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ABSTRACT

While deep learning has led to breakthroughs in many areas of computer science, its power has yet to be fully
exploited in the area of adaptive optics (AO) and astronomy as a whole. In this paper we describe the first steps
taken to apply deep, convolutional neural networks to the problem of wavefront reconstruction and prediction
and demonstrate their feasibility of use in simulation. Our preliminary results show we are able to reconstruct
wavefronts comparably well to current state of the art methods. We further demonstrate the ability to predict
future wavefronts up to five simulation steps with under 1nm RMS wavefront error.
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1. INTRODUCTION

Currently, adaptive optics relies heavily on the Shack-Hartmann (SH) wavefront sensor (WFS) and its traditional
control sequence: recovering slopes from each of the SH lenslets and applying them to the deformable mirror via
the command matrix. However, this system is inherently limited by the number of lenslets in the system and
prone to certain error modes, e.g., wa✏e modes.1 In the past few years, however, similar control sequences and
imaging pipelines have seen dramatic improvements with the introduction of deep learning, and convolutional
neural networks (CNN) in particular. It has been shown that individual components of an imaging pipeline
can be successfully reproduced with a single, pre-trained, deep learning model which often outperforms classical
methods.

Machine learning techniques have been previously applied successfully to adaptive optics (AO) systems. Os-
born et al.,2 for example, trained a single hidden layer multi-layer perceptron (MLP) to infer Zernike polynomial
coe�cients from wavefront slopes. This type of approach, however, falls into two pitfalls which we are now able
to overcome. First, wavefront reconstruction through Zernike polynomials are limited in their ability to recover
arbitrary signals, particularly high-frequency details, and can’t be used with non-circular pupils. Second, simple
models such as MLP are limited in their inference ability due to both their shallow structure (low number of
learned features) and lack of spatial reasoning and spatial invariance enabled by learning convolutional features.
CNNs, on the other hand, are able to reproduce very high frequency content and create output with any size or
pupil shape. For these reasons, deep CNNs are a natural fit for approximating the AO pipeline.
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2. SIMULATION ENVIRONMENT

2.1 Telescope and Atmosphere Model

The results presented in this paper are based on simulated data created with the Object-Oriented MATLAB 
Adaptive Optics Toolbox3 (OOMAO). We base our simulated telescope model on the Gemini telescope. In
all experiments our model is an 8 meter telescope with a 20⇥20 lenslet array, 120⇥120 pixel Shack-Hartmann 
wavefront sensor, and the Gemini pupil. We assume a three layer frozen flow atmosphere model with an r0
randomly distributed between 65 - 75cm (at H-Band), and a 0.75, 0.20, 0.05 fractional r0 and altitudes of 0, 
4000, and 10000 meters for each of the layers respectively. In both training and testing simulations we randomly 
and independently choose a wind speed and direction for all three layers. In all of the following results, we 
trained with a magnitude 1, H-band natural guide star.

2.2 Data Generation

To acquire a wide variety of conditions for training our model, we performed 10,000 simulations each run for 500 
time steps (each with the randomly chosen r0, wind speed, and direction described above) for all atmospheric 
layers. Once complete, we take a number of sample wavefront and slope pairs evenly distributed throughout 
the simulation (ignoring the first 100 time steps to eliminate any similar initial conditions between simulations). 
This leaves us with approximately 150,000 data pairs with which to train our model. To test our models we 
simply generate additional data using these same settings. All of the reconstruction data is generated in closed 
loop, creating pairs of slopes and residual wavefronts which we attempt to reconstruct.

3. WAVEFRONT MODELLING

3.1 Wavefront Reconstruction

To learn a mapping from Shack-Hartmann slopes to the true wavefront, we follow current best practices and 
use a similar approach to the popular U-Net architecture.4 Given a set of slopes, we learn and apply a series of 
convolutional weight layers to both the x and y maps independently. First, at each consecutive layer the number 
of convolutional features doubles as the spatial dimensions are halved via max pooling – which reduces spatial 
dimensions by discarding all but the highest values over a set area of pixels. After several layers, we concatenate 
the features from both the x and y branches before expanding the spatial dimensions by applying up-convolution 
(also known as transposed convolution) layers while halving the number of features at each layer. Finally, we 
include skip connections from both branches of the convolutional half to the deconvolution half between layers 
with matching spatial and feature dimensions. Each layer is activated with a leaky relu function5 and we further 
include batch normalization at each convolutional layer during the spatial reduction phase, but not as the spatial 
size increases.

