion. Darkly-shaded
patches correspond to the patches reconstructed during the observer’s upward motion. Row 3: The observer selects a point
on the boundary of the reconstructed patch. The point is a cusp point corresponding to the viewpoint, , of the surface in the
first row, second image from the left. The observer executes Steps 1-4 of the Cusp Patch Reconstruction Behavior to force
to become an ordinary point. Row 4: The observer executes the Ordinary Patch Reconstruction Behavior to reconstruct a

patch for the visible portion of the neighborhood of , as seen from . The figure on the right shows the patch traced by the
visible rim segment projecting to .

Details of our reconstructionapproach and its robustness
are described elsewhere [19]. Here we focus on the two
primary problems related to the global model construction
process, namely (1) the problem of expressing each of the
reconstructed points in a common coordinate system and
(2) the problem of fitting a surface model to these points,
normals, and curvatures that have been reconstructed. We
briefly describe our approach to these two problems below.

5.1 Fusing multiple reconstructed patches

Since viewpoint is controlled using the viewpoint con-
trol behaviors developed in Sections 3 and 4, we assume
here that the motion of the viewed surface is known and

However, Seales and Faugeras [19] describe an alternative approach
that discards the known motion assumption and recovers the motion of
the surface from the motion of fixed edges on that surface.



that the trinocular camera rig is calibrated. Using the known
motion assumption we can express the coordinates of each
reconstructed patch in terms of the initially reconstructed
surface patch. More specifically, the points in patch
are expressed in the coordinates of patch by applying
the motion transformation . A set of trans-
formations for all patches is what is needed. Since
these transformations are known, all reconstructed patches
can be expressed in a common coordinate system.
To demonstrate the applicability of our model construc-

tion method, we used a calibrated horizontal rotating table
for making a scan of an object, by rotating the table about
a vertical axis. This process corresponds to the process of
reconstructing a patch on the surface of the viewed object,
as described in Section 3.1. The motion of the table can be
described in the coordinates of the table as a simple rota-
tion about the table’s vertical axis. The table is calibrated
so that the exact rotation (in degrees) is controlled with an
accuracy to one-hundredth of a degree.

5.2 Surface fitting

In our experiments we have generated complete polyhe-
dral surface meshes from the reconstructed data points by
taking slices along planes perpendicular to the table’s axis
of rotation. These slices are connected together in order to
form a complete surface mesh across the set of data points.
Figures 8(a)-(c) show a reconstructed sphere that has been
sliced and meshed in this way. We have made no effort to
smooth data at each slice taken in this mesh. Rather, we
connect the data in each planar slice, and then connect the
slices by triangulation. Figure 8(a) shows all of the recon-
structed points after they have been placed in a common
coordinate system. Figure 8(b) shows the slices formed by
intersecting planes with this data set. Figure 8(c) is the
final surface mesh calculated from (b) by connecting slices
together and triangulating.
There are many possible approaches to the problem of

fitting a surface description to reconstructed data points.
Our approach using a reconstructed polyhedral mesh is
useful since, at each vertex in the mesh, we have a surface
normal that has been either computed from the reconstruc-
tion process directly or approximated from the adjacent
facets of the mesh. Thus we can manipulate this global
mesh with standard graphics tools such as a raytracer or
polygon shader.
A shaded view gives a good visual impression of the

quality of the reconstructed surface when compared to the
original image. Further, smooth surface patches can easily

Rotationswith one degree of freedom cannot be used to implement the
behaviors developed in the previous sections; to fully implement our global
reconstruction approach we are currently developing a system where the
object is rotated with two degrees of freedom, using a pan-tilt unit.

be fit to the underlying polyhedralmesh. For example, Fig-
ure 8(d) shows an original image from the input sequence
and Figure 8(e) shows the reconstructed surface that has
been rendered from the same 3D viewpoint with the same
surface characteristics.

6 Experimental Results

The experimental results were acquired by positioning a
trinocular camera rig, mounted on the INRIAmobile robot,
in front of a rotating, calibrated table. First a calibration
grid was placed on the table in front of the camera and
several images were taken in order to calibrate the camera
rig and compute the table’s axis of rotation in the coordinate
frame of the camera rig. Then, an object was placed on the
table and a set of 15 image triplets was taken, each triplet
separated by a 12 degree rotation of the table. This complete
180 degree rotation usually allows a cylindrical patch on
the object surface to be reconstructed, and corresponds
to a run of the Ordinary Patch Reconstruction Behavior
described in Section 3.1. The rotation angle was selected
arbitrarily and we expect that a finer sampling will give a
better reconstruction. In our simulations we have found
that, for the synthetic sphere example, the mean error in the
position of reconstructed points is less than 1 millimeter,
and the mean error in the direction of the reconstructed
surface normal is about 3 degrees. The interested reader is
referred to recent work by Seales and Faugeras [19].
The reconstruction results for two sequences of 15 views

are shown in Figure 9. The ceramic owl was placed on a
box in order to produce edge images containing both fixed
and occluding contour edges. On the other hand, the dark
rubber child’s boot was chosen since it does not suffer from
the problems of specularities and surface markings.
Our results for the owl sequence show that the occlud-

ing contour edges can be reliably distinguished from the
fixed edges using our approach. The 3D points projecting
to the edges in the owl and the boot sequences are also
reconstructed very accurately.
Figure 10 shows rendered views of the complete surface

mesh that was recovered from the sequence of the boot.
Because we have recovered surface normals at most of
the points (those that are on the occluding contour), we
can render the mesh using interpolated shading techniques
such as Phong shading. The mesh shown in Figure 10
is completely closed and can be rotated and viewed from
any direction. By comparing the rendered model with the
original images from the sequence (e.g., Figure 9(b)) one
can see that the overall accuracy of the reconstruction is
very good.
The results of our reconstruction experiments empha-

size the importance of controlling viewpoint based on the



(a) (b) (c)

