To appear in: Proc. CVPR’92

Recovering Shape by Purposive Viewpoint Adjustment

Kiriakos N. Kutulakos

Charles R. Dyer

Computer Sciences Department
University of Wisconsin

Madison, Wisconsin 53706 USA

Abstract

We present an approach for recovering surface shape
from the occluding contour using an active (i.e., moving)
observer. It is based on a relation between the geometries
of a surface in a scene and its occluding contour: If the
viewing direction of the observer is along a principal di-
rection for a surface point whose projection is on the con-
tour, surface shape (i.e., curvature) at the surface point can
be recovered from the contour. Unlike previous approaches
for recovering shape from the occluding contour, we use an
observer that purposefully changes viewpoint in order to
achieve a well-defined geometric relationship with respect
to a 8D shape prior to its recognition. We show that there
18 a simple and efficient viewing strategy that allows the
observer to align the viewing direction with one of the two
principal directions for a point on the surface. Fxperimen-
tal results demonstrate that our method can be easily im-
plemented and can provide reliable shape information.

1 Introduction

There has been considerable interest in recovering infor-
mation about the structure of a scene from sequences of
images, assuming an observer in motion (e.g., work on op-
tical flow and shape-from-motion). One common feature
of these approaches is the use of known viewer motion in
order to recover quantitative properties of the scene such
as surface curvature [1]. Recently, however, there has been
considerable interest in employing simple observer behav-
iors that either make the recovery of scene properties easier
[2], or combine simple behaviors in order to perform com-
plex tasks such as navigation and obstacle avoidance [3].
These approaches rely on maintaining specific geometric
relationships between the observer and the environment.
However, without knowledge of viewer motion they only re-
cover qualitative information about the viewed scene (e.g.,
relative depth ordering with respect to the fixated scene
point [2]).

This paper presents a new approach that combines the
above two paradigms in order to recover surface curvature
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from the occluding contour. We show that shape for a se-
lected point on the viewed surface can be recovered from
the occluding contour of two views. The only requirements
are that (1) the surface point is projected on the occlud-
ing contour in both views, and (2) the viewing direction
of the observer for one of the views has a specific relation-
ship with the surface geometry at the selected point. The
main idea of our approach is to use an active (i.e., mo-
bile) observer that purposefully changes viewpoint in order
to achieve such a well-defined geometric relationship with
respect to a 3D shape prior to its recognition. We show
that this relationship is characterized by specific image-
computable quantities and enables an analysis similar to
the one of Krotkov [4]. In addition, our approach does
not require any knowledge of observer velocities or object
models and assumes the use of a world-centered coordinate
frame.

It is well-known that the occluding contour is a valuable
source of information about surface shape [5, 6]. The oc-
cluding contour is the projection of the visible rim, the one-
dimensional set of points that separates the visible from
the hidden parts of a surface. There have been several
approaches to deriving information about surface geom-
etry from the occluding contour. These approaches are
based on three important properties of the contour’s geom-
etry: (1) The geometry of the occluding contour is surface-
dependent, (2) the occluding contour is the projection of a
limited set of surface points, and (3) the geometry of the
occluding contour is viewpoint-dependent.

The dependency of the occluding contour’s geometry on
the surface severely constrains the surface’s geometry (e.g.,
[5, 6]). The major problem, though, is that the occluding
contour is created through a projection process and in gen-
eral the information it provides is ambiguous, i.e., several
different surface rims can project to the same occluding
contour. This has been the major motivation for using the
occluding contour to derive qualitative rather than quan-
titative shape information [6]. The second property of the
occluding contour suggests that it can provide only a lim-
ited amount of information about the complete shape of
the surface. Indeed, only a one-dimensional set of surface
points project to the occluding contour. The contour’s de-
pendency on viewpoint has been used to resolve both of



the above ambiguities. A slight change in viewpoint will
affect the geometry (i.e., curvature) and possibly the topol-
ogy of the rim, and hence the occluding contour. Moreover,
the set of rim points changes and therefore new constrain-
ing information about the surface shape becomes available.
Giblin and Weiss [5] showed that if we know how the ge-
ometry of the occluding contour changes with viewpoint,
we can derive a parameterization of the surface and hence
determine its shape. The issue here is how to accurately
measure such changes in the contour’s geometry with small
viewing direction changes. For example, we must be able
to measure the velocity and acceleration of surface points
entering and leaving the rim [1, 7], a problem that requires
first- and second-order differentiation operations of image-
computable quantities, and hence is sensitive to noise.

