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Abstract We present confocal stereo, a new method for
computing 3D shape by controlling the focus and aperture of
a lens. The method is specifically designed for reconstruct-
ing scenes with high geometric complexity or fine-scale tex-
ture. To achieve this, we introduce the confocal constancy
property, which states that as the lens aperture varies, the
pixel intensity of a visible in-focus scene point will vary in
a scene-independent way, that can be predicted by prior ra-
diometric lens calibration. The only requirement is that in-
coming radiance within the cone subtended by the largest
aperture is nearly constant. First, we develop a detailed lens
model that factors out the distortions in high resolution SLR
cameras (12MP or more) with large-aperture lenses (e.g.,
f1.2). This allows us to assemble an A × F aperture-focus
image (AFI) for each pixel, that collects the undistorted
measurements over all A apertures and F focus settings. In
the AFI representation, confocal constancy reduces to color
comparisons within regions of the AFI, and leads to focus
metrics that can be evaluated separately for each pixel. We
propose two such metrics and present initial reconstruction
results for complex scenes, as well as for a scene with known
ground-truth shape.
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1 Introduction

Recent years have seen many advances in the problem of re-
constructing complex 3D scenes from multiple photographs
(Zitnick et al. 2004; Fitzgibbon et al. 2005; Hertzmann
and Seitz 2005). Despite this progress, however, there are
many common scenes for which obtaining detailed 3D mod-
els is beyond the state of the art. One such class includes
scenes that contain very high levels of geometric detail,
such as hair, fur, feathers, miniature flowers, etc. These
scenes are difficult to reconstruct for a number of reasons—
they create complex 3D arrangements not directly repre-
sentable as a single surface; their images contain fine de-
tail beyond the resolution of common video cameras; and
they create complex self-occlusion relationships. As a result,
many approaches either side-step the reconstruction prob-
lem (Fitzgibbon et al. 2005), require a strong prior model
for the scene (Wei et al. 2005; Paris et al. 2004), or rely on
techniques that approximate shape at a coarse level.

Despite these difficulties, the high-resolution sensors in
today’s digital cameras open the possibility of imaging com-
plex scenes at a very high level of detail. With resolutions
surpassing 12 megapixels (MP), even individual strands of
hair may be one or more pixels wide (Fig. 1a, b). In this
paper, we explore the possibility of reconstructing such
scenes with a new method called confocal stereo, which
aims to compute depth maps at sensor resolution. Although
the method applies equally well to low-resolution settings,
it is designed to exploit the capabilities of high-end digital
SLR cameras and requires no special equipment besides the
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Fig. 1 (a) Wide-aperture image of a complex scene. (b) Left: Suc-
cessive close-ups of a region in (a), showing a single in-focus strand of
hair. Right: Narrow-aperture image of the same region, with everything
in focus. Confocal constancy tells us that the intensity of in-focus pix-

els (e.g., on the strand) changes predictably between these two views.
(c) The aperture-focus image (AFI) of a pixel near the middle of the
strand. A column of the AFI collects the intensities of that pixel as the
aperture varies with focus fixed

camera and a laptop. The only key requirement is the ability
to actively control both the aperture and focus setting of the
lens.

At the heart of our approach is a property we call confo-
cal constancy, which states that as the lens aperture varies,
the pixel intensity of a visible in-focus scene point will vary
in a scene-independent way, that can be predicted by prior
radiometric lens calibration. To exploit confocal constancy
for reconstruction, we develop a detailed lens model that
factors out the geometric and radiometric distortions ob-
servable in high resolution SLR cameras with large-aperture
lenses (e.g., f1.2). This allows us to assemble an A × F

aperture-focus image (AFI) for each pixel, that collects the
undistorted measurements over all A apertures and F focus
settings (Fig 1c). In the AFI representation, confocal con-
stancy reduces to color comparisons within regions of the
AFI and leads to focus metrics that can be evaluated sepa-
rately for each pixel.

