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Figure 1: Imagine trying to acquire live video (30fps) of structured-light patterns as they are being projected onto a compact fluorescent
bulb that has already been turned on (rated 1600 Lumens), or onto a face in bright sunlight (80 kLux)—with a 5-Lumen projector. One of our
two prototypes, shown in (a), achieves this with an off-the-shelf laser projector and a CMOS camera with an ordinary lens. We then used it
to capture the video frames in (b) and (c). We also show how to use our prototype to generate a live video feed from the projector’s—rather
than the camera’s—point of view, shown in (d).

Abstract

Programmable coding of light between a source and a sensor has led
to several important results in computational illumination, imaging
and display. Little is known, however, about how to utilize en-
ergy most effectively, especially for applications in live imaging.
In this paper, we derive a novel framework to maximize energy ef-
ficiency by “homogeneous matrix factorization” that respects the
physical constraints of many coding mechanisms (DMDs/LCDs,
lasers, etc.). We demonstrate energy-efficient imaging using two
prototypes based on DMD and laser illumination. For our DMD-
based prototype, we use fast local optimization to derive codes that
yield brighter images with fewer artifacts in many transport prob-
ing tasks. Our second prototype uses a novel combination of a low-
power laser projector and a rolling shutter camera. We use this
prototype to demonstrate never-seen-before capabilities such as (1)
capturing live structured-light video of very bright scenes—even
a light bulb that has been turned on; (2) capturing epipolar-only
and indirect-only live video with optimal energy efficiency; (3) us-
ing a low-power projector to reconstruct 3D objects in challenging
conditions such as strong indirect light, strong ambient light, and
smoke; and (4) recording live video from a projector’s—rather than
the camera’s—point of view.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Imaging geometry, radiometry

Keywords: energy efficiency, low-power imaging, coded illumi-
nation, coded exposure, computational photography, 3D scanning

1 Introduction

When we capture an image under controlled lighting, the power
of the light source matters a lot: all things being equal, brighter
sources will send more photons to the sensor during an exposure,
producing a brighter and less noisy image. The brightness of the
source, however, is just one way to control how much light reaches
the sensor of a computational imaging system. Modern systems
use an arrangement of devices to transport light from a source to
the scene (or from the scene to sensor) and these devices are often
programmable—galvanometers [Mertz et al. 2012], digital micro-
mirror devices [Nayar et al. 2004; Hitomi et al. 2011], liquid-crystal
panels [Raskar et al. 2006], phase modulators [Damberg and Hei-
drich 2015], etc. This brings up a natural question: how should
we program the spatio-temporal behavior of these devices to maxi-
mize an arrangement’s energy efficiency, i.e., the energy that can be
transmitted from the source to the sensor for a given imaging task,
power, and exposure time?

Studies of this problem began in the 1960s for the special case of
arrangements with just three “active” components: a light source
that is always turned on, a light-blocking mask that is controlled
by a binary code, and a sensor [Ibbett et al. 1968; Decker and Har-
wit 1969]. The optimal sequence of codes for this case is derived
from the Hadamard matrix [Harwit and Sloane 1979] and enjoys
widespread use [Schechner et al. 2007], mainly because most con-
ventional computational imaging systems are arranged this way.

Despite the ubiquity of these arrangements, two general princi-
ples have emerged in recent years. On one hand, masks are in-
efficient because they waste energy whenever they block a pho-
ton [Hoskinson et al. 2010]. On the other hand, masks confer
unique abilities when arranged in layers along an optical path and
programmed to change repeatedly in a single exposure. This is be-
cause photons can be blocked far more selectively this way, en-
abling light field displays [Lanman et al. 2010; Wetzstein et al.
2012], indirect-only photography [O’Toole et al. 2012], and several
other imaging functionalities [O’Toole et al. 2014].

Unfortunately, neither the original Hadamard multiplexing theory
nor its recent extensions [Cossairt et al. 2012; Mitra et al. 2014a;
Mitra et al. 2014b] apply to multi-layer arrangements, or to ar-
rangements that avoid masks altogether (e.g., laser-based projec-
tors [Damberg et al. 2014; Gupta et al. 2013]). As a result, the
problem of computing energy-efficient codes for multi-layer ar-



rangements is poorly understood—and even less is known about
how to design them for optimal energy efficiency. These problems
are especially relevant for live imaging, where short exposures and
low-power restrictions leave no room for wasting light.

In this paper we present, for the first time, a mathematical frame-
work to derive energy-efficient codes for such arrangements and a
novel experimental testbed for live energy-efficient imaging. We
specifically focus on the family of two-layer arrangements, with
one layer controlling illumination and the other controlling a sen-
sor mask (Figure 2). Our work makes the following contributions:

Energy-efficient codes for probing light transport: We give a
principled way to compute code sequences for existing structured-
light-transport cameras [O’Toole et al. 2014], and transport prob-
ing systems more generally [O’Toole et al. 2012]. These arrange-
ments use two programmable masks for imaging but their code se-
quences have so far been constructed heuristically. In contrast, our
energy-efficient codes transmit more photons to the camera for a
given light source power (i.e., brighter images, all else being equal)
and produce superior images for a given number of photons trans-
mitted (i.e., fewer artifacts, all else being equal). We confirm these
gains experimentally with the DMD-based prototype of O’Toole et
al. [2014].

Live energy-efficient probing with lasers and rolling shutters:
Although energy-efficient codes do improve image quality, far big-
ger gains are possible by optimizing the arrangement itself. To this
end, we demonstrate highly efficient transport probing with a novel
combination of a low-power laser projector and a rolling shutter
camera. We use this second prototype to demonstrate several never-
seen-before capabilities such as (1) capturing epipolar-only and
indirect-only live video without wasting any photons; (2) captur-
ing live epipolar structured-light video of very bright scenes—even
a light bulb that has been turned on; (3) reconstructing 3D objects in
challenging conditions such as strong indirect light, strong ambient
light, and smoke; and (4) recording live video from a projector’s—
rather than the camera’s—point of view.