The basic assumption used by all of the above ap-
proaches was that the viewing direction is arbitrary. This
means that the viewing direction is not related in any way
to the geometry of the rim or the occluding contour. (For
example, there are surfaces for which their rim is planar
when viewed from a particular set of directions.) This is
a reasonable approach, however, only if the observer can-
not control the direction of gaze. When the observer has
the ability to control the viewing direction, the choice of
viewpoint(s) does not have to be arbitrary. Our approach
uses an active observer to obtain a view based on the ob-
served object’s geometry in order to recover exact shape
information from the occluding contour.

1.1 Active shape recovery

Our goal is to actively derive a quantitative shape de-
scription for surface points in the vicinity of the rim. We
accomplish this goal by using properties of the occluding
contour. The basic step of our approach involves selecting
a point on the rim and recovering the surface shape (i.e.,
principal curvatures and principal directions) at that point.
In addition, we present a strategy for applying this shape
recovery step to neighboring surface points. The surface
description is therefore incrementally extended by succes-
sively including new points on the rim and recovering the
surface geometry for those points.

The main step of our approach is based on a relation
between the geometries of a surface in a scene and its oc-
cluding contour: If the viewing direction of the observer
is along a principal direction for a selected surface point
whose projection is on the contour, the corresponding prin-
cipal curvature at the point can be recovered. Hence, even
though in general surface curvature calculation from the
occluding contour of a single view is an underconstrained
problem, for any given point there do exist viewing direc-
tions that make this recovery problem well-defined. If the
observer can move to one of those special viewing direc-
tions, the ambiguities caused by the projection process can
be resolved. We show that the observer can in fact deter-
ministically find these special viewing directions by simply
maximizing or minimizing a geometric quantity of the oc-

cluding contour (curvature at a point) while changing view-
ing direction in a constrained way. Furthermore, we show
that we can recover the shape of the surface at the selected
point (i.e., both principal curvatures) from the occluding
contour of one additional view for which the selected point
is projected onto the contour. Thus an active observer se-
lects a point on the surface rim and purposefully moves
to one of the special viewpoints in order to make shape
recovery a well-defined problem.

The significance of our method lies in the use of purpo-
sive observer motion to achieve and maintain purely geo-
metrical relations between a surface and its occluding con-
tour in order to recover surface shape. Hence, there is no
need to perform any velocity or acceleration measurements
for image points in the vicinity of the rim, a process requir-
ing point-to-point correspondences and precise knowledge
of viewer motion. Furthermore, there is a well-defined pro-
cedure to reach the desired viewpoint, so the observer does
not need to perform a complicated search to find it.

Even though our approach is limited to the recovery of
surface shape in the vicinity of a single point on the rim, we
show that there is an important special case for surfaces of
revolution, for which we can derive shape information for
the complete set of rim points. In this case the observer is
actively “aligned” with the viewed surface in order to find
a viewpoint giving complete surface information (i.e., one
perpendicular to the axis of rotation). Furthermore, we
present an extension to the above approach that recovers
the shape of points in the vicinity of the rim. After the
shape of a selected rim point is recovered, the observer
changes viewpoint in order to bring a new surface point
onto the rim and to recover its shape. This is a major
difference from approaches using “passive” motion, where
the points selected for reconstruction cannot be controlled.

The rest of this paper is organized as follows. The next
section reviews basic terminology. Section 3 discusses the
relation between the geometries of the occluding contour
and the surface, and presents the major result enabling
us to actively recover surface geometry from the occluding
contour. Section 4 uses this result to describe the main
shape recovery step of our approach. Our results are then
extended in the following two sections. Section 5 discusses
shape recovery for the case of surfaces of revolution, and
Section 6 outlines the viewing strategy used to select a
new point for shape recovery. Finally, Section 7 presents
experimental results on synthetic images to demonstrate
the applicability of our theoretical results.