Our work has four main contributions. First, unlike ex-
isting depth from focus or depth from defocus methods, our
confocal constancy formulation shows that we can assess fo-
cus without modeling a pixel’s spatial neighborhood or the
blurring properties of a lens. Second, we show that depth
from focus computations can be reduced to pixelwise in-
tensity comparisons, in the spirit of traditional stereo tech-
niques. Third, we introduce the aperture-focus-image repre-
sentation as a basic tool for focus- and defocus-based 3D
reconstruction. Fourth, we show that together, confocal con-
stancy and accurate image alignment lead to a reconstruction
algorithm that can compute depth maps at resolutions not
attainable with existing techniques. To achieve all this, we
also develop a method for the precise geometric and radio-
metric alignment of high-resolution images taken at multi-
ple focus and aperture settings, that is particularly suited for

professional-quality cameras and lenses, where the standard
thin-lens model breaks down.

We begin this article by discussing the relation of this
work to current approaches for reconstructing scenes that
exploit defocus in wide-aperture images. Section 3 describes
our generic imaging model and introduces the property of
confocal constancy. Section 4 gives a brief overview of how
we exploit this property for reconstruction and Sects. 5–6
discuss the radiometric and geometric calibration required
to relate high resolution images taken with different lens set-
tings. In Sect. 7 we show how the AFI for each pixel can be
analyzed independently to estimate depth, using both confo-
cal constancy and its generalization. Finally, Sect. 8 presents
experimental results using images of complex real scenes,
and one scene for which ground truth has been recovered.

2 Related Work

Our method builds on five lines of recent work—depth
from focus, depth from defocus, shape from active illumi-
nation, camera calibration, and synthetic aperture imaging.
We briefly discuss their relation to this work below.

Depth from Focus Our approach can be thought of as a
depth from focus method, in that we assign depth to each
pixel by selecting the focus setting that maximizes a focus
metric for that pixel’s AFI. Classic depth from focus meth-
ods collect images at multiple focus settings and define met-
rics that measure sharpness over a small spatial window sur-
rounding the pixel (Krotkov 1987; Darrell and Wohn 1988;
Nair and Stewart 1992). This implicitly assumes that depth
is approximately constant for all pixels in that window. In
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contrast, our criterion depends on measurements at a single
pixel and requires manipulating a second, independent cam-
era parameter (i.e., aperture). As a result, we can recover
much sharper geometric detail than window-based methods,
and also recover depth with more accuracy near depth dis-
continuities. The tradeoff is that our method requires us to
capture more images than other depth from focus methods.

Depth from Defocus Many depth from defocus methods
directly evaluate defocus over spatial windows, e.g., by fit-
ting a convolutional model of defocus to images captured at
different lens settings (Pentland 1987; Subbarao and Surya
1994; Xiong and Shafer 1997; Watanabe and Nayar 1998;
Favaro and Soatto 2005; Green et al. 2007). Spatial win-
dowing is also implicit in recent depth from defocus meth-
ods based on deconvolving a single image, with the help
of coded apertures and natural image statistics (Levin et
al. 2007; Veeraraghavan et al. 2007). As a result, none of
these methods can handle scenes with dense discontinuities
like the ones we consider. Moreover, while depth from defo-
cus methods generally exploit basic models of defocus, the
models used do not capture the complex blurring properties
of multi-element, wide-aperture lenses, which can adversely
affect depth computations.

Although depth from defocus methods have taken ad-
vantage of the ability to control camera aperture, this has
generally been used as a substitute for focus control, so
the analysis remains essentially the same (Pentland 1987;
Subbarao and Surya 1994; Green et al. 2007). An alterna-
tive form of aperture control involves using specially de-
signed pairs of optical filters in order to compute derivatives
with respect to aperture size or viewpoint (Farid and Simon-
celli 1998), illuminating the connection between defocus-
based methods and small-baseline stereo (Farid and Simon-
celli 1998; Schechner and Kiryati 2000). Our method, on the
other hand, is specifically designed to exploit image varia-
tions caused by changing the aperture in the standard way.