Unified mathematical model for redistributive projection: We
show that despite the significant differences between our two pro-
totypes, it is possible to describe both of them with the same under-
lying model. This makes it easy to compare their energy efficiency,
and to define an efficiency criterion for code sequences that ap-
plies to a whole spectrum of projection devices—from conventional
DMD projectors to rapidly-steerable laser beams. Mathematically,
our model is expressed as a bound on the ℓ1-norm and the ℓ∞-norm
of the illumination patterns realizable by a given device; intuitively,
the ratio of these two norm-bounds measures the device’s “redistri-
bution ratio,” i.e., its ability to direct all photons to just one pixel
for a specific interval of time.

Energy-efficient codes by homogeneous factorization: We show
that finding energy-efficient codes under our model is equivalent
to solving a homogeneous constrained matrix factorization prob-
lem. In this setting, the matrix to be factorized is task-dependent
and known a priori, the constraints capture the physical constraints
on masks and illumination patterns, and individual factors hold the
energy-optimized code sequence of individual layers. We solve this
factorization problem by minimizing an objective function that in-
cludes the projective tensor norm; we use the fast local optimizer of
Haeffele et al. [2014] in our implemenetation, to compute energy-
efficient codes for our DMD-based prototype.

Impulse illumination is globally optimal: We show that the
global minimum of our objective function—across all two-layer
code sequences and redistribution ratios—can be derived in closed
form and is actually very simple: it is a sequence of impulse il-
luminations produced by a projector having the smallest possible
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Figure 2: Two-layer arrangements considered in this work. (a)
At the low end of the efficiency spectrum are projectors that al-
ways spread light to all pixels on a mask (i.e., redistribution ratio
is N ). These projectors waste energy because they create patterns
by blocking light—and that light is not used for imaging. (b) At
the other extreme are “impulse” projectors, able to concentrate all
their energy to just one pixel (i.e., redistribution ratio is 1). In be-
tween are arrangements that can concentrate light partially, which
we also analyze.

redistribution ratio for the exposure time, i.e., it emits all photons
into a tight beam that can be redirected very quickly. A key corol-
lary of this result is that our laser-based prototype, whose illumina-
tion sequence is fixed by the hardware and not under our control,
is globally optimal for the tasks of epipolar-only and indirect-only
imaging. Moreover, global optimality holds even in the presence of
ambient light. For the other tasks we consider, however, a signifi-
cant gap from global optimality still exists. This can only be closed
with yet-unavailable hardware for more flexible laser projection and
electronic masking.

Energy-efficient codes for redistributive projectors: Of course,
between the two extremes of ideal impulse projection (minimum
redistribution ratio) and conventional mask-based projection (max-
imum redistribution ratio) lies a whole spectrum of arrangements
that redistribute light partially [Hoskinson et al. 2010; Mertz et al.
2012; Gupta et al. 2013; Damberg and Heidrich 2015]. We explore
this spectrum briefly through simulations, noting that a rapid “phase
transition” seems to occur in our energy-efficient codes, with pure
impulses on one end switching to dense codes on the other.

2 Lights, Masks and Energy Efficiency

We begin by revisiting the oft-used concepts of an illumination pat-
tern and a mask, expressing them in terms of physical units and
constraints. These lead to a definition of energy efficiency for two-
layer code sequences, for the purpose of transport probing.

2.1 Redistributive Projection and Sensor Masking

We assume that the projector’s light source is always on and emits
light at a constant rate Φ, measured in Watts. Illuminating a scene
for an exposure time T means that the total energy generated by the
source is ΦT and given in Joules.

We use illumination vectors l to represent actual patterns. Each el-
ement of l gives the energy emitted from a specific projector pixel
during the exposure time. The sum of all elements of l cannot ex-
ceed the energy generated by the source:

0 ≤ l, ‖l‖1 ≤ ΦT, (1)

where ‖ · ‖1 denotes the ℓ1-norm of a vector.
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Figure 3: Transport probing allows us to block, permit, or attenu-
ate the energy transmitted from individual projector pixels to indi-
vidual sensor pixels—regardless of scene content. This is specified
by a probing matrix Π that has an element for every such pair. We
adopt the rectified stereo representation of O’Toole et al. [2014] to
parameterize individual pixels and the elements of Π. In this rep-
resentation, identical rows on the projector and sensor belong to
the same epipolar plane; rays through pixels with the same coor-
dinates are parallel in 3D; and intersecting rays always lie on the
same epipolar plane and are assigned a non-zero disparity δ.

The redistribution ratio of a projector A key measure of pro-
jector flexibility is how well it can “channel” to individual pixels
all the energy generated by the source. We express this ability as an
upper bound on the individual elements of l:

‖l‖∞ ≤ ΦT/σ, (2)

where ‖ ·‖∞ is the ℓ∞-norm, giving the largest element of a vector,
and σ is a projector-specific parameter we call the redistribution
ratio, that is equal to the ratio of the bounds in Equations 1 and 2.
For an N -pixel projector, this ratio takes values between 1 and N
and models energy redistribution: the larger its value is, the lower
the energy we can send through any one pixel, and the more energy
we waste when projecting a pattern with just one pixel turned on
(or just a few).

The specific value of σ depends on the projection technology. At
the far end of the range, with σ = N , are conventional projec-
tors (Figure 2a). These projectors use mirrors and lenses to dis-
tribute light evenly over spatial light modulator, which may then
block all or part of it. The near end of the range, with σ = 1,
represents an idealized projector that is perfectly efficient (Fig-
ure 2b). This projector can send all its light through just one pixel
for the entire exposure time T but can also distribute it—without
any blocking—according to an arbitrary illumination l. Between
these two extremes lies a whole spectrum of projection technolo-
gies that approach this ideal to a greater or lesser extent [Hoskinson
et al. 2010; Gupta et al. 2013; Damberg et al. 2014; Damberg and
Heidrich 2015].