(d) (e)

Figure 8: (a) Reconstructed points from an image sequence of a rotating sphere, put in the same coordinate frame. The
curves formed by the points correspond to the -parameter curves of the epipolar parameterization. (b) Slices of data points
computed from the reconstructed sphere data. (c) The mesh of triangles computed from the slices in (b). (d) One view of
the sequence of the sphere used as input. (e) A rendered view of the reconstructed surface mesh, from the same viewpoint
and with surface properties identical to those of the sphere in (d). Note that the reconstruction breaks down near the top of
the sphere, where the epipolar parameterization is degenerate.

occluding contour. In particular, our results reinforce the
practical validity of the developedviewpoint control behav-
iors since the occluding contour can be reliably detected in
edge images, and illustrate the need for employing such
behaviors: By simply rotating the boot about a vertical axis
after placing it on the rotating table as shown in Figure 9 we
cannot determine whether or not the boot is in fact “filled”,
i.e., it contains no cavity on top for inserting the foot. A
simple application of the Incremental Reconstruction Be-
havior of Section 4 for extending the reconstruction process

would involve rotating the table again after lying the boot
on its side on the rotating table.

7 Concluding Remarks

We have demonstrated that an active observer can use
a set of simple and qualitative viewpoint control behaviors
to incrementally construct a model of an unknown object.
These behaviors are based purely on the computation of
a simple property of the occluding contour (tangent at a
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Figure 9: Results of the reconstruction process. The upper row shows results from a sequence of views of a ceramic owl
placed on a box. The lower row shows results for a sequence of views of a rubber boot. (a),(d) An image from the sequence.
(b),(e) Recovered 3D points for the entire sequence. (c),(f) Edges labeled as occluding contour edges.

point), and can be naturally combinedwith a robustmotion-
based surface reconstruction algorithm in order to build
global object models as collections of smooth connected
patches. Our experimental results show that the developed
behaviors are readily implementable, they rely on visual
information that can be robustly computed, and because of
their simplicity and low computational requirements they
are suitable for real-time implementation.

The use of an active observer is the most crucial aspect
of our approach. The ability to purposefully control motion
enables the observer to generate a dense image sequence
that allows incremental reconstruction of the surface from
the occluding contour. The reason is that viewpoint con-
trol is not used merely to force the motion of the visible

rim over the surface (as in existing approaches), but it is
used to control the visible rim’s motion in a well-defined
and qualitative manner, forcing it to slide over previously-
unreconstructed parts of the surface. This is a major step
toward automated object model construction, establishing
an important link between the ability to purposively control
viewpoint and the global surface reconstruction task.
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Appendix: Proofs for Section 3 Theorems

Proof of Theorem 1

Let be an ordinary visible rim point. Consider the
epipolar plane, , defined by the vector and the line
segment connecting and , and the intersection, , of
with in the neighborhood of (Figure 3).
Suppose that the observer does not move on the tangent

plane of the surface at , i.e., . In this case,
and is a regular curve in the neighborhood

of [8]. In addition, suppose is parameterized so that
the curve normal at points toward the surface interior.
Since is an ordinary point, must be a convex point
of . Furthermore, the open line segment connecting
and does not intersect the surface, implying that
does not become occluded by a distant point of under an
infinitesimal viewpoint change on .
The visibility of (and of points on close to ) in

this case is determined by the sign of
[8]. Therefore, changes in the visibility state of under
infinitesimal observer motion occur due to changes in the

sign of this dot product. Since is a visible rim point, this
dot product is zero at position . Therefore, the visibility
of under an infinitesimal viewpoint change depends on
the sign of the derivative . We have:

If the observer moves on ’s tangent plane, may be-
come occluded by points in the neighborhood of but will
always remain on the rim. It will remain visible unless
is hyperbolic and the line connecting and is along an
asymptotic direction of the surface at [5]. This, however,
cannot occur since is ordinary.

Proof of Theorem 2

First note that point must be hyperbolic [20]. Fur-
thermore, since projects to a cusp point on the occluding
contour, the line segment connecting and does not
intersect the surface elsewhere. is contained in and
runs along an asymptotic direction of at .
In [5] we showed that if is along an asymptotic direc-

tion, infinitesimal viewpoint changes on that move
the observer away from can be classified into two cate-
gories depending on whether or not they force to become
occluded. From the analysis in [5], it follows that if
remains visible at the new viewpoint, the curvature of the
occluding contour at becomes finite, and remains on the
visible rim after the change in viewpoint (i.e., becomes
an ordinary visible rim point at the new viewpoint). Figure
11 shows why the directions ensuring the visibility of
after the viewpoint change satisfy .



Figure 11: Visibility-preserving motions on . For readability, the surface in the neighborhood of is not shown. is the normal
plane at in the direction of . The hyperbola on is Dupin’s indicatrix at . The plane separates the surface points around that
are above into two sets: When the surface is viewed from , all points to the right of (i.e., in the direction of ) are visible from
; there are both visible and occluded points to the left of . The line segment is an asymptote of the component of Dupin’s indicatrix
that lies to the left of .