A second class of depth from defocus methods formu-
lates depth recovery as an iterative global energy min-
imization problem, simultaneously estimating depth and
in-focus radiance at all pixels (Rajagopalan and Chaud-
huri 1999; Jin and Favaro 2002; Favaro et al. 2003a,
2003b; Bhasin and Chaudhuri 2001; Favaro and Soatto
2003; McGuire et al. 2005; Hasinoff and Kutulakos 2007).
Some of the recent methods in this framework model de-
focus in greater detail to better handle occlusion bound-
aries (Bhasin and Chaudhuri 2001; Favaro and Soatto 2003;
McGuire et al. 2005; Hasinoff and Kutulakos 2007), but rely
on the occlusion boundaries being smooth. Unfortunately,
these minimization-based methods are prone to many local
minima, their convergence properties are not completely un-
derstood, and they rely on smoothness priors that limit the
spatial resolution of recovered depth maps.

Compared to depth from defocus methods, which may
require as little as a single image (Levin et al. 2007; Veer-
araghavan et al. 2007), our method requires us to capture
many more images. Again, the tradeoff is that our method
provides us with the ability to recover pixel-level depth for
fine geometric structures, which would not otherwise be
possible.

Shape from Active Illumination Since it does not involve
actively illuminating the scene, our reconstruction approach
is a “passive” method. Several methods use active illumina-
tion (i.e., projectors) to aid defocus computations. For ex-
ample, by projecting structured patterns onto the scene, it
is possible to control the frequency characteristics of defo-
cused images, reducing the influence of scene texture (Nayar
et al. 1996; Favaro et al. 2003a; Moreno-Noguer et al. 2007).
Similarly, by focusing the camera and the projected illu-
mination onto the same scene plane, confocal microscopy
methods are able to image (and therefore reconstruct) trans-
parent scenes one slice at a time (Webb 1996). This ap-
proach has also been explored for larger-scale opaque scenes
(Levoy et al. 2004).

Most recently, Zhang and Nayar developed an active il-
lumination method that also computes depth maps at sensor
resolution (Zhang and Nayar 2006). To do this, they evalu-
ate the defocus of patterns projected onto the scene using a
metric that also relies on single-pixel measurements. Their
approach can be thought of as orthogonal to our own, since
it projects multiple defocused patterns instead of controlling
aperture. While their preliminary work has not demonstrated
the ability to handle scenes of the spatial complexity dis-
cussed here, it may be possible to combine aperture control
and active illumination for more accurate results. In practice,
active illumination is most suitable for darker environments,
where the projector is significantly brighter than the ambient
lighting.

Geometric and Radiometric Lens Calibration Because of
the high image resolutions we employ (12MP or more) and
the need for pixel-level alignment between images taken at
multiple lens settings, we model detailed effects that pre-
vious methods were not designed to handle. For example,
previous methods account for radiometric variation by nor-
malizing spatial image windows by their mean intensity
(Subbarao and Surya 1994; Pentland 1987), or by fitting
a global parametric model such as a cosine-fourth falloff
(Kang and Weiss 2000). To account for subtle radiometric
variations that occur in multi-element, off-the-shelf lenses,
we use a data-driven, non-parametric model that accounts
for the camera response function (Debevec and Malik 1997;
Grossberg and Nayar 2004) as well as slight temporal vari-
ations in ambient lighting. Furthermore, most methods for
modeling geometric lens distortions due to changing focus
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Fig. 2 Generic lens model. (a) At the perfect focus setting of pixel
(x, y), the lens collects outgoing radiance from a scene point p and
directs it toward the pixel. The 3D position of point p is uniquely de-
termined by pixel (x, y) and its perfect focus setting. The shaded cone
of rays, Cxy(α,f ), determines the radiance reaching the pixel. This

cone is a subset of the cone subtended by p and the front aperture be-
cause some rays may be blocked by internal components of the lens, or
by its back aperture. (b) For out-of-focus settings, the lens integrates
outgoing radiance from a region of the scene

or zoom setting rely on simple magnification (Asada et al.
1998a; Darrell and Wohn 1988; Watanabe and Nayar 1997;
Nayar et al. 1996) or radial distortion models (Willson
1994a), which are not sufficient to achieve sub-pixel align-
ment of high resolution images.

