
Linear Sequence-to-Sequence Alignment
Flávio L.C. Pádua, Rodrigo L. Carceroni, Geraldo A.M.R. Santos, and

Kiriakos N. Kutulakos, Member, IEEE

Abstract—In this paper, we consider the problem of estimating the spatiotemporal alignment between N unsynchronized video

sequences of the same dynamic 3D scene, captured from distinct viewpoints. Unlike most existing methods, which work for N ¼ 2 and

rely on a computationally intensive search in the space of temporal alignments, we present a novel approach that reduces the problem

for general N to the robust estimation of a single line in IRN . This line captures all temporal relations between the sequences and can

be computed without any prior knowledge of these relations. Considering that the spatial alignment is captured by the parameters of

fundamental matrices, an iterative algorithm is used to refine simultaneously the parameters representing the temporal and spatial

relations between the sequences. Experimental results with real-world and synthetic sequences show that our method can accurately

align the videos even when they have large misalignments (e.g., hundreds of frames), when the problem is seemingly ambiguous (e.g.,

scenes with roughly periodic motion), and when accurate manual alignment is difficult (e.g., due to slow-moving objects).

Index Terms—Video synchronization, object tracking, epipolar geometry, spatiotemporal alignment, image and video registration.

Ç

1 INTRODUCTION

IN this work, we consider the problem of spatiotemporal
alignment of multiple video sequences of the same 3D

scene, captured from distinct viewpoints. Typically, the
temporal misalignment between video sequences occurs
when the input sequences may have different frame rates
(e.g., NTSC and PAL) or when there is a time shift between the
sequences (e.g., when the cameras are not activated simulta-
neously). On the other hand, the spatial misalignment results
from the different positions, orientations, and internal
calibration parameters of all the cameras. Here, we use scene
dynamics as well as static scene features to estimate the
temporal synchronization (temporal alignment) and the
spatial alignment between the sequences. Examples of
applications where this demand is particularly critical
include teleimmersion [1], video-based surveillance [2],
video mosaicing [3], and video metrology from television
broadcasts of athletic events [4].

While many existing methods [3], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23] propose solutions for spatiotemporally aligning only
two sequences, our focus here is on the general case of an
unrestricted number of video sequences captured from
distinct viewpoints. We believe that any general solution to
this problem should handle the following cases:

. Unknown frame rate: The relative frame rate of the
video sequences is unknown and unconstrained.

. Arbitrary time shift: The time shift between the
sequences is unknown and can be arbitrarily large.

. Unknown motion: The 3D motion of objects in the
scene is unknown and unconstrained.

. Tracking failures: Individual scene points cannot be
tracked reliably over many frames.

. Unknown epipolar geometry: The relative camera
geometry of the video sequences is unknown.

. Scalability: Computational efficiency should degrade
gracefully with increasing number of sequences.

. No static points: No visible point in the scene remains
stationary for two or more frames.

As a step toward this goal, we present a novel solution

that operates under all of the above conditions except the last

one. In particular, we assume that for every pair of video

sequences, we can identify enough static scene points to get

an initial estimate of the cameras’ epipolar geometry.

Moreover, in order to ensure that the parameters of that

initial estimate remain constant during the application of our

approach, we consider a scenario where the video cameras

are stationary, with fixed (but unknown) intrinsic and

extrinsic parameters. In this case, every corresponding set

of N pixels is related by the same spatiotemporal transfor-

mation, whose spatial components are temporally invariant.
At the heart of our approach lies the concept of a timeline.

Given N sequences, the timeline is a line in <N that

completely describes all temporal relations between the

sequences. A key property of the timeline is that even

though knowledge of the timeline implies knowledge of the

sequences’ temporal alignment, we can compute points on

the timeline without knowing this alignment. Using this

property as a starting point, we reduce the temporal

alignment problem for N sequences to the problem of

robustly estimating a single N-dimensional line from a set

of appropriately generated points in <N .

304 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

. F.L.C. Pádua is with the Department of Computer Engineering, Centro
Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas 7675,
CEP 30510-000 Belo Horizonte, MG, Brazil.
E-mail: cardeal@lsi.cefetmg.br.

. R.L. Carceroni and G.A.M.R. Santos are with the Department of Computer
Science, Universidade Federal de Minas Gerais, Belo Horizonte,
MG 31270-010, Brazil. E-mail: {carceron, massahud}@dcc.ufmg.br.

. K.N. Kutulakos is with the Department of Computer Science, University of
Toronto, 10 King’s College Road, Rm 3303, Toronto, ON M5S 3G4,
Canada. E-mail: kyros@cs.toronto.edu.

Manuscript received 20 Apr. 2008; revised 14 Sept. 2008; accepted 13 Oct.
2008; published online 19 Dec. 2008.
Recommended for acceptance by H. Sawhney.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2008-04-0232.
Digital Object Identifier no. 10.1109/TPAMI.2008.301.

0162-8828/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

Spatiotemporal alignment algorithms can be divided into
two main classes: feature-based methods and direct methods.
Feature-based methods [5], [6], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [22], [23], [24], [25] use detected features as
the main input for alignment (e.g., two-frame feature
correspondences or multiframe feature trajectories). Direct
methods, on the other hand, rely on colors, intensities, and
intensity gradients to determine the spatiotemporal align-
ment of overlapping videos [3], [7], [8], [9], [10], [11], [21].
As a result, direct methods tend to align sequences more
accurately when their intensities are similar, while feature-
based methods are appropriate when scene appearance
varies greatly from sequence to sequence (e.g., due to wide
baselines, different magnification, or cameras with distinct
spectral sensitivities). Our approach belongs to the class of
feature-based methods.

Most existing feature-based methods [6], [14], [17], [18],
[19], [20], [22], [23] conduct an explicit search in the space
of all possible alignments and use constraints derived from
correspondences between trajectories of scene points.
Unfortunately, the combinatorial nature of that search
requires several additional assumptions to make it man-
ageable. These include assuming known frame rates;
restricting N to be two; assuming that the temporal
misalignment is an integer; and assuming that this
misalignment falls within a small user-specified range
(typically, less than 50 frames). Hence, even though most
of these solutions can operate when no stationary scene
points exist, efficiency considerations greatly limit their
applicability. Unlike these techniques, our approach aligns
N sequences directly, can handle arbitrarily large mis-
alignments between them, and does not require any a
priori information about their temporal relations.

More recently, feature-based techniques relying on
space-time interest points have been proposed for pairwise
video alignment [5], [13], [15]. These methods tend to fail on
sequences from widely separated viewpoints (where
corresponding interest points cannot be found), and on
sequences that contain objects moving in front of a cluttered
background (where the frequent emergence and occlusion
of new interest points has a confounding effect).

Techniques for simultaneously aligning more than two
sequences have received much less attention. Raguse and
Heipke [24] propose a method where the temporal mis-
alignment is modeled by a second order polynomial whose
coefficients, along with the cameras’ epipolar geometry, are
computed in a single bundle adjustment stage. This method
requires features to be tracked reliably across several frames
and, if only two sequences are available, cannot handle
motions along the epipolar plane. Anthony et al. [25] present
a two-stage method for aligning three sequences when the
trajectories of individual feature points can be recovered.
The method relies on 2D shape heuristics in order to bring
feature trajectories into a rough temporal alignment. This
alignment is then refined by enforcing trifocal constraints. In
contrast to both these methods, our work applies to any
number of input sequences, including just two, and does not
require reliable tracking across many frames.