The skip connections have two intended benefits, first gradients can more easily pass from the output error 
to the beginning of the network which alleviates the issue of vanishing gradients. Furthermore, these skip 
connections exploit any spatial similarities in the data. To train the network we pass a pair of slopes into 
the network, evaluate its output, and compare it to the downsampled ground-truth wavefront. We use an `1 
loss on the error, which is then propagated back through the network to update the model. Figure 1 shows a 
visualization of the reconstruction network architecture including the size and number of convolutions at each 
layer and the connections between di↵erent layers.

3.2 Wavefront Prediction

Unlike the reconstruction model which only takes spatial reasoning into account, in the case of wavefront pre-
diction, we aim to exploit temporal structure in the data. To do so we create a model based on Long Short 
Term Memory (LSTM) networks. These networks retain state information between evaluations allowing for both 
short and longer term correlations to be found in the incoming data. They have proven very successful in many 
areas of deep learning, particularly natural language processing tasks. One extension of these methods is the 
convolutional LSTM which extends the basic LSTM module to learned spatial features and data. This extension 
was originally applied to tasks such as precipitation forecasting6 but has been shown to generalize well to other 
types of data.
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Figure 1: Architecture for the wavefront reconstruction network. Given a set of x and y slope maps, we apply a
series of convolutions to extract features before building up to our resulting output wavefront.

In essence, our model takes n previous frames and tries to predict the next n frames into the future. To
accomplish this our model has three LSTM modules: encoding, reconstruction, and prediction. First, each of
the n frames of previous wavefront data is passed through the encoder. The purpose of this module is to extract
pertinent information from the data and create a more useful intermediate representation. The output from
the encoder is then passed to both the reconstruct and prediction modules. The purpose of the reconstruction
module is to take the encoded data and attempt to perfectly reconstruct the input data – essentially acting
as an autoencoder. This module is not used during evaluation but during training behaves as a regularizer,
encouraging the encoder to find more general and useful representations for the data. Finally, the prediction
module takes the encoded data and attempts to predict the next n wavefronts.
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Figure 2: Architecture for the wavefront prediction network. Given a set of n wavefronts, we encode and then 
predict the next n wavefronts with a series of convolutional LSTMs.

To make the problem more tractable, instead of recreating and predicting the wavefronts from scratch, we 
predict a residual delta between the last input wavefront and what the next wavefront should be. We further 
make the assumption that these changes should be small, penalizing large changes during training. Our final 
loss function to train our model is an `1 error of the reconstruction, prediction, and an additional `1 loss on the 
magnitude of the residuals for both the reconstruction and prediction. The structure of our network can be seen



in Figure 2, as well as the connections between LSTM modules. For all three of our LSTMs we learn 20, 3 ⇥ 3
convolutional features and use a leaky relu activation function.

4. RESULTS

4.1 Wavefront Reconstruction

After training our wavefront reconstruction network, we evaluated its performance in two di↵erent ways. First,
we randomly generated 700 new wavefronts using the same parameters described above. Again, the direction and
the velocity were randomly chosen for each simulation and this data was not used to train the original model. In
Table 1 we show the average wavefront error in nm over all 700 of the new simulated data. Because our method
outputs both low, and high resolution reconstructions we include the performance of both outputs. In Figure 3
we show two examples of the reconstruction methods output, and in Figure 4 we show the higher resolution
reconstructions from our method for the same two samples.

To better evaluate how our model works in practice, we also compare our methods in closed loop simulation.
Again, with the same parameters described above, we perform 100 simulations of a two minute exposure in
closed loop. For comparison we include results using the slopes directly with the command matrix as well our
method through recreating the wavefront and using the influence function matrix to apply deformations to the
mirror. In Table 2 we show the averaged results for all three methods as measured in Strehl ratio for di↵erent
NGS magnituides and in Figure 6 we show two resulting PSF, each from a single simulation.