Synthetic Aperture Imaging While real lenses integrate
light over wide apertures in a continuous fashion, multi-
camera systems can be thought of as a discretely-sampled
synthetic aperture that integrates rays from the light field
(Levoy and Hanrahan 1996). Various such systems have
been proposed in recent years, including camera arrays
(Levoy and Hanrahan 1996; Isaksen et al. 2000), virtual
camera arrays simulated using mirrors (Levoy et al. 2004),
and arrays of lenslets in front of a standard imaging sen-
sor (Adelson and Wang 1992; Ng 2005). Our work can be
thought of as complementary to these methods since it does
not depend on having a single physical aperture; in princi-
ple, it can be applied to synthetic apertures as well.

3 Confocal Constancy

Consider a camera whose lens contains multiple elements
and has a range of known focus and aperture settings. We
assume that no information is available about the internal
components of this lens (e.g., the number, geometry, and
spacing of its elements). We therefore model the lens as a
“black box” that redirects incoming light toward a fixed sen-
sor plane and has the following idealized properties:

• Negligible absorption: light that enters the lens in a given
direction is either blocked from exiting or is transmitted
with no absorption.

• Perfect focus: for every 3D point in front of the lens there
is a unique focus setting that causes rays through the point
to converge to a single pixel on the sensor plane.

• Aperture-focus independence: the aperture setting con-
trols only which rays are blocked from entering the lens;
it does not affect the way that light is redirected.

These properties are well approximated by lenses used in
professional photography applications.1 Here we use such
a lens to collect images of a 3D scene for A aperture set-
tings, {α1, . . . , αA}, and F focal settings, {f1, . . . , fF }. This
acquisition produces a 4D set of pixel data, Iαf (x, y), where
Iαf is the image captured with aperture α and focal set-
ting f . As in previous defocus-based methods, we assume
that the camera and scene are stationary during the acquisi-
tion (Krotkov 1987; Pentland 1987; Zhang and Nayar 2006).

Suppose that a 3D point p on an opaque surface is in per-
fect focus in image Iαf and suppose that it projects to pixel
(x, y). In this case, the light reaching the pixel is restricted
to a cone from p that is determined by the aperture setting
(Fig. 2). For a sensor with a linear response, the intensity
Iαf (x, y) at the pixel is proportional to the integral of out-
going radiance over the cone, i.e.,

Iαf (x, y) = κ

∫
ω∈Cxy(α,f )

L(p,ω)dω, (1)

where ω measures solid angle, L(p,ω) is the radiance for
rays passing through p, κ is a constant that depends only on
the sensor’s response function (Debevec and Malik 1997;
Grossberg and Nayar 2004), and Cxy(α,f ) is the cone of
rays that reach (x, y). In practice, the apertures on a real
lens correspond to a nested sequence of cones, Cxy(α1, f )

⊂ · · · ⊂ Cxy(αA,f ), leading to a monotonically-increasing
intensity at the pixel (given equal exposure times).

If the outgoing radiance at the in-focus point p re-
mains constant within the cone of the largest aperture, i.e.,
L(p,ω) = L(p), and if this cone does not intersect the scene
elsewhere, the relation between intensity and aperture be-
comes especially simple. In particular, the integral of (1)
disappears and the intensity for aperture α is proportional
to the solid angle subtended by the associated cone, i.e.,

Iαf (x, y) = κ‖Cxy(α,f )‖L(p), (2)

1There is a limit, however, on how close points can be and still be
brought into focus for real lenses, restricting the 3D workspace that
can be reconstructed.
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Fig. 3 Overview of confocal
stereo: (a) Acquire A × F

images over A apertures and F

focus settings. (b) Align all
images to the reference image,
taking into account both
radiometric calibration (Sect. 5)
and geometric distortion
(Sect. 6). (c) Build the A × F

aperture-focus image (AFI) for
each pixel. (d) Process the AFI
to find the best in-focus setting
(Sect. 7)

where ‖ Cxy(α,f )‖ = ∫
Cxy(α,f )

dω. As a result, the ratio of
intensities at an in-focus point for two different apertures is
a scene-independent quantity:

Confocal constancy property

Iαf (x, y)

Iα1f (x, y)
= ‖Cxy(α,f )‖

‖Cxy(α1, f )‖
def= Rxy(α,f ). (3)

Intuitively, the constant of proportionality, Rxy(α,f ), de-
scribes the relative amount of light received from an in-focus
scene point for a given aperture. This constant, which we
call the relative exitance of the lens, depends on lens inter-
nal design (front and back apertures, internal elements, etc.)
and varies in general with aperture, focus setting, and pixel
position on the sensor plane. Thus, relative exitance incor-
porates vignetting and other similar radiometric effects that
do not depend on the scene.