2 Viewing geometry

Let S be a smooth, oriented surface in ®*, viewed un-
der orthographic projection along a viewing direction £.
Given a parametrization & of S and a point p = z(u,v),
the partial derivatives z,(p), z.(p) of & with respect to u
and v define T,(S), the plane tangent to S at p. Local
surface shape (i.e., curvature) is completely expressed by
the first and second fundamental forms of S with respect



to ¢ [8]. Specifically, let N(p) be the surface normal at p.
The normal section of S along a direction & in T,(.S) is the
plane curve produced by intersecting S with the plane of
¢ and N(p). The second fundamental form, I1(p), gives
an expression for the curvature of this curve at p. I1(p)
has a single maximum and minimum, k,, and ky,, along
the principal directions e; and ez, respectively. We can use
these two quantities, called the principal curvatures of S at
p, to compute the curvature of the normal sections along
any other direction using Euler’s formula:

kn(¢) = kn, cos® ¢ + kn, sin® ¢ (1)

where ¢ is the angle between the new direction and e;.
Hence, we can recover the local shape of S completely
from the principal curvatures of S. In the following we
assume that p is not an umbilic point (i.e. a point where
all directions are principal directions), and consider the
parametrization @(u,v) for which the curves z(u,vo) and
#(ug, v) (wo,vo constant) are lines of curvature, i.e., have
tangents along the principal directions.

3 Local shape from occluding contour

Under orthographic projection, the rim of S is the set
of those points p for which T},(.S) contains a line parallel
to the viewing direction £. The occluding contour of S is
the projection of the visible rim on the image plane. The
problem of recovering surface geometry from the occlud-
ing contour has been mainly studied under the assumption
that the viewing direction is arbitrary. This means that
the viewing direction is not related in any way to the ge-
ometry of the rim or the occluding contour. Under this as-
sumption there are three main results describing what can
be recovered from the shape of the occluding contour when
orthographic projection is assumed: (1) We can recover the
surface orientation at p (i.e., T,(S) or N(p)) from £ and the
tangent to the occluding contour at ¢, the projection of p
[6], (2) if k. is the curvature of the occluding contour at g,
then k, and the Gaussian curvature K = kyn, kn, of S at p
have the same sign [6], and (3) if k,, is the normal curvature
of S at p along &, then K = kyko [5, 6]. Because K is de-
fined as the product of two curvatures on the surface (i.e.,
kn,, kn2), these results suggest that if we know k, then we
only need to measure one curvature on the surface instead
of two. In fact k,, and %k, determine the second fundamen-
tal form at p. This was the main idea behind the surface
reconstruction approach of Cipolla and Blake [1].

The above results are important but they also imply that
if we have no additional information about the shape of the
viewed surface, the information provided by the occluding
contour is primarily qualitative. However, when the ob-
server can actively control the viewing direction, we can
exploit the existence of directions that allow the deriva-
tion of complete information about the surface. We show
this by presenting three simple corollaries to a result of
Blaschke (proofs can be found in [9]). Blaschke’s result is

analogous to Fuler’s formula and relates the curvature of
the occluding contour with the principal curvatures of S at
the rim:

Theorem 1 (Blaschke [8]) Let ¢ be the angle between &
and e1. Then,

ko_l (¢) = k;ll sin? o+ k;; cos? @ (2)

Corollary 1 If € is along the principal direction e1 at p,
then ko = kn, .

Corollary 2 Let &, &' be two distinct viewing directions in
Tp(S) from which p is visible, and let ko, k., be the curva-
tures of the occluding contour at the projections of p. If (1)
K #0atp, (2)&=e1, and (3) the angle between & and ¢’
is known, then we can compute kn,, €2, and K at p.

Corollary 3 Let p be a non-umbilic point on the visible
rim of S with K # 0. Let ¢ € [0,2x) be the angle be-
tween & € T,(S) and ey. (1) If p is elliptic (i.e., K > 0),
the function ko(&) takes its minimum and mazimum val-

ues only when £ coincides with one of the principal direc-
tions. (2) If p is hyperbolic (i.e., K < 0), ko(€) is well-

defined only when |¢| < arctan /kn, [(—kn,) for ¢ < =,
or |¢| — 7 < arctan \/kn, [(—kn,) for ¢ > w. For these

directions, ko(€) takes its mazimum value when & coincides
with e1 and it has no minimum value.