Our approach is most closely related to the work of
Caspi et al. [18]. In their work, the epipolar geometry and

temporal misalignment between two sequences are recov-
ered from the image trajectory of a single scene point visible
in both sequences, and are subsequently refined using more
features. To achieve this, they assume known frame rates
and formulate a nonlinear optimization problem to jointly
estimate epipolar geometry and temporal misalignment.
Unfortunately, the highly nonlinear nature of this optimiza-
tion necessitates good initial estimates for the temporal
misalignment and the epipolar geometry. Importantly, that
approach still assumes that a single scene point can be
tracked reliably over the entire sequence. This may be
difficult to achieve when aligning videos of complex scenes,
where feature tracking can fail often because of occlusions
or large interframe motions. Our solution, on the other
hand, requires the ability to track scene points only across
two consecutive frames of the same sequence. Moreover, it
does not require the ability to establish feature correspon-
dences between the sequences.

2 THE TIMELINE CONSTRAINT

Suppose that a dynamic scene is viewed simultaneously by
N perspective cameras located at distinct viewpoints. We
assume that each camera captures frames with a constant,
unknown frame rate. We also assume that the cameras are
unsynchronized, i.e., they began capturing frames at
different times with possibly distinct frame rates. In order
to temporally align the resulting sequences, we must
determine the correspondence between frame numbers in
one “reference” sequence and frame numbers in all other
sequences. This correspondence can be expressed as a set of
linear equations,

ti ¼ �itr þ �i; ð1Þ

where ti and tr denote the frame numbers of the
ith sequence and the reference sequence, respectively, and
�i; �i are unknown constants describing the temporal
dilation and temporal shift, respectively, between the
sequences. In general, these constants will not be integers.

The pairwise temporal relations captured by (1) induce a
global relationship between the frame numbers of the input
sequences. We represent this relationship by an N-dimen-
sional line L that we call the timeline:

L ¼ f½�1 . . .�N �T tþ ½�1 . . .�N �T j t 2 <g: ð2Þ

A key property of the timeline is that even though
knowledge of L implies knowledge of the temporal
alignment of the sequences, we can compute points on the
timeline without knowing the sequences’ alignment. This
observation leads to a simple algorithm for reconstructing
the timeline from dynamic features in the scene that are
visible in two or more of the sequences.

Specifically, let q1ðt1Þ be the instantaneous projection of a
moving scene point in camera 1 at frame t1, expressed in
homogeneous 2D coordinates (Fig. 1). Furthermore, let qið�Þ
be the trajectory traced by the point’s projection in camera i
and suppose that the fundamental matrix F1i between
cameras 1 and i is known for all i, i ¼ 2 . . .N . If the scene
point is visible to all cameras when frame t1 is captured by
camera 1, we have the following constraint:

P�ADUA ET AL.: LINEAR SEQUENCE-TO-SEQUENCE ALIGNMENT 305

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

Timeline Constraint. The set

T q1ðt1Þ ¼ f½t1 . . . tN �T j qT1 ðt1ÞF1iqiðtiÞ ¼ 0; i ¼ 2 . . .Ng

contains at least one point on the timeline L.
Intuitively, the Timeline Constraint can be thought of as

a procedure for generating a set T q1ðt1Þ of “candidate”
temporal alignments that is guaranteed to contain at least
one point on the timeline. The constraint tells us that we can
create such a set by: 1) intersecting the epipolar line of q1ðt1Þ
in camera i with the trajectory qið�Þ; 2) recording the frame
number(s) corresponding to each intersection point for
camera i; and 3) generating temporal alignment vectors
from the recorded frame numbers.

To see why the Timeline Constraint holds, observe that if
½t1 . . . tN �T is on the timeline, it must represent the “true”
temporal alignment between the frame t1 of pixel q1ðt1Þ and
the remaining cameras. Hence, pixels q1ðt1Þ and qiðtiÞ must
satisfy the epipolar constraint equation qT1 ðt1ÞF1iqiðtiÞ ¼ 0.
Since, by definition, the set T q1ðt1Þ contains all temporal
alignments that satisfy the epipolar constraint equation
across theN cameras, it must also contain the true alignment,
which is a point on the timeline L. In this respect, the
Timeline Constraint can be thought of as the converse of the
epipolar constraint for the case of N unaligned sequences.

In order to apply the Timeline Constraint, we must know
the fundamental matrices Fij, describing the epipolar
geometry between each pair (i; j) of cameras. In practice,
we obtain an initial estimate of Fij by finding “background
features,” i.e., points in the scene that remain stationary and
are jointly visible by two or more cameras.1 Once the
timeline L is reconstructed from the estimated fundamental
matrices, we jointly optimize L and the matrices Fij using a
linear, iterative refinement procedure. We describe the
timeline reconstruction algorithm in the next section and
consider the joint optimization of L and Fij in Section 4.

3 TIMELINE RECONSTRUCTION

The Timeline Constraint leads directly to a voting-based
algorithm for reconstructing the timeline of N sequences.
The algorithm operates in two phases. In the first phase, we

choose one of the image sequences to be the “reference”
sequence. We then use the instantaneous position qrðtrÞ of
each feature in the reference sequence and the entire
trajectories of all features in the other sequences to estimate
T qrðtrÞ. In the second phase, we fit an N-dimensional line L
to the union of the estimated sets T qrðtrÞ. Therefore, to fully
specify this algorithm, we must ask three questions: How
do we compute the feature trajectories qið�Þ, for i ¼ 1; . . . ; N ,
how do we estimate the set T qrðtrÞ for each qrðtrÞ, and how
do we compute the timeline L?

To compute the feature trajectories qið�Þ, we use a two-
frame feature tracker. We treat this tracker as a “black-box”
responsible for returning, for every pair of consecutive
frames, a list of line segments between corresponding
features. Each line segment connects the location of a
feature that was detected in some frame of the ith sequence
and was successfully tracked to its location in the next
frame. Note that since our algorithm does not depend on a
specific tracker, the tracker choice should ultimately
depend on the scene’s complexity and the properties of
the features of interest.

Next, to compute the set T qrðtrÞ for a given qrðtrÞ, our
algorithm uses the initial estimates of the fundamental
matrices Fij between each pair ði; jÞ of cameras, as well as
the line segments provided by the tracker. When a specific
line segment intersects the epipolar line of qrðtrÞ, it defines a
possibly fractional frame number ti corresponding to the
instant that qrðtrÞ’s epipolar line intersects the image
trajectory of a scene point. Hence, ti is the ith coordinate of
a potential element of T qrðtrÞ. To generate T qrðtrÞ, we collect all
of the ti coordinates computed for all sequences and
concatenate them so that they form N-dimensional vectors.
These vectors represent candidate temporal alignments in a
voting space. These steps are shown in Fig. 2.

Note that this approach may result in a large number of
candidate temporal alignments being added to the voting
space. This is because there may be several possible ways of
“concatenating” the computed ti coordinates into an
N-dimensional vector. To avoid including an exponential
number of vectors in T qrðtrÞ, we only include vectors that are
consistent with the cameras’ epipolar geometries. In
particular, let ½t1 . . . tN �T be a candidate vector for a set of
N cameras, where t1 represents the temporal coordinate of a
feature position in the reference camera. We include this
vector in the voting space if for every pair of sequences i
and j, the intersection points that defined ti and tj are
within a fixed distance e from their corresponding epipolar
lines (Fig. 3). In practice, we set e to be the average distance
from the epipolar line of corresponding background
features in the two views. This pruning criterion is
conservative, i.e., it guarantees that the set of vectors placed
in the voting space will be a superset of T qrðtrÞ.