Confocal constancy is an important property for evalu-
ating focus for four reasons. First, it holds for a very gen-
eral lens model that covers the complex lenses commonly
used with high-quality SLR cameras. Second, it requires no
assumptions about the appearance of out-of-focus points.
Third, it holds for scenes with general reflectance properties,
provided that radiance is nearly constant over the cone sub-
tended by the largest aperture.2 Fourth, and most important,
it can be evaluated at pixel resolution because it imposes no
requirements on the spatial layout (i.e., depths) of points in
the neighborhood of p.

2For example, an aperture with an effective diameter of 70 mm located
1.2 m from the scene corresponds to 0.5% of the hemisphere, or a cone
whose rays are less than 3.4◦ apart.

4 The Confocal Stereo Procedure

Confocal constancy allows us to decide whether or not the
point projecting to a pixel (x, y) is in focus by comparing
the intensities Iαf (x, y) for different values of aperture α

and focus f . This leads to the following reconstruction pro-
cedure (Fig. 3):

1. (Relative exitance estimation) Compute the relative exi-
tance of the lens for the A apertures and F focus settings
(Sect. 5).

2. (Image acquisition) For each of the F focus settings, cap-
ture an image of the scene for each of the A apertures.

3. (Image alignment) Warp the captured images to ensure
that a scene point projects to the same pixel in all images
(Sect. 6).

4. (AFI construction) Build an A × F aperture-focus im-
age for each pixel, that collects the pixel’s measurements
across all apertures and focus settings.

5. (Confocal constancy evaluation) For each pixel, process
its AFI to find the focus setting that best satisfies the con-
focal constancy property (Sect. 7).

5 Relative Exitance Estimation

In order to use confocal constancy for reconstruction, we
must be able to predict how changing the lens aperture af-
fects the appearance of scene points that are in focus. Our
approach is motivated by three basic observations. First,
the apertures on real lenses are non-circular and the f-stop
values describing them only approximate their true area
(Fig. 4a, b). Second, when the effective aperture diameter
is a relatively large fraction of the camera-to-object dis-
tance, the solid angles subtended by different 3D points
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Fig. 4 (a) Images of an SLR lens showing variation in aperture shape
with corresponding images of a diffuse plane. (b) Top: comparison of
relative exitances for the central pixel indicated in (a), as measured
using (3) (solid graph), and as approximated using the f-stop values
(dotted) according to Rxy(α,f ) = α2

1/α2 (Debevec and Malik 1997).

Bottom: comparison of the central pixel (solid) with the corner pixel
(dotted) indicated in (a). The agreement is good for narrow apertures
(i.e., high f-stop values), but for wider apertures, spatially-varying ef-
fects are significant

in the workspace can differ significantly.3 Third, vignetting
and off-axis illumination effects cause additional variations
in the light gathered from different in-focus points (Smith
2000; Kang and Weiss 2000) (Fig. 4b).

To deal with these issues, we explicitly compute the rel-
ative exitance of the lens, Rxy(α,f ), for all apertures α and
for a sparse set of focal settings f . This can be thought of
as a scene-independent radiometric lens calibration step that
must be performed just once for each lens. In practice, this
allows us to predict aperture-induced intensity changes to
within the sensor’s noise level (i.e., within 1–2 gray levels),
and enables us to analyze potentially small intensity varia-
tions due to focus. For quantitative validation of our radio-
metric calibration method, see Appendix A.