Our initial results show that we can well reconstruct wavefronts up to five NGS magnitudes outside of our
training data. The cases in which our method does not perform well are typically wavefronts which contain
large spikes near the edges of the pupil, as seen in Figure 5. This type of error can be reduced by ensuring
these types of wavefronts are present in the training data, or moving to a pseudo-open loop simulation. Because
reconstructing a higher resolution wavefront does not appear to provide better on average error, we may also
achieve greater results by training a model with only the original slope-resolution reconstruction, allowing our
model to focus exclusively on this resolution may enable better closed loop results as well.

NGS Magnitude Ours (Low Res) Ours (High Res)

0 138.2 187.3

5 140.5 181.0

10 146.4 216.2

15 464.4 502.9

Table 1: Average wavefront error in nm RMS from 700 randomly generated wavefronts reconstructed from slopes.
Here Low-Res refers to the network output which corresponds to the size of the slope grid and High Res is two
times the resolution.

NGS Magnitude Command Matrix Ours (High-Res)

0 56.98 48.65

5 57.69 48.66

10 58.32 27.89

Table 2: Average Strehl ratio from 100 closed loop AO simulations. The slopes column shows the result of using
the slopes and command matrix directly while our method relies on first reconstructing the wavefront before
using the influence function matrix to apply deformations to the mirror.



Sample #1

Downsampted V\IavefrontOur Reconstruction (133nm RMS)

4

2

'2

Sample #2

Downsampted V\Iavefront Our Reconstruction (138nm RMS)

4

2

4

Figure 3: Wavefront reconstruction comparison between downsampled ground truth our learned model. Values
displayed in nm.
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Figure 4: Wavefront reconstruction comparison between downsampled ground truth and the higher resolution
output from our learned model. Values displayed in nm.

Figure 5: Example wavefront that our method was not able to well reconstruct. These types of errors can be
mitigated in the future with improved training data or working in a pseudo-open loop simulation where these
types of wavefronts would be very unlikely to occur.



Figure 6: Resulting PSF from two closed loop simulations for both methods: slopes with command matrix and
ours with influence function. PSF are presented in log scale and corresponding Strehl ratios are included in
parenthesis.
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Table 3: Average wavefront error in nm for both prediction and recreation of input wavefronts over 100 simulated
wavefront series.

4.2 Wavefront Prediction

To evaluate our wavefront prediction model after training, we evaluate its predictive power for 100 new, randomly
generated wavefront series. Here we show results when using the past 5 wavefronts. This number was chosen
empirically as the minimum number of frames required to see improvements. More frames could give better
results but will always require balancing the tradeo↵ between computation time and predictive power. However,
our model is trained in a general way and can be used with any number of wavefronts without needing to retrain
the network. In Table 3 we show the average wavefront error for each step of the predicted wavefront as well as
the error for the recreated input wavefront. As can be seen in Figures 7 and 8, our predicted wavefront has a
smaller wavefront error compared to holding the previous measurement constant. These results imply that the
use of these predictive methods could reduce lag error in the control sequence leading to improved contrast and
Strehl ratio.

Figure 7: Average predicted wavefront error for each of the five simulation steps into the future. Also shown is
the average wavefront error of holding the last known frame constant for each of these five steps.
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Figure 8: Two examples of predicted wavefronts. Given the five previous wavefronts, we predict the next five
using our prediction network model. Here we show the five frames side by side for the ground truth wavefronts,
our predicted wavefronts, and their absolute error below them.



5. CONCLUSION

5.1 Discussion

We have shown how modern, deep, convolutional neural networks can be applied to adaptive optics. We demon-
strate a data-driven model for reconstructing the latent atmospheric wavefront from slope data that is comparable
to other state of the art methods. We further show how convolutional LSTM networks can be applied to pre-
dicting future wavefronts with only five samples of previous data and in the future hope to both combine these
two networks as well as apply similar methods to tomographic problems.

5.2 Future Work

Now that we have shown how these machine learning methods might be applied to AO and their capability there
are many exciting future avenues for this work to continue. First, validating the predictive power of our model in
closed loop simulation, comparing to previous methods, and assessing its contrast improvement. We then hope
to combine the reconstruction and prediction networks in an end-to-end model. Finally, as a next step for our
reconstruction model we hope to apply these methods to multi-sensor tomographic reconstruction.

Currently we are also in the process of assembling an AO bench to test our methods. We intend to train and
test our model by applying a known phase map via a spatial light modulator.
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