The set of candidate temporal alignments is the union of
the sets T qrðtrÞ for all qrðtrÞ. In general, this union will
contain a large number of outliers, as illustrated in Fig. 2d.
To reconstruct the timeline in the presence of outliers, we
use the RANSAC algorithm [27]. The algorithm randomly
chooses a pair of candidate temporal alignments to define
the timeline L, and then, computes the total number of
candidates that fall within an �-distance of this line. These

306 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

Fig. 1. Geometry of the Timeline Constraint. In this two-camera

example, the point’s trajectory in camera i intersects the epipolar line,

qT1 ðt1ÞF1i, twice. Given the intersection points qiðtiÞ and qiðt0iÞ, we have

the set T q1ðt1Þ ¼ f½t1 ti�T ; ½t1 t0i�
Tg.

1. For pairs of cameras with wide baselines, this should be done
using feature descriptors that are appropriate for wide-baseline stereo
matching [26].

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

two steps are repeated for a number of iterations. Therefore,
the two critical parameters of the algorithm are the number
k of RANSAC iterations and the distance �. To determine k,
we use the formula

k ¼ logð1� pÞ
logð1� r2Þ

� �
; ð3Þ

where p is a user-specified parameter between 0 and 1 and r
is the probability that a randomly selected candidate is an
inlier. Equation (3) expresses the fact that k should be large
enough to ensure that with probability p, at least one
randomly selected pair of candidates is an inlier. We used
p ¼ 0:99 and r ¼ 0:05 for all experiments. To compute the
distance �, we observe that � can be thought of as a bound on
the distance between detected feature locations in the input
cameras and their associated epipolar lines. This allows us
to approximate � by the average distance between static
features in the scene and their associated epipolar lines.

The way the Timeline Constraint is formalized suggests
that a scene point must be simultaneously visible (and
tracked) in all N cameras. While this becomes a limitation
when N > 2, it is easy to extend the basic idea to
incorporate constraints where features are visible only in

some of the views. For instance, a partial two-view match in
a three-view problem would vote for a line (instead of just a
point) in the 3D temporal space. Combined with appear-
ance-based weights, for instance, such extension may make
the proposed method more flexible. Unfortunately, in the
current implementation, where all matches cast equally
strong votes, this would only pollute the voting space.

4 TIMELINE REFINEMENT

While images of a dynamic scene may contain stationary
points in the background, these points cannot be expected
to represent the majority of detected features. Any
procedure that attempts to estimate epipolar geometry
from those features alone is likely to ignore a significant
portion of the available image information. In practice, this
will cause errors in the computed fundamental matrices,
and ultimately, in the reconstructed timeline. Here, we
show how to refine the matrices Fij and the timeline L by
incorporating all features detected in the sequences. With-
out loss of generality, we assume that camera 1 is our
reference camera. We first describe a method for the case
of two viewpoints (N ¼ 2) and then generalize it for the
case of N > 2.

Fig. 4 shows the geometry of the two-view refinement
method. To make the problem linear, we approximate each
trajectory q2ð�Þ with a polygonal spline s2ð�Þ using a method
that guarantees an upper bound on the difference between
the length of the original curve and the length of its polygonal

P�ADUA ET AL.: LINEAR SEQUENCE-TO-SEQUENCE ALIGNMENT 307

Fig. 3. Pruning candidate vectors. Two intersection points qiðtiÞ and
qjðtjÞ in cameras i and j, respectively, are considered to be potential
projections of the same scene point only if the distances di; dj to each
others’ epipolar lines are within a fixed threshold. This threshold
depends on the estimated fundamental matrix between cameras i and
j and is estimated from corresponding points in the stationary
background.

Fig. 4. Geometry of our two-view refinement method. The polygonal

spline approximation of the trajectory q2ð�Þ is shown in red.

Fig. 2. (a) Trajectory of a feature in Sequence 1 of the Car data set, discussed in Section 5. The feature was the centroid of all pixels labeled as
“foreground” by a color-based foreground-background detector. (b) Trajectory of the foreground pixel centroid along another viewpoint (Sequence 2
of the data set). Also shown is the epipolar line corresponding to pixel q1ð363Þ in (a). (c) Magnified view of the trajectory/epipolar line intersection in
(b). The individual line segments connecting feature locations in adjacent frames are now visible. Note that the epipolar line of q1ð363Þ intersects
multiple line segments along the trajectory. (d) Exploiting the Timeline Constraint for two-sequence alignment. Each point in the plot represents a
candidate temporal alignment for the two sequences, i.e., an element of T q1ðt1Þ for the feature location q1ðt1Þ in (a). The reconstructed timeline,
drawn as a red solid line, describes the temporal alignment of the two sequences.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

approximation [28]. The spline is parameterized in a way that

is consistent with the time parameter of trajectory q2ð�Þ, i.e.,

each point that lies both on the trajectory and the spline

approximation keeps its original time coordinate.
Given this polygonal approximation, we refine F12 and the

timeline parameters � and � as follows: For each point q1ðt1Þ
on the trajectory of camera 1, we

1. compute the intersection of epipolar line qT1 ðt1ÞF12

with the spline s2ð�Þ in camera 2,
2. evaluate the consistency of each intersection point

with the current estimate of � and �, and
3. refine F12, �, and � using algebraic constraints

derived from the consistent intersection points.

More specifically, according to (1), an estimated tempor-

al transformation with parameters � and � implies that any

instantaneous feature q1ðt1Þ in camera 1 should correspond

to a feature in camera 2 whose temporal coordinate is

t2 ¼ �t1 þ �: ð4Þ

Thus, an intersection point s2ðt2Þ in camera 2 that lies on

a spline segment with endpoints q2ðt02Þ and q2ðt002Þ is

consistent with the timeline parameters �; � only if

t02 < �t1 þ � < t002 : ð5Þ

Every intersection point that satisfies (5) yields a linear

constraint on �; �, and the entries of F12. To obtain this

constraint, we note that an arbitrary intersection point s2ðt2Þ
on the spline segment is given by

s2ðt2Þ ¼ q2ðt02Þ þ ðt2 � t02Þ
q2ðt002Þ � q2ðt02Þ

t002 � t02
: ð6Þ

Since s2ðt2Þ satisfies the epipolar constraint, we have

qT1 ðt1ÞF12s2ðt2Þ ¼ 0: ð7Þ

Substituting (6) into (7), we obtain

qT1 ðt1ÞF12 q2ðt02Þ þ ðt2 � t02Þ
q2ðt002Þ � q2ðt02Þ

t002 � t02

� �
¼ 0: ð8Þ

In general, since the timeline parameters �; �, and the

matrix F12 may contain errors, (8) will be satisfied only

approximately. We can therefore refine these estimated

parameters by minimizing the algebraic error defined by

(8). Specifically, rewrite (8) as follows:

qT1 ðt1ÞfF12kt2 þ F12mg ¼ 0; ð9Þ

where

k ¼ q2ðt002Þ � q2ðt02Þ
t002 � t02

ð10Þ

and

m ¼ q2ðt02Þ � t02k: ð11Þ

Now, let �̂ ¼ �þ��, �̂ ¼ � þ��, and F̂12 ¼ F12 þ�F12 be

the updated estimates of the parameters �, �, and F12,

respectively. Substituting in (9), the factor enclosed by curly

brackets becomes

F12ðt1�kþ �kþmÞ þ t1F12k��þ F12k��þ
þ�F12ðt1�kþ �kþmÞþ
þ t1���F12kþ���F12k:

Disregarding the second order terms t1���F12k and
���F12k, we obtain the following linear constraint on
�F12, ��, and ��:

qT1 ðf1Þft1F12k��þ F12k�� þ�F12hg ¼ �qT1 ðt1ÞF12h;

where h ¼ ðt1�þ �Þkþm:

ð12Þ

After straightforward algebraic manipulation, (12) may
be rewritten as the inner product of two vectors: an 11-
element row vector that contains only known coefficients
and an 11-element column vector that contains the nine
unknown coefficients of �F followed by the scalar
unknowns �� and ��. By taking all consistent intersection
points into account, we obtain an overconstrained linear
system in terms of the unknowns ��, ��, and �F12. In
addition, we include in the system the linear constraints
derived from static scene features. This allows us to use all
available constraints, both from static features and dynamic
features, in order to refine our spatiotemporal alignment. In
practice, the number of equations in the system is
frequently much larger than the 11 unknowns; we use
standard numerical methods to solve this system [29], [30],
[31], [32] and iterate until convergence.