Norm bound on illumination vectors The ℓ1 and ℓ∞ bounds on
l can be written more concisely as

0 ≤ l, ‖l‖†σ = max

(
σ‖l‖∞

Φ
,
‖l‖1
Φ

)

≤ T, (3)

where ‖ · ‖†σ is the max of two norms and therefore also a norm.
These bounds are useful in three ways. First, we can optimize ar-
rangements with very different light redistribution properties by ad-
justing the redistribution ratio. Second, the dependence on expo-
sure time makes a distinction between systems that conserve en-
ergy and those that merely conserve power (but require on long
exposures [Gupta et al. 2013]). Third, they explicitly account for
timescale-dependent behavior (e.g., raster-scan projectors, like the
one used in our laser-based prototype, can act like a beam, light
sheet, or point source depending on T ).
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Figure 4: The probing matrix Π. For a raster-scan order of projec-
tor pixels and sensor pixels, the elements controlling energy trans-
mission within an epipolar plane always occupy diagonal blocks
(green for epipolar plane e and yellow for e′). Circles indicate the
elements controlling transmission for the pixels in Figure 3.

Norm bound on mask vectors Programmable masks can trans-
mit, block, or attenuate light in a structured way [Takhar et al. 2006;
Veeraraghavan et al. 2011; Hitomi et al. 2011; Gu et al. 2013]. Here
we use mask vectors m to denote energy attenuation on the sensor.
Each element of m is a unit-less scalar between zero and one de-
scribing attenuation at a specific sensor pixel:

0 ≤ m, ‖m‖∞ ≤ 1. (4)

2.2 Transport Probing

Masked sensors are clearly less energy efficient than mask-less ones
because masks may block incident photons. Despite this apparent
limitation, programmable masks come with an important advan-
tage: by changing masks and illuminations repeatedly in a single
exposure, we can capture images that are impossible to capture with
an unmasked sensor in one shot. This general technique—called
transport probing [O’Toole et al. 2012]—expands the capabilities
of an imaging system at a cost of reduced energy efficiency. We
briefly review this technique here, as it defines the tasks whose en-
ergy efficiency we wish to optimize.

Transport probing uses a coded sequence of illuminations and
masks to control, in a scene-independent way, the energy trans-
mitted from the projector to the sensor (Figure 3). This control
is typically expressed as a probing matrix Π whose individual ele-
ments specify energy attenuation from a specific projector pixel to
a specific sensor pixel (Figure 4). Just like masks, probing matrices
contain unit-less scalars in the range [0, 1]. Intuitively, each ma-
trix Π can be thought of as describing a specific imaging task, and
is always provided. Figure 5 shows several examples of probing
matrices we use in our experiments.

Energy efficiency of illumination-mask sequences Probing
matrices describe attenuation in relative terms and do not tell us
how much energy can actually be transmitted from the projector to
the sensor. Indeed, the energy efficiency of transport probing de-
pends on the precise sequence of illuminations and masks used.

More specifically, we can realize any rank-1 probing matrix Π us-
ing just one illumination and one sensor mask (Figure 6):

γ Π = m l
T, (5)

where vectors l and m depend on matrix Π and satisfy all physical
constraints, and γ is a scalar that is measured in Joules. Intuitively,



epipolar (≈ direct) non-epipolar (= indirect) short-range indirect epipolar structured light disparity gating live dual videography

Section 5.1 Sections 4 and 5.1 Section 4 Section 5.2 Section 5.3 Section 5.4

Figure 5: Probing matrices used in our live video experiments. We follow the conventions of Figure 4 for a projector and a sensor that have
just eight rows of pixels (but many columns). Individual elements range from zero (black) to one (white). Red lines indicate row boundaries in
the raster-scan ordering of individual pixels. These lines partition Π into contiguous “epipolar blocks,” with each block controlling energy
transmission from projector pixels on a specific epipolar plane to sensor pixels on another epipolar plane.

γ converts the unit-less elements of Π into actual energies that can
be potentially transmitted during the exposure time. We call γ the
energy efficiency of the illumination-mask pair l and m.

Higher-rank probing matrices require changing illuminations and
masks K > 1 times during the exposure time. Mathematically this
is equivalent to expressing matrix Π as a sum of outer products,
subject to the physical constraints on illuminations and masks:

γ Π =

K∑

k=1

mk (lk)
T, (6)

0 ≤ tk,
K∑

k=1

tk ≤ T, (7)

0 ≤ mk, ‖mk‖∞ ≤ 1, 0 ≤ lk, ‖lk‖†σ ≤ tk, (8)

where the mask mk and illumination lk are used for an interval tk
of the total exposure time, and scalar γ is the energy efficiency of
the whole sequence.

2.3 Homogeneous Factorization

The greater the energy efficiency of a sequence, the more total en-
ergy will flow from the projector to the camera in any given scene.
We therefore seek illumination-mask sequences that maximize γ.

Re-writing Eq. (6) in the form of a matrix factorization equation

γ Π = [m1 m2 · · ·mK
︸ ︷︷ ︸

masks M

][ l1 l2 · · · lK
︸ ︷︷ ︸

illuminations L

]T (9)

leads to a homogeneous factorization problem whose goal is to find
the masks M, illuminations L, and timeslices tk that maximize
energy efficiency:

max
γ,M,L,t1,...,tK

γ (10)

subject to γ Π = ML
T

(11)

0 ≤ mk, ‖mk‖∞ ≤ 1

0 ≤ lk, ‖lk‖†σ ≤ tk

0 ≤ tk,

K∑

k=1

tk ≤ T.

The energy efficiency of a particular factorization—and thus the
solution to this optimization problem—depends to a large degree
on a projector’s ability to redistribute light, i.e., on its redistribution
ratio. See Figure 6 for a detailed illustration.

3 Homogeneous Low-Rank Factorization

While the optimization in Eq. (10) is hard to perform directly, it is
possible to relax it into the following form:

min
M,L

‖Π−ML
T‖2F + λ

K∑

k=1

‖mk‖∞‖lk‖†σ (12)

subject to 0 ≤ mk, 0 ≤ lk

where λ is a regularization parameter that balances energy effi-
ciency and the reproduction of Π. Details of this relaxation, which
absorbs timeslices and inverse energy efficiency γ−1 into the sec-
ond term of Eq. (12), are in the supplemental materials. Its main
intuition is to convert the homogeneous maximization of Eq. (10)
into an inhomogeneous one by seeking the masks and illuminations
with the minimum sum of norm products. Once this decomposition
is found, we can “brighten” matrix Π, and thus find γ, by re-scaling
M and L to saturate their upper-bound constraints.