Corollary 1 suggests that the principal directions at p
form a special set of directions providing explicit infor-
mation about surface geometry in the vicinity of p. Now
assume that we are viewing p from a particular viewing
direction and can measure the curvature of the occluding
contour at p’s projection. If somehow we can adjust our
viewing direction to coincide with a principal direction at
p and know what this adjustment is, Corollary 2 shows
that we can derive the second fundamental form of S at
p. This solves the shape recovery problem for p. The most
important result is given by Corollary 3. It shows that the
problem of finding the principal directions at a point can be
treated as a simple maximization (or minimization) prob-
lem. We describe the implications of this result in the next
section and show how it can be used by an active observer
to find the principal directions at p.

4 Recovering local surface geometry

The basic step of our surface reconstruction approach is
to select a point on the occluding contour and recover the
local surface geometry for its corresponding rim point. We
do not address the point selection problem directly. The
reason for this is that we cannot decide a prior: which point
on the occluding contour will prove the most useful. This
will depend on the context in which this approach is used.
However, there are specific types of points for which our
reconstruction method may not work. Therefore, our task
will be to select a point on the rim for which we can ensure
that our approach is effective. Below we first outline the
main ideas and, in Section 6, present more details.



4.1 The active reconstruction approach

Suppose we have selected a point p on the rim. For sim-
plicity we will assume that p is at the origin. Corollary
3 says that if p is a non-umbilic elliptic or a non-umbilic
hyperbolic point, there are only two viewing directions in
T,(S) for which k, obtains a local maximum value (i.e.,
those for which the angle with e is 0 or 7T) and two direc-
tions for which k, obtains a local minimum. Owur goal is
to find one of these directions since they correspond to e;
and es. We discuss the problem of finding e2; €1 is treated
similarly.

Viewing directions in the plane T,(S) can be thought
of as points on a unit circle C, defined by the intersection
of a unit sphere centered at p with 7,,(S) (see Figure 1).
As the observer changes viewing direction on 7,(5), the
corresponding point moves on C. Our goal is to smoothly
move this point on C until the viewpoint with maximum
ko 1s found. To do this we must answer two questions: (1)
Which direction should the observer move on the unit cir-
cle, and (2) how can the observer detect when the viewing
direction is equal to ex?

We only have two possibilities for moving on the unit
circle, either clockwise or counterclockwise. Obviously, we
prefer the minimal motion solution in which the desired
extremum is attained with the smallest possible change in
viewing direction. From Corollary 3 we know that if we
move in the direction of increasing k., the first extremum
we reach is a maximum. It follows from the local geome-
try of elliptic and hyperbolic points that this strategy will
produce the smallest viewing direction change (Figure 2).
However, parabolic points do not have this property.

The second question, detecting when the viewing direc-
tion is equal to ez, is partly answered by Corollary 3. It says
that we can detect this event by detecting a local maximum
of k.. However, in order to detect this local maximum, p
must be visible; k., cannot be measured otherwise. The
visibility of p is affected by the local surface geometry at p
as well as by the global geometry of S. Ignoring for a mo-
ment the case where p is occluded by some distant point
on S, we arrive at the following two conclusions: (1) If p is
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Figure 1: Viewing directions on T,(S).
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Figure 2: Finding the principal directions. Top views of
the tangent plane are shown. The curve D is Dupin’s indi-
catrix for p. (a) p is an elliptic point. (b) p is a hyperbolic
point. Shaded areas, delimited by the asymptotes of the
point, represent the directions where p is occluded. (Note
that the axis labels have been reversed.)

elliptic, we can align the viewing direction with either e; or

e2. Furthermore, the maximum possible direction change

before the alignment takes place is 7/2 (Figure 2(a)). (2)

If p is hyperbolic, we can align the viewing direction only

with e1. The maximum possible direction change in this

case is determined by the point’s asymptotes (Figure 2(b)).

These results suggest a simple algorithm to align the
observer’s viewing direction with es:

Step 1: Perform a small change of viewing direction on
T,(S) and measure the difference between the previ-
ous and current value of k,. If it increases, continue
to change the viewing direction in the same way so
that ez will be reached first. If it decreases, move the
viewing direction in the opposite way.

Step 2: Continue moving in the same direction (or per-
form a binary search along the lines of [4]) until &,
reaches a maximum. This viewpoint corresponds to
e> and therefore the observer can stop moving and
use the current value of &, for &y, .