Consider now a dynamic scene viewed by N distinct
cameras, where N > 2. In this case, we simply use the two-
view refinement technique for each camera pair ðc1; ciÞ,
where ci is the ith camera. The N � 1 two-view timelines
computed in this fashion yield the N-view timeline in a
straightforward way.

Note that the Timeline Refinement procedure outlined
above is essentially a two-view method. In principle, it is
possible to generalize this procedure to handle all N views
simultaneously by computing and refining multiview
tensors rather than pairwise fundamental matrices. Even
though we implemented this generalization, we found it to
be numerically unstable in preliminary experiments and
did not pursue it any further.2

5 EXPERIMENTAL RESULTS WITH REAL SEQUENCES

In order to demonstrate the advantages and limitations of the
proposed approach, we performed experiments with several
real two-view and three-view sequences. These sequences
were chosen to be hard to handle with existing approaches
because of one or more of the following complications:

1. feature trajectories that were periodic and over-
lapping;

2. feature trajectories that did not lie on a single plane;
3. sequences with large temporal misalignments;
4. frame rates that varied from sequence to sequence in

an unknown way;
5. unreliable, frequently interrupted feature tracking.

308 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

2. Another possible N-view extension is to refine the epipolar geometry
and the timeline of pairs of nonreference views, and then, robustly merge
all two-view results into an N-view timeline. This is still under
investigation, and it is not clear that the reliability and/or accuracy gains
of such an approach are sufficient to justify the added computational cost.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

Image dimensions in all data sets were 320� 240 pixels.
The sequences represented a wide variety of conditions,
including sequences that ranged from 55 to 605 frames;
temporal misalignments of 21-285 frames; relative frame
rates between 1 and 2; image quality that ranged from quite
high (i.e., sequences captured by laboratory-based color
cameras) to rather low (i.e., clips from low-quality, MPEG-
compressed video of a broadcast TV signal); and object
motions ranging from several pixels per frame to less than a
pixel. Since no single tracker was able to handle all of our
data sets and since our algorithm does not depend on a
specific tracker, we experimented with several—a simple
color-based blob tracker, a blob tracker based on back-
ground subtraction, and the WSL tracker [33]. In each case,
we treated the tracker as a “black box” that returned a list of
corresponding features for every pair of consecutive frames.

Alignment accuracy was evaluated by measuring the
average temporal misalignment. This is the average
difference between the computed time of each frame and
the frame’s “ground-truth” time, i.e., when it was actually
captured. Since our sequences were acquired with unsyn-
chronized cameras, the ground-truth time of each frame
could only be known to within �0:5 frames. This is because
even if we could perfectly align the sequences at frame
resolution, corresponding frames could have been captured
up to 0.5-frame intervals apart. This bound on ground-truth
accuracy should be taken into account when evaluating the
results below.

5.1 Two-View Car Data Set

As a first test, we applied our technique to a two-view
sequence used by Caspi and Irani [21] for evaluating their
method (Fig. 5). The data were acquired by two cameras
with identical frame rate of 25 fps, implying a unit ground-
truth temporal dilation (� ¼ 1). The ground-truth temporal
shift was � ¼ 55� 0:5 frames.

Most frames in the resulting sequences contain a single
rigid object (a car) moving over a static background (a
parking lot), along a fairly smooth trajectory. We therefore
used a simple blob tracker that relied on foreground-
background detection to label all foreground pixels in each
frame. The centroid of the foreground pixels was the only

“feature” detected and tracked (Figs. 2a and 2b). To
compute the cameras’ fundamental matrix, we used
26 manually selected correspondences between background
pixels in the two views. Fig. 2d shows the timeline
reconstructed using the RANSAC-based algorithm in
Section 3, with the RANSAC parameter � set to 2.0. The
reconstructed timeline gives an average temporal misalign-
ment of 0.66 frames, almost within the 0.5-frame uncer-
tainty of the ground-truth measurements.

Applying the refinement procedure in Section 4 pro-
duced updated values of � ¼ 1:0027 and � ¼ 54:16 for the

timeline coefficients. These coefficients correspond to an

improved average temporal misalignment of 0.35 frames,
i.e., higher than the accuracy of the ground-truth alignment.

Note that these results are at least as accurate as those of
Caspi and Irani [21], even though we are solving a less

constrained problem (i.e., � is unknown and scene planarity

is not required). Moreover, the results were obtained from
raw results of a tracker that was not particularly robust

(e.g., the centroid of the foreground pixels drifts off the

moving car for approximately 30 frames in each sequence).

5.2 Two-View Robots Data Set

In a second experiment, we used two cameras operating at
30 fps to acquire images of four small robots, as they

executed small random movements on two planes (Fig. 6a).

The ground-truth timeline coefficients were � ¼ 1 and
� ¼ �284:5� 2. We used a uniform-color blob tracker to

track these robots between consecutive frames. The result-

ing data were challenging for four reasons. First, the robots’
interframe motion was imperceptibly small (roughly

0.25 pixels per frame), making precise manual alignment
by a human observer virtually impossible. Second, the

temporal shift of the sequences was large, making it

inefficient to find this shift via exhaustive search. Third,
the uniformly colored regions on each robot were small,

causing our tracker to generate fragmented and noisy

trajectories. Fourth, the robot’s motion was designed to
produce trajectories that self-intersect and are nonsmooth,

complicating the shape of each blob’s trajectory.

P�ADUA ET AL.: LINEAR SEQUENCE-TO-SEQUENCE ALIGNMENT 309

Fig. 5. Four representative frames (100, 200, 300, and 400) from the cameras 1 and 2 of the two-view Car data set [21]. Observe the spatial

misalignment near image boundaries, where different static objects are visible in each sequence. The temporal misalignment is easily identified by

comparing the position of the gate in frames 400.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

The timeline reconstructed with � ¼ 2:0 prior to refine-

ment is shown in Fig. 6c. This line gives an average

temporal misalignment error of 5.84 frames. Our refinement

stage reduced this error to 4.43 frames, with � ¼ 1:015 and

� ¼ �286:89. Given the robots’ image velocity, this trans-

lates to a misalignment of about one pixel. Fig. 6b confirms

that the computed alignment is quite good, despite the

robots’ slow motion and the tracker’s poor performance.

5.3 Two-View Juggling Data Set

In this data set, two people are observed by a wide-baseline

camera pair while juggling five uniformly colored balls

(Fig. 7a). Both sequences were acquired at a rate of 30 fps.

This data set represents a difficult case for existing direct-

or feature-based methods because:

1. the trajectories of different balls nearly overlap in 3D
2. individual trajectories are approximately periodic,
3. image velocities are quite large, up to 9 pixels per

frame, making long-range feature tracking difficult,
and

4. the ground-truth temporal shift between the se-
quences is � ¼ �41� 0:5 frames, or about 1.5 periods
of a ball’s motion.

This shift is likely to cause difficulties for techniques
based on nonexhaustive search [17] or nonlinear optimiza-
tion [18] because of the possibility of getting trapped in deep
local minima. To make the alignment problem even more
challenging, we modified this data set by deleting or adding
frames to one of the sequences. These modifications were
intended to simulate sequences with more than one frame
rate (e.g., containing a slow-motion segment) and sequences
that contain spurious clips (e.g., a TV commercial).