The relaxation in Eq. (12) has received some attention recently in
computer vision and machine learning [Bach et al. 2008; Haeffele
et al. 2014]. Here we focus on aspects of that work that are specific
to our optimization problem.

The projective tensor norm By leaving the sequence length K
unconstrained and dropping non-negativity constraints, Eq. (12) be-
comes equivalent to a minimization of the following general objec-
tive [Haeffele et al. 2014]:

min
X

‖Π−X‖2F + λh(X) (13)

where function h(X) is the projective tensor norm, defined as

h(X) = min
X=MLT

{ K∑

k=1

‖mk‖p‖lk‖q
}

(14)

= min
X=MLT

{1

2

K∑

k=1

‖mk‖
2

p + ‖lk‖
2

q

}

(15)

with p = ∞ and q = †σ according to Eq. (12).

3.1 Implications of the Theory

Impulse illumination is globally optimal A closed-form solu-
tion to Eq. (12) exists for the special case of impulse projectors.
This is because the norms ‖lk‖1 and ‖lk‖†σ in that equation al-
ways coincide when the projector’s redistribution ratio is equal to
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Figure 6: Top row: Realizing a rank-1 probing matrix of size 4× 4 in two ways—with a single illumination-mask pair (middle) and with a
sequence of two illuminations and masks (right). Middle row: Plots of power versus time for the “active” pixels in a mask-based projector.
The projector’s redistribution ratio is 4 because no more than a quarter of the power can be emitted from any given pixel. Although the single
illumination-mask pair is more efficient than the length-two sequence (γ = ΦT/4 versus γ = ΦT/8) neither makes full use of the source’s
energy. Bottom row: With an impulse projector, on the other hand, both are optimal (γ = ΦT/2).
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Figure 7: Codes optimized for different sequence lengths K. Here we dropped the non-negativity constraint and computed codes M and
L that require two photos to implement efficiently on a DMD-based projector (i.e., one for the positive and one for the negative elements
of L). Left: A probing matrix. Middle: Optimized illuminations for various sequence lengths (mask matrices omitted for brevity). Positive
and negative elements are color-coded in red and blue, respectively. Right: Sequence length versus energy efficiency as measured by the
projective tensor norm (lower is better). Note that energy efficiency starts improving once Π can be reconstructed exactly, i.e., for K ≥ 13.

one. In particular, Bach et al. [2008] showed that for p = ∞ and
q = 1, the projective tensor norm—which is equal to the global
minimum of Eq. (12)—is given by the sum of the ℓ∞ norms of the
mask vectors. The factorization corresponding to this minimum is

L = IN×N , M = Π L, (16)

where IN×N is the identity matrix. In other words, the illumination
vectors that maximize energy efficiency are impulses.

Epipolar illumination is globally optimal for epipolar and non-

epipolar imaging The global optimality of impulse projectors
has another, more practical implication: scanning-based laser pro-
jectors that can concentrate all their energy onto individual scan-
lines are also globally optimal for probing—but only when their
scanlines are along the epipolar planes, and only for probing matri-
ces whose elements do not vary within an epipolar block (e.g., the
first three matrices in Figure 5). In that case, each epipolar line can
be treated as a “pixel” without loss of generality, and each epipolar
block of Π can be treated as a single element. The globally-optimal
solution is again given by Eq. (16), with “impulses” corresponding
to a single epipolar line turned on.

Epipolar illumination and epipolar masking confer robustness

to ambient light A second practical implication of Eq. (16) con-
cerns probing matrices Π that are permutations of the identity ma-
trix: since each pixel is unmasked exactly once in M, the globally-
optimal solution also globally minimizes the time that individual
pixels are exposed on the sensor. In other words, impulse illumi-
nation and impulse masking simultaneoulsy maximize the energy
efficiency of probing and minimize the impact of ambient light.
Similarly, epipolar illumination and epipolar masking are optimal
for epipolar probing in the presence of ambient light—a principle
we directly exploit with our laser-based prototype (Section 5).

Code optimization algorithm for non-impulse projectors No
closed-form solution is known for the projective tensor norm when
σ is greater than one. We use the structured low-rank matrix fac-
torization algorithm of Haeffele et al. [2014] to locally optimize
this norm with convergence guarantees. The base requirement of
their algorithm is the ability to evaluate the proximal operator. For
a norm ‖ · ‖p this operator is defined as

proxλ‖x‖p
(v) = argmin

x

(

‖x‖p +
1

2λ
‖x− v‖22

)

. (17)
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Figure 8: Optimized codes for different values of the redistribution ratio σ. For a DMD-based projector (σ = 31), our algorithm returns
masks M and illuminations L that are complementary S-matrices. For the impulse projector (σ = 1) we get impulses. The projective tensor
norm plot of the S-matrix and impulse solutions is shown on the right for different values of σ (lower is better).

Codes from O’Toole et al. [2014] Our codes

Figure 9: Epipolar imaging with the DMD-based prototype in
O’Toole et al. [2014]. The scene has a mirror on the left and a
translucent candle on top of a box on the right, all in front of a white
wall (see Figure 12(a) for a conventional photo). We generated
codes using their randomized algorithm and ours for K = 512.
Both codes are equally energy efficient since they produce images
of similar brightness. Our codes, however, are not just efficient,
they approximate Π well too. This yields images with far fewer
artifacts (note the bright streaks on the left image).

The proximal operator for ‖ · ‖†σ has a simple form when σ = N
and a very efficient algorithm exists for computing it [Parikh and
Boyd 2014]. We use this approach to compute optimized code se-
quences for our DMD-based prototype (Section 4). For projectors
with redistribution ratios between 2 and N−1, we found no simple
solution. We evaluate Eq. (17) explicitly in such cases by solv-
ing a constrained minimization problem. To impose non-negativity
constraints on masks and patterns we replace each negative compo-
nent of the proximal operator’s output with zero [Xu and Yin 2013;
Parikh and Boyd 2014].