Step 3: Measure the total change of direction between the
initial and final viewing direction. Corollary 2 says
that this angle along with k,, and the initial value of
ko can be used to determine ky,.

4.2 Selecting points for reconstruction

Any observer motion minimizing or maximizing k., must
take into account the effects of global surface geometry:
Irrespective of its local structure, p may become occluded
by distant points on S. The following proposition shows
that (a) there are at least some points on the visible rim
of S that cannot be occluded by S if the observer changes
direction as described above, and (b) these points are easily
detected on the occluding contour (see [9] for the proof):



Figure 3: Selecting points for surface recovery. Solid lines
on the occluding contour of a candlestick show the points
that cannot become occluded while changing viewing di-
rection in their tangent planes.

Proposition 1 (1) Let p be a visible, elliptic point on the
rim of a smooth surface S when viewed from direction &
under orthographic projection. Let q be the projection of p
in the tmage plane and let | be the tangent to the occluding
contour at q. Then, p is visible from every direction on
T,(S) iff 1 does not intersect the occluding contour and is
not tangent to it at any point other than q.

(2) Let C be the occluding contour of S when viewed from
direction €. Then there is at least one point on S projected
in C that is visible from every direction in T,(S).

Figure 3 shows the results of applying Proposition 1 to
the occluding contour of a candlestick. The proposition
implies that the only points ensuring the correctness of the
algorithm are elliptic. However, this is a necessary require-
ment for the presence of occlusion but not a sufficient one.
This means that there are cases where the geometry of hy-
perbolic points can be recovered with our approach. In
fact, shape recovery for hyperbolic points requires less ob-
server motion on average since the extent of the visibility
of these points is limited by their asymptotic directions.

5 Surfaces of revolution

In the last section we presented an algorithm for recover-
ing the shape of a single point on the surface rim. Surfaces
of revolution, however, present an ideal example of sur-
faces for which the local shape of a single rim point reveals
global properties of the surface. Such surfaces are com-
pletely described by their axis and their generating curve.
Approaches for recovering the axis of a surface of revolu-
tion have been mainly geared towards detecting symme-
tries in their occluding contour or outline (e.g., [10]), or
utilizing their viewpoint-invariant properties (e.g., [11]).
The problem with detecting symmetries in the occluding
contour is that their existence depends on viewpoint. On
the other hand, the identification, detection and utiliza-
tion of viewpoint-invariant properties is a non-trivial task
[11]. Furthermore, the axis is severely foreshortened for
near- “top” views.

Our active approach neatly lends itself to these problems
in order to make them easier to handle. The idea is that if
the viewer can align the viewing direction with a principal
direction of a rim point, then shape and symmetry analysis
of the occluding contour becomes especially simple. This
is because the parallels of a surface of revolution (i.e., the
lines generated by rotating a point of the generating curve
around the axis) are lines of curvature. Hence, one of the
principal directions corresponds to a “side” view of the sur-
face (i.e., a view for which the viewing direction is perpen-
dicular to the axis of rotation). If the generating curve
of the surface can be written in the form y = f(z), then
the recovery of the axis of rotation allows us to recover the
generating curve directly from a side view. The occluding
contour from a side view is symmetric. Therefore, the axis
of rotation (as well as the generating curve) can be recov-
ered by simply using existing symmetry-seeking approaches
which are well-defined for such a viewpoint. In fact, the di-
rection and position of the axis can also be determined by
recovering the principal curvatures for two points on the
rim of a side view [9].

It is also possible to extend the above discussion to the
case of regular, straight, homogeneous generalized cylin-
ders, by aligning the viewing direction with the princi-
pal direction of points belonging to geodesic parallels [9].
In either case, the observer must choose between moving
towards the principal direction of minimum curvature or
moving towards the one of maximum curvature. Surfaces
of revolution whose generating curve is of the form y = f(z)
have two properties that can help in this decision: (1) Hy-
perbolic rim points are visible only from the principal di-
rection corresponding to a side view, and (2) if the viewing
direction smoothly changes on the tangent plane of a se-
lected rim point, this point will not become occluded if
the viewing direction is approaching the direction of a side
view.