We used a uniform-color blob tracker to track four of the
balls in each sequence, providing us with the location of
four features per frame. No information about feature
correspondences between cameras was given to the algo-
rithm (i.e., color information was not used). Figs. 7c, 7d, and
7e show the reconstructed timelines before the refinement
stage, with � ¼ 0:5. The average temporal misalignment
error was 0.75 frames for the original data set. The
refinement stage brought this error down to 0.26 frames,
with � ¼ 1:0004 and � ¼ �40:80. In Fig. 8, we show the
distribution of distances of inlier votes from the recon-
structed timelines for the Car, Robots, and Juggling data sets.

5.4 Three-View Soccer Data Set

As a final experiment, we applied our technique to three
video clips extracted from a single MPEG-compressed TV

310 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

Fig. 6. (a) Four out of 605 frames from the two-view Robots data set. The spatial misalignment can be easily identified by observing the distinct
orientations of the robots’ soccer field. (b) Before-alignment images were created by superimposing the green band of a frame t2 with the red and
blue bands of frame t�1 ¼ ðt2 � ��Þ=�� using ground-truth timeline coefficients �� and ��. After-alignment images were created by replacing the
green band of the images above them with that of frame t1 ¼ ðt2 � �Þ=�, with �; � computed by our algorithm. For both types of images, deviations
from the ground-truth alignment cause “double exposure” artifacts (i.e., when t�1 6¼ t2 or t�1 6¼ t1, respectively). (c) Voting space, timeline, and timeline
equation recovered prior to refinement for the two-view Robots data set. Each point is an element of T q1ðt1Þ for some feature q1ðt1Þ in sequence 1.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

broadcast of a soccer match [34]. The clips were replays of the
same goal filmed from three distinct viewpoints (Fig. 9a).
Each sequence contained a significant panning motion to

maintain the moving players within the field of view. To
ensure that the pairwise fundamental matrices remained
constant for all frames, we stabilized each sequence by

P�ADUA ET AL.: LINEAR SEQUENCE-TO-SEQUENCE ALIGNMENT 311

Fig. 7. (a) Three out of 260 frames from the two-view Juggling data set. (b) Before-alignment images were created by superimposing the green
band of a frame t2 with the red and blue bands of frame t�1 ¼ ðt2 � ��Þ=�� using ground truth timeline coefficients �� and ��. After-alignment images
were created by replacing the green band of the images above them with that of frame t1 ¼ ðt2 � �Þ=�, with �; � computed by our algorithm. For both
types of images, deviations from the ground-truth alignment cause “double exposure” artifacts (i.e., when t�1 6¼ t2 or t�1 6¼ t1, respectively). (c)-(e)
Voting spaces, timelines, and timeline equations recovered prior to refinement for the two-view Juggling data set: (c) Juggling data set without
modification. (d) Simulation of a sequence with more than one frame rate. (e) Simulation of a sequence with spurious clips.

Fig. 8. Distribution of distances of inlier votes from the reconstructed timeline. Top row: Distribution before the timeline refinement stage. Bottom
row: Distribution after the refinement stage. Note that the updated epipolar geometry and updated timeline parameters reduce the distance between
inliers and the timeline and cause more votes to be labeled as inliers.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

computing the frame-to-frame homography using Brown
and Lowe’s system [35]. We used the WSL tracker to track the
same player in each sequence, thereby obtaining one feature
trajectory per camera. WSL was initialized manually in the
first frame of each sequence. Even though it was able to track
the chosen player for most frames, the player’s small size and
jitter artifacts caused by the video’s poor quality resulted in
noisy measurements of his location. These measurements
were given as input to the basic timeline reconstruction
algorithm with � ¼ 1:5 and no timeline refinement.

Since this data set contained N ¼ 3 views, the timeline is

a 3D line with 3-vectors as its coefficients (see (2), Figs. 9c

and 9d). To evaluate the timeline’s accuracy in the absence

of ground-truth information, we attempted to estimate the

ground-truth alignment by visual inspection: we identified

three easily distinguishable events (e.g., a player stepping on

a field line, as shown in Fig. 9a) and recorded the frame

where each event occurred in each sequence. These frames

were used as “ground-truth” event times for each camera.

312 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

Fig. 9. (a) Two out of 55 frames from the three-view Soccer data set. Ellipses indicate the player being tracked by the WSL tracker. (b) Before-
alignment images were created by superimposing the green band of a frame t2 with the red and blue bands of frame t�1 ¼ ðt2 � ��Þ=�� using ground
truth timeline coefficients �� and ��. After-alignment images were created by replacing the green band of the images above them with that of frame
t1 ¼ ðt2 � �Þ=�, with �; � computed by our algorithm. For both types of images, deviations from the ground-truth alignment cause “double exposure”
artifacts (i.e., when t�1 6¼ t2 or t�1 6¼ t1, respectively). (c) and (d) Two views of the 3D voting space and 3D timeline computed for the Soccer data set.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

To evaluate the timeline’s accuracy, we used it to predict the
event times in cameras 1 and 2 from the ground-truth time in
camera 3. The minimum difference between the predictions
and the ground-truth times across all three events was
0.22 frames in camera 1 and 0.86 frames in camera 2; the
maximum difference was 1.66 and 1.33 frames, respectively.
This confirms that the sequences were aligned quite well
(see Fig. 9b), despite the low quality of the videos and their
unequal frame rates.

5.5 Discussion

Figs. 6c, 7c, 7d, and 7e suggest that a potential limitation of
the proposed method is scalability with respect to the
number of features. In Section 6, we present a large set of
experiments with synthetic sequences that make this
limitation clear. A key factor behind this limitation is that
the timeline reconstruction algorithm in Section 3 does not
weigh votes according to the visual similarity of the features
that produced them. This means that the density of the
voting space increases substantially when the number of
tracked features increases. Moreover, features that move too
slowly also tend to generate more “outlier votes” than fast-
moving ones and so do features that move almost parallel to
an epipolar line. Weighing each vote by a combination of
feature similarity, speed, and direction of motion would go
a long way toward increasing scalability with respect to the
number of features.

We also believe that this limitation becomes less serious
when the number of cameras increases. This is because
epipolar constraints from nonreference views can be used to
prune outliers from the voting space before applying
RANSAC. Even more importantly, the probability that
outliers will cluster accidentally along linear structures in
the voting space decreases exponentially with the number
of dimensions/cameras. This can be observed, to a limited
extent, in Figs. 9c and 9d.

6 SENSITIVITY ANALYSIS

To analyze the behavior of our approach in more detail, we
ran a much larger set of experiments with synthetic scenes,
where important parameters such as the number of features
being tracked at any given instant, the noise in feature
trajectories, and errors in the initial epipolar geometry were
under control.

Our experiments with synthetic data aimed at answering
the following questions:

. How does the algorithm scale with respect to the
number of tracked features?

. How is the algorithm’s reliability affected by errors
in tracked trajectories?

. How is the algorithm’s reliability affected by errors
in initial estimates for the epipolar geometry?

In order to answer these questions, we performed
experiments where random 3D feature trajectories were
generated within the fields of view of two synthetic cameras.
These trajectories followed a very simple 3D dynamics
model and were projected on the cameras’ image planes to
obtain a set of corresponding 2D trajectories. The number of
features was kept constant through each experiment.

Controlled levels of noise were added both to the 2D feature

trajectories and the ground-truth epipolar geometry. The

resulting 2D trajectories were then used as inputs to our

spatiotemporal alignment algorithm. The intrinsic and

extrinsic parameters of the synthetic cameras were identical

to those in the real experiments in Sections 5.2 and 5.3.