4 DMDs for Live Energy-Efficient Imaging

DMDs offer flexible masking but have two important limitations:
they are very inefficient when used for light projection (σ = N )
and they can only support short code sequences for live imaging
(e.g., K ≤ 96 for the Texas Instruments LightCrafter DMD). This
makes the design of energy-efficient codes all the more important,
so that images are as bright and artifact-free as possible.

Optimized codes for epipolar imaging Probing with the epipo-
lar matrix Π in Figure 5 yields an image that is almost exclusively
due to direct surface reflections [O’Toole et al. 2014]. This is be-
cause Π allows energy transmission only between pixels on the
same epipolar plane, and this transmission is predominantly caused
by direct surface reflection in most scenes.

The algorithm of O’Toole et al. [2014] uses random binary illumi-
nations for matrix L and derives the masks M from L and Π. This
guarantees that the approximation error Π−ML

T goes to zero as
K → ∞ but can produce poor results for practical values of K.

Codes from O’Toole et al. [2014] Our codes

Figure 10: Non-epipolar imaging using our codes versus those
of O’Toole et al. [2014]. The scene consists of a styrofoam cup
and a lamp (turned off). We generated a short sequence of codes
(K = 32) using their randomized algorithm and ours, and cap-
tured the images shown above. Again, both codes have similar en-
ergy efficiency but ours produce no discernible artifacts (note the
bright diagonal streaks on the left image).

Figure 7 shows the illumination codes from our algorithm, using
Eq. (12). These codes are far from random: for probing matrices
whose size is divisible by four, we obtain illuminations L similar to
the Hadamard matrix [Harwit and Sloane 1979]. Moreover, ML

T

converges to the probing matrix as K approaches Π’s size. This has
a clear, positive impact on image quality (Figure 9). We observe the
same convergence behavior for other sizes too (where Hadamard
matrices do not exist); we do find, however, that energy efficiency
can be improved even further by computing code sequences that are
longer than Π’s size (Figure 7c-e).

Optimized codes for non-epipolar imaging Figure 10 illus-
trates the visual quality improvement from our optimized codes
in this task. The task requires probing with the non-epipolar ma-
trix of Figure 5 which guarantees that no direct light reaches the
sensor. Short illumination-mask sequences from the algorithm of
O’Toole et al. [2014] result in strong visual artifacts (bright di-
agonal streaks along epipolar lines). These occur because the en-
ergy that is transmitted from projector to sensor is attenuated non-
uniformly over the sensor plane (i.e., ML

T is a poor approximation
of Π). Our optimized codes, on the other hand, yield bright and
artifact-free images for a short sequence of the same length. These
codes are shown in Figure 8.

Optimized codes for high-rank probing Many matrices useful
for probing have rank much higher than the maximum attainable
value of K. In such cases, the matrix Π can only be approximated
by a rank-K approximation of Π. Figure 11 compares our codes to
those obtained by the approach of O’Toole et al. [2012] for the hith-
erto not studied task of short-range indirect imaging. This task in-
volves probing with the corresponding matrix from Figure 5, which
blocks all energy transmissions except those occurring between any
two nearby epipolar planes.



Algorithm of [O’Toole et al. 2012] Our algorithm (with weight matrix)

Π ML
T computed M weight matrix ML

T computed M

Figure 11: Computing a K = 16 code sequence for a rank-128 short-range indirect probing matrix. The top row shows the mask
matrix computed without enforcing non-negativity whereas the bottom row shows the matrix with those constraints enfored. We can use this
matrix to capture images with only “short-range indirect” contributions, i.e., light that contains neither direct reflections nor contributions
transported between distant epipolar planes. We are aware of no techniques to capture such images, either by factorizing Π or by other
means. In particular, the randomized algorithm of O’Toole et al. [2012; 2014] fails to produce usable codes because Π’s off-diagonals are
reconstructed poorly. By incorporating the weight matrix shown into the Frobenius norm of Eq. (12), our algorithm produces a low-rank
approximation of Π whose off-diagonals are reconstructed very well. Use of these weights was partly inspired by [Lanman et al. 2010].
Figures 12c shows images captured with our DMD-based prototype using this code.

Figure 12 shows captured images for several high-rank probing
tasks. These tasks were impossible to perform previously because
no efficient low-rank factorizations of Π were known (i.e., with
enough energy efficiency for a useful image signal).

Implementation details The projective tensor norm is a prior
that naturally favors binary codes. Nevertheless, the codes com-
puted by our algorithm are not binary in general. We implement
non-binary codes by temporally dithering each code with the DMD,
i.e., projecting a sequence of binary codes that achieve the desired
intensity value. This increases the number of codes but does not
affect energy efficiency.

Ignoring non-negativity constraints in Eq. (12) can significantly in-
crease the energy efficiency of code sequences. Codes with both
positive and negative values, however, are not physically realiz-
able. We follow the approach of O’Toole et al. [2012; 2014] to im-
plement such codes: we convert a length-K illumination-mask se-
quence into two such sequences, one for their negative and one for
their non-negative elements, capture one image for each sequence,
and subtract them in software.

Energy-efficient codes for redistributive projectors Finding
globally-optimal codes for general redistributive projectors remains
an open problem. Nevertheless, we can draw interesting con-
clusions about the characteristics of (locally-optimized) energy-
efficient codes for different redistribution ratios and different prob-
ing matrices. Take, for instance, the case of non-epipolar Π. For
σ = N , our algorithm automatically returns illuminations L simi-
lar to an S-matrix [Schechner et al. 2007] (Figure 8). At the other
extreme of σ = 1 it returns the impulse illuminations predicted
by Eq. (16). Between these two extremes, we found no solution
that improves upon either the S-matrix or the impulse illuminations.
This suggests a rapid flip in the energy efficiency of these two code
sequences.1

1One can draw an analogy to the work of Cossairt et al. [2012] who

observed similar behavior in their study of computational imaging in read-

noise versus shot-noise limited settings.