To compute relative exitance for a focus setting f , we
place a diffuse white plane at the in-focus position and cap-
ture one image for each aperture, α1, . . . , αA. We then ap-
ply (3) to the luminance values of each pixel (x, y) to re-
cover Rxy(αi, f ). To obtain Rxy(αi, f ) for focus settings
that span the entire workspace, we repeat the process for
multiple values of f and use interpolation to compute the
in-between values. Since (3) assumes that pixel intensity is
a linear function of radiance, we linearize the images us-
ing the inverse of the sensor response function, which we
recover using standard techniques from the high dynamic
range literature (Debevec and Malik 1997; Grossberg and
Nayar 2004).

Note that in practice, we manipulate the exposure time
in conjunction with the aperture setting α, to keep the total
amount of light collected roughly constant and prevent un-
necessary pixel saturation. Exposure time can be modeled
as an additional multiplicative factor in the image formation
model, (1), and does not affect the focusing behavior of the

3For a 70 mm diameter aperture, the solid angle subtended by scene
points 1.1–1.2 m away can vary up to 10%.

lens.4 Thus, we can fold variation in exposure time into the
calculation of Rxy(αi, f ), provided that we vary the expo-
sure time in the same way for both the calibration and test
sequences.

Global Lighting Correction While the relative exitance
need only be computed once for a given lens, we have ob-
served that variations in ambient lighting intensity over short
time intervals can be significant (especially for fluorescent
tubes, due to voltage fluctuations). This prevents directly ap-
plying the relative exitance computed during calibration to a
different sequence.

To account for this effect, we model lighting variation
as an unknown multiplicative factor that is applied glob-
ally to each captured image. To factor out lighting changes,
we renormalize the images so that the total intensity of a
small patch at the image center remains constant over the
image sequence. In practice, we use a patch that is a small
fraction of the image (roughly 0.5% of the image area), so
that aperture-dependent effects such as vignetting can be ig-
nored, and we take into account only pixels that are unsatu-
rated for every lens setting.

6 High-Resolution Image Alignment

The intensity comparisons needed to evaluate confocal con-
stancy are only possible if we can locate the projection of
the same 3D point in multiple images taken with different
settings. The main difficulty is that real lenses map in-focus
3D points onto the image plane in a non-linear fashion that
cannot be predicted by ordinary perspective projection. To

4A side-effect of manipulating the exposure time is that noise char-
acteristics will change with varying intensity (Healey and Kondepudy
1994), however this phenomenon does not appear to be significant in
our experiments.
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Fig. 5 (Color online) (a–e) To evaluate stochastic lens distortions, we
computed centroids of dot features for images of a static calibration
pattern. (a–d) Successive close-ups of a centroid’s trajectory for three
cycles (red, green, blue) of the 23 aperture settings. In (a–b) the trajec-

tories are magnified by a factor of 100. As shown in (d), the trajectory,
while stochastic, correlates with aperture setting. (e) Trajectory for the
centroid of (c) over 50 images with the same lens settings

enable cross-image comparisons, we develop an alignment
procedure that reverses these non-linearities and warps the
input images to make them consistent with a reference im-
age (Fig. 3b).

Since our emphasis is on reconstructing scenes at the
maximum possible spatial resolution, we aim to model real
lenses with enough precision to ensure sub-pixel alignment
accuracy. This task is especially challenging because at res-
olutions of 12MP or more, we begin to approach the opti-
cal and mechanical limits of the camera. In this domain, the
commonly-used thin lens (i.e., magnification) model (Dar-
rell and Wohn 1988; Nayar et al. 1996; Favaro and Soatto
2002, 2003; Favaro et al. 2003b; Asada et al. 1998b) is in-
sufficient to account for observed distortions.

6.1 Deterministic Second-Order Radial Distortion Model

To model geometric distortions caused by the lens optics,
we use a model with F + 5 parameters for a lens with F fo-
cal settings. The model expresses deviations from an image
with reference focus setting f1 as an additive image warp
consisting of two terms—a pure magnification term mf that
is specific to focus setting f , and a quadratic distortion term
that amplifies the magnification:

wD
f (x, y) = [

mf + mf (f − f1)(k0 + k1r + k2r
2) − 1

]

× [
(x, y) − (xc, yc)

]
, (4)

where k0, k1, k2 are the quadratic distortion parameters,
(xc, yc) is the estimated image center, and r = ‖(x, y) −
(xc, yc)‖ is the radial displacement.5 Note that when the
quadratic distortion parameters are zero, the model reduces
to pure magnification, as in the thin lens model.