1. Generative model for 3D feature trajectories: For each
independent run, we simulate the simultaneous
motion of F 3D features for a fixed period of T ¼
256 frames (Table 1). These features are viewed by a
pair of cameras with identical ground-truth frame
rates and a ground-truth temporal displacement of
32 frames. The initial position m0 of each feature is
drawn randomly from a uniform distribution inside
a spherical volume. The volume is fully contained in
the field of view of both cameras, its center
minimizes the sum of squared distances to both
optical axes, and it has maximal radius. To generate
a trajectory, we update the feature’s instantaneous
position mt according to a randomly drawn accel-
eration vector ~at:

m1 ¼m0 þ~a1; ð13Þ

mt �mt�1 ¼mt�1 �mt�2 þ~at; 2 � t � Tfeature � 1:

ð14Þ

The orientation of vector ~at is drawn uniformly

from the Gauss sphere and its length is drawn from

a normal distribution with mean zero and standard

deviation Ga ¼ 25 mm=frame2. This choice produces

an average projected velocity of two pixels per frame

for both cameras, which is approximately equal to

that observed in some of our real sequences. The life

span of a feature in frames, Tfeature, is drawn from a

uniform distribution in the interval ð0; T � and

rounded up to the next integral value. By defining

a potentially distinct life span for each feature, we

simulate the fact that trackers often lose features,

either because they become occluded, or because

feature matching fails. To ensure that the number of

features per frame remains fixed during a single run,

we instantiate a new feature at a random position

within the bounding sphere when a feature dies.
2. Noisy image trajectories: We simulate localization

errors in the feature tracker by adding a random

P�ADUA ET AL.: LINEAR SEQUENCE-TO-SEQUENCE ALIGNMENT 313

TABLE 1
Simulation Parameters for Our Synthetic Data Experiments

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

displacement to the projection of each feature. This
displacement has a uniformly distributed orientation
and a magnitude drawn from a normal distribution
with mean zero and standard deviation Gl.

3. Noisy initial fundamental matrices: The timeline
reconstruction algorithm in Section 3 requires an
initial estimate of the fundamental matrix between
the two views. In order to simulate the fact that this
matrix may be inaccurate, we perturb the ground-
truth fundamental matrix before each run to achieve
a predefined epipolar geometry error Ge. For ground
truth, we use the fundamental matrix computed in
the two-view robots experiment in Section 5.2,
normalized to unit Frobenius norm. Given a per-
turbed fundamental matrix and a set of 3D points,
we define its reprojection error to be the root-mean-
squared distance between the features’ projections
and their respective epipolar lines in the two views.
The 3D points chosen are the points we used to
initialize the fundamental matrix in the actual
robot’s experiment. To generate a matrix with a
given reprojection error Ge, we begin with the
ground-truth matrix, add the constant 10�5 to each
element, measure the reprojection error, and iterate
until the error becomes equal to Ge.

4. RANSAC parameters: The choice of RANSAC para-
meters determines the probability that a globally
optimal solution will be found and has a major effect
on computational cost. To keep this cost at a
reasonable level, we constrain the temporal dilation
parameter between the two cameras to the interval
½15 ; 5� in the timeline reconstruction procedure in

Section 3. We then set the RANSAC success
probability p to a very conservative level of 0.99.
Along with the other RANSAC parameters (Table 1)
and the constraint on temporal dilation, this causes
1,840 RANSAC iterations to be executed per run.

5. Evaluation metrics: We use the average absolute
temporal alignment error "t as our basic accuracy
metric:

"t ¼
1

T

XT�1

tr¼0

jð��tr þ ��Þ � ð�tr þ �Þj; ð15Þ

where tr is the frame number of the reference
camera, ��; �� are the parameters of the ground-
truth timeline, and �; � are the parameters of the
computed timeline. We used �� ¼ 1 and �� ¼ 32 in
all simulations. To illustrate the applicability of our
approach in a variety of settings, we consider the
percentage of simulation runs that produced time-
lines with an error below a bound "t. This allows us
to assess its ability to compute highly accurate
timelines ("t � 1 frame) as well as its behavior in
less challenging situations (e.g., "t � 2 frames or "t �
5 frames).

6.1 Accuracy versus Number of Features

As a first step, we evaluated the behavior of our temporal
alignment and refinement methods for an increasing
number F of moving features per frame. Fig. 10 shows
examples of voting spaces generated in our simulations.
Note that as the number of tracked features increases, the
voting space becomes increasingly dense. The voting spaces
for 16 and 32 features represent especially challenging

314 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

Fig. 10. Voting space examples for number of features (a) F ¼ 1, (b) F ¼ 2, (c) F ¼ 4, (d) F ¼ 8, and (e) F ¼ 16. The epipolar geometry and tracker

localization errors were two pixels in all cases (i.e.,Ge ¼ 2; Gl ¼ 2). (f) Percentage of inliers for the voting spaces in (a)-(e). A vote is considered to be

an inlier if its horizontal distance from the ground-truth timeline is less than one frame.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

cases, where it is hard to identify the true timeline by

inspection. Importantly, the density of votes has a major

impact on the ratio of inliers: This ratio is less than 2 percent

of the total votes when F 	 16 (Fig. 10f).

Figs. 11 and 12 illustrate the impact of this increasing
density on alignment accuracy. The figures show the
percentage of runs3 for which the reconstructed timeline

P�ADUA ET AL.: LINEAR SEQUENCE-TO-SEQUENCE ALIGNMENT 315

Fig. 11. Alignment error versus number of features for various levels of feature localization error. Each row of plots represents runs with a fixed level

of localization error Gl and three different bounds on alignment error "t. Each column represents runs with a fixed bound on alignment error and four

different levels of localization error. The epipolar geometry error was kept fixed at Ge ¼ 2 pixels in all plots. (a), (b) and (c) Percentage of runs for

which Gl ¼ 1 pixel and the reconstructed timeline had an error below "t. (d), (e), (f), (g), (h), (i), (j), (k), (l) Percentage of such runs for different values

of GI and "t.

3. We executed 100 independent runs for each choice of simulation
parameters.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

was below a specified bound on alignment error, as a

function of the number of tracked features. A percentage

near 100 percent for a given error bound implies a near-

perfect ability to compute alignments within that bound.

These figures lead to several observations about the behavior

of the timeline reconstruction and refinement steps.
First, alignment accuracy decreases significantly when

the number of features is too large (F 	 16) or too small

(F ¼ 1). This is because when more features are added, the

316 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

Fig. 12. Alignment error versus number of features for various levels of error in the initial epipolar geometry. Each row of plots represents runs with a

fixed level of epipolar geometry errorGe and three different bounds on alignment error "t. Each column represents runs with a fixed bound on alignment

error and four different levels of epipolar geometry error. The localization error was kept fixed atGl ¼ 2 pixels in all plots. (a), (b) and (c) Percentage of

runs for whichGe ¼ 1 pixel and the reconstructed timeline had an error below "t. (d), (e), (f), (g), (h), (i), (j), (k), (l) Percentage of such runs for different

values of Ge and "t.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

number of outliers increases faster than the number of
inliers, leading to inaccurate estimation of the timeline
parameters for large voting space densities. On the other
hand, when the number of features is very small (e.g.,
F ¼ 1), there is an insufficient number of votes in the voting
space to enable accurate fitting of the timeline. Second, the
approach appears to give optimal results when F ¼ 4. This

behavior persists across all levels of noise in feature
localization and/or epipolar geometry. For instance, even
when four features are tracked with a rather high localiza-
tion error (Gl ¼ 8 pixels) and a moderate epipolar geometry
error (Ge ¼ 2 pixels), the refinement stage is able to compute
an alignment within two frames of the ground truth
75 percent of the time (Fig. 11k). In effect, four features