5 Lasers for Live Energy-Efficient Imaging

Scanning-based laser projectors operate on a different principle
than mask-based projectors. These projectors use a MEMS mirror
to steer a laser beam and raster-scan across the scene, sending all
their energy to just one pixel at a time. We consider these projectors
at the more granular timescale of a single scanline, where they act
as impulse projectors whose “impulses” are scanlines (Section 3.1).
By aligning the projector’s scanlines with the rows of a rolling-
shutter camera—whose ability to mask individual rows electroni-
cally provides a sequence of “impulse” masks—we obtain a system
with very high energy efficiency for many transport probing tasks.

Our prototype is portable and consists of nothing more than an off-
the-shelf camera and off-the-shelf projector whose only modifica-
tions are synchronization electronics—no passive or active optical
components are required beyond a simple color filter. This avoids
the need for sophisticated hardware devices and extra optics, all
of which introduce aberrations, limit working volume, reduce light
throughput, and adversely impact size, weight and cost.

Laser projectors for “impulse” illumination We use a Microvi-
sion ShowWX+ pico-projector (resolution: 848× 480, frame rate:
60Hz, light power: 5 lumens per color channel) for light projection.
Fortunately, even though the projector’s raster-scan path is fixed in
hardware, it implements a globally-optimal sequence of illumina-
tion codes for many of the probing tasks we consider (Section 3.1).

Rolling-shutter cameras for “impulse” masking For outdoor
experiments we use an IDS Imaging UI-3250CP-M-GL (1600 ×
1200) monochrome CMOS rolling-shutter camera, fitted with a
532nm laser line cut filter (centered on the projector’s green laser
wavelength) with a passband of 10nm. For indoor experiments we
use an IDS Imaging UI-3240CP-C-HQ (1280 × 1024) color CMOS
camera. In both cases, we use the cameras’ rolling shutter to imple-
ment sensor masking [Muller 2012].

At any point in time, the rolling shutter can expose either a sin-
gle row or a band of rows. The rolling shutter is triggered by the
VSYNC signal generated by the projector. Figure 13 shows our
cameras’ timing diagram. We use tp to denote the timeslice for
which the projector dwells on a single scanline. The speed at which



(a) conventional photos (b) robust non-epipolar indirect (c) short-range indirect (d) long-range indirect

Figure 12: New transport-probing abilities enabled by homogeneous factorization of high-rank matrices. Probing matrix Π and mask
matrix M (after dithering) are shown above each column. (a) We show results for two scenes: (Top) A scene containing, from left to right,
a Chinese mask within a display case; a translucent candle; an ocarina; and a tin box. (Middle and bottom) A scene with a mirror and a
translucent candle. (b) Making non-epipolar probing robust to geometric misalignments by building robustness into matrix Π itself. Here
we set the elements of Π to zero within a small band of the diagonal to ensure no direct light “leaks” into the photo, and compute a code
sequence of length K = 352. (c) Short-range indirect imaging captures interreflections, subsurface scattering, and a bright vertical band of
mirror reflections. We used K = 176. (d) Long-range indirect photos captured using a code sequence of length K = 416. Since subsurface
scattering is a short- to mid-range transport phenomenon, candles appear darker compared to (c). In the bottom row we used 4× longer
sequences to improve image quality. Note that all the imaging tasks above are considerably “harder” than epipolar-only and non-epipolar
probing, requiring less energy-efficient codes: exposure time was T = 1/3sec for all images, about 10× longer than in Figures 9 and 10.

the rolling shutter progresses down the rows of the image (tc) is
determined by the pixel clock frequency; we choose this frequency
and the focal length of camera lens so that the downward veloc-
ity of exposed camera rows matches the downward velocity of the
projector’s scanline. Increasing the row exposure (te) increases the
thickness of the band of camera rows exposed for each projector
scanline. Changing the delay (to) between the VSYNC signal from
the projector and the trigger signal passed to the camera changes the
offset between the illuminated row on the projector and the imaged
row(s) on the camera.

5.1 Epipolar and Non-Epipolar Imaging

To probe with an epipolar matrix Π (Figure 5), we position the cam-
era and projector so that they emulate the rectified stereo configu-
ration shown in Figure 3 as precisely as possible. Low-distortion
camera lenses are critical for this alignment; we use the Lensagon
CVM0411ND varifocal lens in all our experiments.

To capture live epipolar video, we project a plain white pattern con-
tinuously and choose sensor masks so that for each projector scan-
line, only the corresponding row of sensor pixels is exposed. This
has the effect of transmitting energy from a projector row to a sen-

sor row on the same epipolar plane, while blocking everything else.
We do this by matching the camera’s row exposure time (te) and
row readout time (tc) to the time the projector dwells on a single
scanline (tp).

By changing the timing parameters on the camera so that the masks
are inverted, the same setup can be used for probing with non-
epipolar Π (Figure 5). This is done by setting te to be tp less than
the projector cycle time and adding tp to camera trigger offset to.
Thus, at any point in time, every sensor row is exposed except the
one corresponding to the current projector scanline. This blocks all
energy transmission between projector rows and sensor rows on the
same epipolar plane while leaving all other light unblocked.

Ideally, we would be able to configure the rolling shutter so that
only the rows of sensor pixels illuminated by the projector at any
timestep would be exposed (Figure 13). In practice, the projector
we use generates distorted scanlines that are not absolutely straight.
Additionally, we observe synchronization jitter and small perturba-
tions in the trajectory of the projector’s laser during each exposure
cycle. This means that the region in the camera image correspond-
ing to a projector scanline is constrained to lie inside a narrow band
in the image, not along a single row of pixels. To accommodate
these bands, during epipolar imaging we thicken the region of un-
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(a) projector and camera timing (b) effects of distortion

Figure 13: (a) How to combine masking with a rolling shutter cam-
era and raster scanning with a laser projector. At each timestep
(of duration tp), the projector illuminates a single scanline (or-
ange). The camera rolling shutter exposes one or more rows of
pixels (white). The masks are defined by three controllable param-
eters: the exposure time te; the time it takes the rolling shutter to
read a row of pixels tc; and the offset between the projector sync
output and the camera trigger input to. (b) Ideally, a single pro-
jector scanline corresponds to a single camera row (top). In prac-
tice, because of distortion and jitter, each scanline corresponds to
a band of sensor pixels (bottom).

blocked pixels in each mask by increasing the pixel exposure time
te and adjusting the trigger offset to. As a result, some short-range
indirect light may leak into the epipolar image.