6 Extending surface recovery

Our main objective is to recover the complete shape de-
scription for a single rim point. In this section we consider
an extension to this approach—selecting a new point and
applying the shape recovery process to that point. We must
consider two important issues in order to demonstrate the
effectiveness of such an extension:

o (Efficiency) The extent of the viewing direction ad-
justments needed to align the viewing direction with
one of the principal directions at the newly selected
point.

o (Reliability) The extent of the viewing direction ad-
justments required by our basic shape recovery algo-
rithm in order to produce reliable shape information
for the newly selected point. This is because if the
viewing direction adjustment is close to zero, numeri-
cal problems are introduced in the calculations of the
principal curvatures from Corollary 2.



Let p be the previously selected point. After applying the
shape recovery step, the viewing direction £ of the observer
is aligned with one of the principal directions at p, say
e2. We have seen that if we change directions in T,(S), p
will not leave the rim. Therefore, we must change viewing
direction in some other plane containing e;. The impor-
tant issues here are (1) which plane should be selected for
changing the viewing direction, and (2) how much should
the viewing direction change in that plane? We show in [9]
that if the selected plane P is the normal plane (i.e., the
plane defined by the viewing direction and the surface nor-
mal at p) and if the viewing direction change on this plane
is small, then the viewing direction adjustments during the
shape recovery step will in fact be smooth and depend en-
tirely on intrinsic properties of the surface. Specifically,
we show that these adjustments are (to a first approxima-
tion) proportional to the geodesic curvature of the lines
of curvature at p and inversely proportional to the normal
curvature of the lines of curvature at p. This is an impor-
tant result because it allows us to predict the performance
of our active viewing strategy based on knowledge of the
intrinsic properties of the surface.

7 Experimental results

We have implemented a prototype system that (1) auto-
matically selects points on the rim of an object, (2) tracks
these points while changing viewing direction on their tan-
gent plane, and (3) computes the curvature of the occlud-
ing contour at the selected points in order to detect the
viewpoints where it obtains an extremum value. Our ex-
periments were performed by synthetically generating im-
ages from 3D object models (Figure 4). The viewing direc-
tion changes were constrained to lie on a horizontal plane
perpendicular to the plane of the page. Our system auto-
matically detected points on the occluding contour having
tangent planes parallel to this plane and subsequently la-
beled and tracked them while the viewing direction changed
smoothly (Figure 4). The points were initially detected and
labelled for the viewing direction £ = 0. Note that after a
rotation of 3.93 radians the only unoccluded points for the
candlestick model are the points 0 and 6, exactly as pre-
dicted by Proposition 1 (i.e., the tangents to the occluding
contour at these points do not intersect the contour).

Because we used polyhedral models, curvature computa-
tions were performed by first approximating the occluding
contour in the neighborhood of the selected points using
cubic B-splines. Figure 5 shows that the major peaks and
valleys of the curvature estimates are clearly visible even in
the presence of the discontinuities caused by the polyhedral
approximation. Both our models were surfaces of revolu-
tion with their “side” view corresponding to a principal
direction of maximum curvature for all selected rim points.
View 2 shows the occluding contour from the viewpoint of
maximum curvature for point 0.

8 Concluding remarks

Current limitations of the approach are (1) the use of
orthographic projection, (2) the requirement that viewing
directions change on arbitrary planes, and (3) its applica-
bility to only elliptic or hyperbolic surface points. We be-
lieve, however, that our active approach of moving towards
viewpoints that are closely related to the geometry of the
viewed surfaces is a very important and general one. Con-
sider, for example, the problem of obtaining a “face-on”
view of a planar curve or a texture element. This prob-
lem has been studied extensively in the past and several
approaches exist that hypothesize face-on views, based on
information from a single viewpoint (e.g., [10]). We are cur-
rently investigating an approach that enables the observer
to change viewpoint in order to obtain a face-on view of a
planar curve. We are also trying to extend our results to
perspective projection and are investigating possible uses of
this approach in the context of active surface-exploration.
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Figure 4: Snapshots of the occluding contour for a candlestick and two tori as viewing direction changes. The
numbered points are the points automatically selected and tracked.
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Figure 5: Variation of the absolute curvature with respect to viewpoint at the selected points on the occluding
contour. The models were rotated a total of 27 radians. The curves for point 5 on the candlestick and the tori
end at the viewpoint where their occlusion is detected.