P�ADUA ET AL.: LINEAR SEQUENCE-TO-SEQUENCE ALIGNMENT 317

Fig. 13. Alignment error versus localization error for various numbers of features. Each row of plots represents runs with a fixed number F of features,
and three different bounds on alignment error "t. Each column represents runs with a fixed bound on alignment error and four different numbers of
features. The epipolar geometry error was kept fixed at Ge ¼ 2 pixels in all plots. (a), (b) and (c) Percentage of runs for which F ¼ 2 features and the
reconstructed timeline had an error below "t. (d), (e), (f), (g), (h), (i), (j), (k), (l) Percentage of such runs for different values of F and "t.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

provide a good balance between voting space density and
fitting accuracy. Third, for low levels of localization error
(e.g.,Gl ¼ 1 pixel), alignment accuracy is much less sensitive
to the number of tracked features, especially prior to
timeline refinement (Figs. 11a, 11b, and 11c). Fourth, even
though timeline refinement can lead to significant accuracy

gains, this step is much more sensitive to the number of
tracked features. As a result, these gains quickly diminish as
F increases beyond eight features. Fifth, timeline refinement
is particularly useful for computing highly accurate align-
ments ("t � 1 pixel), but has practically no impact when we
need only a rough alignment of the input sequences ("t � 5).

318 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

Fig. 14. Alignment error versus error in the initial epipolar geometry for various numbers of features. Each row of plots represents runs with a fixed

number F of features and three different bounds on alignment error "t. Each column represents runs with a fixed bound on alignment error and four

different numbers of features. The localization error was kept fixed at Gl ¼ 2 pixels in all plots. (a), (b) and (c) Percentage of runs for which F ¼ 2

features and the reconstructed timeline had an error below "t. (d), (e), (f), (g), (h), (i), (j), (k), (l) Percentage of such runs for different values of F and "t.

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

6.2 Accuracy versus Tracking and Calibration
Errors

Figs. 13 and 14 show the impact of localization and epipolar

geometry error on alignment accuracy. These figures plot

the percentage of runs for which the reconstructed timeline

was below a specified bound on alignment error, as a

function of localization error (Fig. 13) and error in the initial

estimate of the fundamental matrix (Fig. 14).
As expected, our ability to achieve accurate alignments

diminishes with increased noise levels. This degradation is
especially pronounced when more features are present
(Figs. 13j, 13k, 13l, 14j, 14k, and 14l). Two reasons explain
this degradation in accuracy. First, as the noise levels
increase, potential inliers are shifted from their “true”
positions in the voting space, and the magnitude of these
shifts is proportional to the noise level. This affects the line-
fitting process in RANSAC and produces timelines with
inaccurate parameters. Second, noise in localization and/or
epipolar geometry causes a significant increase in outlier
votes, which also affects negatively the accuracy of
RANSAC estimation.

Our results also show that high noise levels reduce the

impact of the timeline refinement stage. This is especially

pronounced in the case of localization error: When a tracker

cannot localize features to within 4-5 pixels, the refinement

stage has a very small effect on alignment accuracy (first

column of Fig. 13). On the other hand, this stage has a

consistent, positive effect on accuracy for almost all noise

levels in epipolar geometry (first and second columns of

Fig. 14). Crucially, this stage is necessary for achieving

alignments that are within one frame of the ground truth:

For instance, in the experiments reported in Fig. 13, only up

to 30 percent of runs produced alignments with such an

accuracy prior to refinement, for almost all numbers of

features and all noise levels.

7 CONCLUDING REMARKS

Our results suggest that the timeline reconstruction algo-
rithm provides a simple and effective way to temporally
align multiple video sequences. Unlike previous ap-
proaches, it is able to handle temporal dilations and large
time shifts, with no degradation in accuracy, even when
scene points move along 3D, overlapping, and near-
periodic trajectories. Importantly, by reducing the align-
ment problem to a RANSAC-based procedure, our algo-
rithms are able to tolerate large proportions of outliers in
the data, high levels of noise, discontinuities in feature
trajectories, complete absence of stereo correspondences for
moving features, and sequences that contain multiple frame
rates. We are currently investigating the combination of
timeline reconstruction and multiview stereo for recon-
structing important events in old video footage, where
multiple replays of the same event are shown from
different viewpoints.

ACKNOWLEDGMENTS

An earlier version of this work appeared in [36]. The authors

would like to thank Thomas El-Maraghi, Guilherme Pereira,

and Matthew Brown for making available their tracking and

image stabilization software. Rodrigo Carceroni, Flávio

Pádua, and Geraldo Santos thank the support of CNPq-

Brazil under Procs. No. 300592/2001-9, No. 478859/2003-1,

No. 521259/2001-0, and No. 308195/2004-3; of Fapemig

under Procs. No. EDT 162/07, No. CEX-227-04 and No.

CEX 491/02; of PRPq-UFMG (Fundo Fundep RD), and of

Capes-Brazil. Kiriakos Kutulakos gratefully acknowledges

the support of the US National Science Foundation under

Grant No. IRI-9875628, the Natural Sciences and Engineering

Research Council of Canada under the RGPIN program, and

the Alfred P. Sloan Foundation.

REFERENCES

[1] S. Vedula, S. Baker, and T. Kanade, “Spatio-Temporal View
Interpolation,” Proc. Eurographics Workshop Rendering, pp. 65-76,
2002.

[2] L. Zelnik-Manor and M. Irani, “Event-Based Analysis of Video,”
Proc. IEEE Computer Vision and Pattern Recognition Conf., vol. 2, pp.
II-123-II-130, 2001.

[3] Y. Caspi and M. Irani, “Alignment of Non-Overlapping Se-
quences,” Proc. Int’l Conf. Computer Vision, vol. 2, pp. 76-83, 2001.

[4] I. Reid and A. Zisserman, “Goal Directed Video Metrology,” Proc.
European Conf. Computer Vision, pp. 647-658, 1996.

[5] D. Wedge, D. Huynh, and P. Kovesi, “Using Space-Time Interest
Points for Video Sequence Synchronization,” Proc. IAPR Conf.
Machine Vision Applications, pp. 190-194, 2007.

[6] L. Wolf and A. Zomet, “Wide Baseline Matching between
Unsynchronized Video Sequences,” Int’l J. Computer Vision,
vol. 68, no. 1, pp. 43-52, 2006.

[7] M. Ushizaki, T. Okatani, and K. Deguchi, “Video Synchronization
Based on Co-Occurrence of Appearance Changes in Video
Sequences,” Proc. Int’l Conf. Pattern Recognition, pp. 71-74, 2006.

[8] Y. Ukrainitz and M. Irani, “Aligning Sequences and Actions by
Maximizing Space-Time Correlations,” Proc. European Conf.
Computer Vision, pp. 538-550, 2006.

[9] O. Shakil, “An Efficient Video Alignment Approach for Non-
Overlapping Sequences with Free Camera Movement,” Proc. Int’l
Conf. Acoustics, Speech, and Signal Processing, vol. 2, pp. 257-260,
2006.

[10] C. Dai, Y. Zheng, and X. Li, “Accurate Video Alignment Using
Phase Correlation,” IEEE Signal Processing Letters, vol. 13, no. 12,
pp. 737-740, Dec. 2006.

[11] C. Dai, Y. Zheng, and X. Li, “Subframe Video Synchronization via
3d Phase Correlation,” Proc. Int’l Conf. Image Processing, pp. 501-
504, 2006.

[12] K. Lee and R.D. Green, “Temporally Synchronising Image
Sequences Using Motion Kinematics,” Proc. Image and Vision
Computing New Zealand Conf., 2005.