Figure 14 shows frames from live epipolar and non-epipolar video
captured with our prototype, for scenes with significant global light
transport. This prototype performs non-epipolar imaging at least
four times more efficiently than O’Toole et al.’s [2014] because
DMD-based codes must block 75% of the energy from the projec-
tor’s light source. Moreover, it captures epipolar video at full video
rates and in a single readout, whereas energy-efficient codes for
DMD-based epipolar imaging require two readouts and a compu-
tational subtraction step (Section 4), and output video at half the
video rate [O’Toole et al. 2014].

5.2 Epipolar Structured Light

Combining epipolar imaging with the projection of structured-light
patterns is equivalent to probing with the epipolar structured light
matrix Π in Figure 5. By probing with Π instead of projecting
structured light patterns conventionally, we gain two benefits: ro-
bustness to global light transport and robustness to ambient illumi-
nation.

Robustness to global light transport Global transport effects
like interreflections and scattering can cause severe, systematic er-
rors when using structured light to reconstruct scenes with concav-
ities and objects made of optically challenging materials. Epipolar
structured light blocks the majority of this indirect light, resulting
in more accurate reconstructions of difficult scenes where global
transport effects are pronounced. The reconstructions obtained in
Figure 15 show how effective epipolar structured light is in the face
of interreflections and subsurface scattering. Figure 19 shows how
our method improves reconstruction quality in the presence of vol-
umetric scattering.

Structured light in bright sunlight Active light sources are typ-
ically orders of magnitude weaker than daylight. Since conven-
tional cameras have limited dynamic range, the signal from the
source is overwhelmed by ambient illumination when regular imag-
ing is used. This makes active illumination methods, such as struc-
tured light, hard to use outdoors. Even though in theory our proto-

(a) epipolar imaging (b) non-epipolar imaging

Figure 14: Separating components of illumination: we can cap-
ture live epipolar images in one shot, and much more efficiently
than prior work. Note that most interreflections appear in the non-
epipolar component: reflections from the ball appear in the epipo-
lar image only when they agree with the epipolar geometry. These
images were captured by exposing epipolar stripes wider than a
pixel; as a result, some short-range subsurface scattering appears
in the epipolar image instead of the non-epipolar image. Vignetting
artifacts at the corners are due to projector distortion.

type minimizes pixel exposure only for the task of epipolar probing
(Section 3.1), in practice the exposure time of individual scanlines
is sufficiently small that the energy received from ambient light is
small compared to the energy transmitted from the projector—even
under challenging illumination conditions and even when the pro-
jector light source is weak. Refer to Figures 15, 16, and 17 for some
example reconstructions performed under challenging ambient illu-
mination conditions. All reconstructions were computed using ten
high-frequency gray code patterns.

It should be noted that our method is complementary to other meth-
ods for suppressing ambient light like placing a narrow-band spec-
tral filter on the camera that matches the output wavelength of the
active light source. Also note that, unlike the ambient light suppres-
sion done in time-of-flight cameras (which is electronic and subject
to shot noise), epipolar structured light blocks ambient illumination
before it reaches the sensor.

Analysis of range and power The working range of an active
illumination system is limited by read noise and shot noise. The
contribution of ambient light to the image is essentially indepen-
dent of distance, while light from the active illumination source has
an inverse square fall off. When the ambient light reaching the cam-
era is small compared to the light from the active source, range is
limited by read noise. As the relative contribution of ambient light
to the image grows, the light from the source is lost in the shot noise
of the ambient component.

Weakening the effect of ambient light by coding or optical filtering
can increase the working range of an active illumination system
at a given power level. Let k be the factor by which an imag-
ing system can effectively weaken the influence of ambient light.
Consider these four cases: (1) using no coding or optical filtering
(k = 1); (2) using a narrow band light source and a filter on the
camera (k = 20); (3) an idealized (distortion free) system that uses
our epipolar codes with a 480 row projector in conjunction with a
filter (k = 480 × 20 ≈ 10, 000); and (4) a system like ours where
the exposed pixel bands have been expanded to be 6 pixels thick to
accommodate distortion (k = 1, 600).

As shown in Figure 18, systems with a higher ability to block am-
bient light show significantly slower degradation in working range
as ambient light levels increase.2 To attain a working range of 3m
with little or no blocking of ambient light (low k values) requires
a very powerful light source, while systems like ours with a high k
value are much more energy efficient.

2We define working range as the maximum distance at which a binary

projected pattern can be reliably decoded (see the supplementary materials).
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Figure 15: Imaging and reconstructing challenging objects with strong global illumination effects under ambient lighting. Structured light
with regular imaging is prone to errors due to global light transport effects (notice the effects of interreflections on the plastic bins and
industrial gripper and subsurface scattering in the green wax bowl). Additionally, since active illumination sources are often orders of
magnitude weaker than ambient light, structured light patterns are easily overwhelmed by ambient light. Epipolar structured light blocks a
significant fraction of both. In these examples an ambient light level of 10 kilolux causes structured light with regular imaging to break down.
In contrast, epipolar structured light still works well. We used the same acquisition time for both methods in each scene.

5.3 Disparity Gating

When the camera and projector are rotated about their optical axis
by 90◦ so that projector scanlines and camera rows are perpendic-
ular to the epipolar planes, the correspondence between scanlines
and rows becomes dependent on scene depth. By changing the trig-
ger offset to we can attenuate energy transmission on the basis of
scene depth. This corresponds to probing with the disparity gat-
ing matrix shown in Figure 5. By capturing a sequence of images
where each image “unblocks” direct surface reflections from nar-
row range of disparity values, we can recover the shape of a scene.
In Figure 20 we demonstrate how disparity gating could be used to
recover depth through participating media.

5.4 Live Dual Videography

Dual photography [Sen et al. 2005; Koppal and Narasimhan 2015]
is a technique that makes it possible for a projector and a camera in
general position to “exchange” their viewpoints. For instance, one
can synthesize a photo of exactly what the scene would look like

from the projector’s point of view even though there is no camera at
that location. Creating such an image generally requires computing
the full transport matrix between the projector and the camera; the
technique in [Sen et al. 2005] required thousands of actual images
of the scene to be captured, and hours of processing.

Here we use our laser-based prototype to demonstrate that while
capturing the full transport matrix of a scene is still very hard, cap-
turing an approximation of the epipolar image from the projector’s
viewpoint is not only easy, it can be done in real time with no com-
putational processing whatsoever (Figure 21).

We place the projector and camera in a disparity-gating configura-
tion (Section 5.3) and adjust timings so that the projector’s scanline
and the camera’s “active” row are identical. This corresponds to
disparity-gating of the plane at infinity and is described by the dual
videography probing matrix in Figure 5. In this configuration, a tex-
tured plane at infinity would form the same image on both the pro-
jector plane and the sensor plane. Nearby objects, however, would
form different images because of depth variations and because of
indirect light transport. We then place a line diffuser in front of the



regular (iris f1.6) ours (iris f1.6) regular (iris f1.6) regular (iris f16) Ours (iris f1.6)

(a) lamp off (b) lamp on

Figure 16: Imaging and scanning a 1600 Lumen lamp with a 5 Lumen projector: When the lamp is off (a), the pattern projected by
the projector is visible with both regular imaging and our method. By projecting a series of structured light patterns the lamp can be
reconstructued. When the bulb is turned on (b), regular imaging breaks down. With a large aperture the image is saturated, and with a small
aperture the projected pattern is not visible to the camera on the bulb or the shade. Our rolling shutter-based implementation exposes sensor
pixels only while they can receive light from the projector. As a result, most of the light from the bulb is blocked, the pattern is clearly visible
even on the bulb, and the bulb can be reconstructed even though it is on.

(a) regular (high f-number) (b) ours (low f-number) (c) disparity map (d) 3D mesh

Figure 17: Active illumination with a 5 Lumen laser projector in bright sunlight (80 kilolux): With regular imaging (a), the active illumination
patterns are overwhelmed by sunlight and are not visible despite using a wavelength filter. Our rolling shutter based implementation blocks a
large fraction of the ambient light. This allows the projected pattern to be seen by the camera (b) and makes 3D structured light reconstruction
possible (c,d).
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(a) range for 20 Lumen projector (b) power needed for 3m range
No Blocking Filter Only Our Prototype Ideal System

Figure 18: Range analysis. (a) Maximum working range of a sys-
tem with a 20 Lumen projector with a 45◦ horizontal field of view
running at 60Hz as a function of ambient light level for different
ambient blocking schemes (see supplementary material for com-
plete list of simulation parameters). (b) The projector power re-
quired to attain a 3m range. By effectively blocking a large frac-
tion of the ambient light, redistributive projectors with suitably-
designed sensor masks can provide energy-efficient operation even
under bright ambient illumination conditions.

camera, with its axis of diffusion oriented horizontally, i.e., along
the epipolar planes. This smears along the epipolar planes the im-
age of every scene point they contain, making it invariant to depth
variations in the scene. As a result, each pixel in the camera’s active
column captures direct surface reflections from the scene point illu-
minated by the projector—no matter what its actual depth. As the
projector scanline and active row sweep across the scene, an image

is formed at the camera from the projector’s viewpoint. Key to this
method’s success is again our prototype’s energy efficiency: even
though the diffuser scatters light a great deal, enough of it reaches
the camera to create a clear image that is relatively free of noise.

6 Conclusion

We presented a novel framework for modeling and maximizing
the energy efficiency of an imaging system under controlled mask-
ing and lighting. We introduced the notion of redistribution ra-
tio that models the degree to which a light source’s energy can be
used for imaging rather than be wasted due to blocking/attenuation.
We prove that optimal energy efficiency requires impulse illumi-
nation, where all the energy of the source can be concentrated in
just one projector pixel that can be scanned rapidly. For projec-
tors that cannot do this, we provide an algorithm that computes
energy-efficient codes by solving a homogeneous matrix factoriza-
tion problem through local optimization.

We also combine a laser projector and a rolling-shutter camera to
demonstrate several novel capabilities, made possible only because
our prototype can make near-optimal use of light source energy.
That said, much remains to be understood on the problem of maxi-
mizing energy efficiency—especially for projectors that cannot use
the energy of their source very efficiently (no closed form solution
exists in that case). Last but not least, as dynamic vision sensors
become more practical [Matsuda et al. 2015], and as redistributive
laser systems and electronic masks become more flexible, it should
be possible to build systems that push the energy efficiency frontier
even further.
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(a) regular imaging (b) epipolar structured light

Figure 19: Epipolar structured light scanning in participating media. We project structured light patterns and reconstruct shape in the
presence of volumetric scattering due to smoke. With regular imaging (a), the smoke degrades the contrast of the projected patterns, reducing
the range over which shape can be recovered. Epipolar structured light (b) blocks a lot of the scattered light, preserving image contrast and
allowing a larger range of depths to be recovered at a given smoke concentration.
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Figure 20: Disparity gating in participating media. We compare structured light with regular imaging to disparity gating. Disparity gating
is able to reconstruct objects at a further distance through the smoke than regular structured light. For structured light, we use 20 patterns
and average three 16.67ms exposures for each pattern. For disparity gating we divide the range of disparities in the scene into 60 slices and
capture each slice with a 16.67ms exposure.

(a) setup (b) projector illumination (c) dual video frame (d) projector illumination (e) dual video frame

Figure 21: Live dual videography. We demonstrate how combining an impulse projector with a masked camera can be used to capture live
video of a scene from the point of view of the projector. As the projector pans from right (b) to left (d), the apparent viewpoint of the video
frame captured by the static camera changes from (c) to (e).
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