[13] I. Laptev, S.J. Belongie, P. Perez, and J. Wills, “Periodic Motion
Detection and Segmentation via Approximate Sequence Align-
ment,” Proc. Int’l Conf. Computer Vision, vol. 1, pp. 816-823, 2005.

[14] D. Wedge, P. Kovesi, and D. Huynh, “Trajectory Based Video
Sequence Synchronization,” Proc. Digital Image Computing: Tech-
niques and Applications Conf., pp. 79-86, 2005.

[15] J. Yan and M. Pollefeys, “Video Synchronization via Space-Time
Interest Point Distribution,” Proc. Advanced Concepts for Intelligent
Vision Systems, 2004.

[16] D.W. Pooley, M.J. Brooks, A.J. van den Hengel, and W. Chojnacki,
“A Voting Scheme for Estimating the Synchrony of Moving-
Camera Videos,” Proc. Int’l Conf. Image Processing, vol. 1, pp. 413-
416, 2003.

[17] C. Rao, A. Gritai, M. Shah, and T.S. Mahmood, “View-Invariant
Alignment and Matching of Video Sequences,” Proc. Int’l Conf.
Computer Vision, vol. 2, pp. 939-945, 2003.

[18] Y. Caspi, D. Simakov, and M. Irani, “Feature-Based Sequence-to-
Sequence Matching,” Int’l J. Computer Vision, vol. 68, no. 1, pp. 53-
64, 2006.

[19] L. Wolf and A. Zomet, “Correspondence-Free Synchronization
and Reconstruction in a Non-Rigid Scene,” Proc. Workshop Vision
and Modelling of Dynamic Scenes, 2002.

P�ADUA ET AL.: LINEAR SEQUENCE-TO-SEQUENCE ALIGNMENT 319

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

[20] L. Wolf and A. Zomet, “Sequence to Sequence Self Calibration,”
Proc. European Conf. Computer Vision, vol. 2, pp. 370-382, 2002.

[21] Y. Caspi and M. Irani, “A Step Towards Sequence-to-Sequence
Alignment,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, vol. 2, pp. 682-689, 2000.

[22] L. Lee, R. Romano, and G. Stein, “Monitoring Activities from
Multiple Video Streams: Establishing a Common Coordinate
Frame,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 22, no. 8, pp. 758-767, Aug. 2000.

[23] G. Stein, “Tracking from Multiple View Points: Self-Calibration
of Space and Time,” Proc. DARPA Image Understanding Workshop,
pp. 521-527, 1998.

[24] K. Raguse and C. Heipke, “Photogrammetric Synchronization of
Image Sequences,” Proc. ISPRS Commission V Symp. Image Eng. and
Vision Metrology, pp. 254-259, 2006.

[25] W. Anthony, L. Robert, and B. Prosenjit, “Temporal Synchroniza-
tion of Video Sequences in Theory and in Practice,” Proc. Workshop
Motion and Video Computing, vol. 2, pp. 132-137, 2005.

[26] E. Tola, V. Lepetit, and P. Fua, “A Fast Local Descriptor for Dense
Matching,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, 2008.

[27] M. Fischler and R. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartography,” Comm. ACM, vol. 24, pp. 381-395,
June 1981.

[28] J. Horst and I. Beichl, “A Simple Algorithm for Efficient Piecewise
Linear Approximation of Space Curves,” Proc. Int’l Conf. Image
Processing, vol. 2, pp. 744-747, 1997.

[29] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing. Cambridge Univ.
Press, 1988.

[30] K. Atkinson, An Introduction to Numerical Analysis. John Wiley and
Sons, 1989.

[31] C. Tomasi, “Mathematical Methods for Robotics and Vision,”
Technical Report CS 205, Stanford Univ., 2000.

[32] J. Hefferon, Linear Algebra. Math. Dept. of Saint Michael’s College,
2001.

[33] A. Jepson, D. Fleet, and T. El-Maraghi, “Robust Online
Appearance Models for Visual Tracking,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1296-1311,
Oct. 2003.

[34] FIFA, “FIFA World Cup Archives: Goal of the Century,” http://
fifaworldcup.yahoo.com/02/en/pf/h/gotc/launch.html, 2002.

[35] M. Brown and D. Lowe, “Recognizing Panoramas,” Proc. Int’l
Conf. Computer Vision, pp. 1218-1225, 2003.

[36] R.L. Carceroni, F.L.C. Padua, G.A.M.R. Santos, and K.N.
Kutulakos, “Linear Sequence-to-Sequence Alignment,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, pp. 746-753, 2004.

Flávio L.C. Pádua received the bachelor’s
degree in electrical engineering and the MSc
and PhD degrees in computer science from the
Universidade Federal de Minas Gerais (UFMG),
Brazil, in 1999, 2002, and 2005, respectively. He
has been an adjunct professor of computer
engineering at the Centro Federal de Educação
Tecnológica de Minas Gerais (CEFET-MG)
since 2005. From 2001 to 2003, he worked at
Oi S/A in Brazil, where he managed engineering

projects for increasing the reliability and availability of telecommunica-
tion services. From 1998 to 1999, he participated in an undergraduate
program at the Technical University of Berlin in Germany, sponsored by
the governments of Brazil and Germany. During this period, he worked
as a visiting scientist in the Institute for Machine Tools and Factory
Management (IWF). His research interests include computer vision and
video information processing, with special focus on visual motion
analysis and 3D scene analysis from video.

Rodrigo L. Carceroni received the BS and MS
degrees in computer science from the Univer-
sidade Federal de Minas Gerais (UFMG),
Brazil, in 1983 and 1995, respectively, and
the MS and PhD degrees in computer science
from the University of Rochester in 1997 and
2001, respectively. Following completion of his
doctoral studies, he returned to UFMG as a
postdoctoral fellow (2001-2002), and was later
hired as an assistant professor (2002-2006).

Shortly, after obtaining tenure in early 2005, he took a one-year leave
from UFMG to work as a postdoctoral fellow at the Grasp Lab at the
University of Pennsylvania. In late 2006, he joined Google, Inc., where
he is currently a senior software engineer. He was the program chair
of the 2006 Brazilian Symposium on Computer Graphics and Image
Processing and was twice recipient of the CNPq-Brazil Productivity in
Research Award. His research interests include computer vision,
computer graphics, and robotics.

Geraldo A.M.R. Santos received the BSc and
MSc degrees in computer science from the
Universidade Federal de Minas Gerais, Brazil, in
2002 and 2006, respectively. Since then, he has
been working in industry on systems for video-
based tracking and people counting. His re-
search interests include computer vision and
video analysis.

Kiriakos N. Kutulakos received the BA degree
in computer science from the University of
Crete, Greece, in 1988, and the MS and PhD
degrees in computer science from the University
of Wisconsin, Madison, in 1990 and 1994,
respectively. Following his dissertation work,
he joined the University of Rochester, where
he was a US National Science Foundation
(NSF) postdoctoral fellow and later an assistant
professor until 2001. He is currently an associate

professor of computer science at the University of Toronto. He won the
Best Student Paper Award at CVPR ’94, the David Marr Prize in 1999, a
David Marr Prize Honorable Mention in 2005, and a Best Paper
Honorable Mention at ECCV ’06. He is the recipient of a CAREER
Award from the US National Science Foundation, a Premier’s Research
Excellence Award from the government of Ontario, and an Alfred P.
Sloan Research Fellowship. He served as program cochair of CVPR
2003 and is currently an associate editor of the IEEE Transactions on
Pattern Analysis and Machine Intelligence. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

320 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 2, FEBRUARY 2010

Authorized licensed use limited to: The University of Toronto. Downloaded on April 14,2010 at 13:01:45 UTC from IEEE Xplore. Restrictions apply.