5Since our geometric distortion model is radial, the estimated image
center has zero displacement over focus setting, i.e., wD

f (xc, yc) =
(0,0) for all f .

It is a standard procedure in many methods (Willson
1994a; Kubota et al. 2004) to model radial distortion using a
polynomial of the radial displacement, r . A difference in our
model is that the quadratic distortion term in (4) incorporates
a linear dependence on the focus setting as well, consistent
with more detailed calibration methods involving distortion
components related to distance (Fraser and Shortis 1992). In
our empirical tests, we have found that this term is necessary
to obtain sub-pixel registration at high resolutions.

6.2 Stochastic First-Order Distortion Model

We were surprised to find that significant misalignments can
occur even when the camera is controlled remotely without
any change in settings and is mounted securely on an optical
table (Fig. 5e). While these motions are clearly stochastic,
we also observed a reproducible, aperture-dependent mis-
alignment of about the same magnitude (Fig. 5a–d). In or-
der to achieve sub-pixel alignment, we approximate these
motions by a global 2D translation, estimated independently
for every image:

wS
αf (x, y) = tαf . (5)

We observed these motions with two different Canon lenses
and two Canon SLR cameras, with no significant difference
using mirror-lockup mode. We hypothesize that this effect is
caused by additive random motion due to camera vibrations,
plus internal lens motions that are correlated with the action
of the mechanical aperture.

Note that while the geometric image distortions have a
stochastic component, the correspondence itself is determin-
istic: given two images taken at two distinct camera settings
there is a unique correspondence between their pixels.

6.3 Offline Geometric Lens Calibration

We recover the complete distortion model of (4–5) in a sin-
gle optimization step, using images of a calibration pattern
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taken over all F focus settings at the narrowest aperture, α1.
This optimization simultaneously estimates the F + 5 pa-
rameters of the deterministic model and the 2F parameters
of the stochastic model. To do this, we solve a non-linear
least squares problem that minimizes the squared reprojec-
tion error over a set of features detected on the calibration
pattern:

E(xc, yc,m,k,T)

=
∑
(x,y)

∑
f

‖wD
f (x, y) + wS

α1f
(x, y) − �α1f (x, y)‖2, (6)

where m and k are the vectors of magnification and
quadratic parameters, respectively; T collects stochastic
translations; and �α1f (x, y) is the displacement between
a feature location at focus setting f and its location at the
reference focus setting, f1.

To avoid being trapped in a local minimum, we initial-
ize the optimization with suitable estimates for (xc, yc) and
m, and initialize the other distortion parameters to zero. To
estimate the image center (xc, yc), we fit lines through each
feature track across focus setting, and then compute their
“intersection” as the point minimizing the sum of distances
to these lines. To estimate the magnifications m, we use the
regression suggested by Willson and Shafer (1994) to ag-
gregate the relative expansions observed between pairs of
features.

In practice, we use a planar calibration pattern consist-
ing of a grid of about 25 × 15 circular black dots on a
white background (Fig. 5). We roughly localize the dots us-
ing simple image processing and then compute their cen-
troids in terms of raw image intensity in the neighborhood
of the initial estimates. These centroid features are accurate
to sub-pixel and can tolerate both slight defocus and smooth
changes in illumination (Willson 1994b). To increase robust-
ness to outliers, we run the optimization for (6) iteratively,
removing features whose reprojection error is more than 3.0
times the median.

6.4 Online Geometric Alignment

While the deterministic warp parameters need only be com-
puted once for a given lens, we cannot apply the stochastic
translations computed during calibration to a different se-
quence. Thus, when capturing images of a new scene, we
must re-compute these translations.

In theory, it might be possible to identify key points and
compute the best-fit translation. This would amount to re-
doing the optimization of (6) for each image independently,
with all parameters except T fixed to the values computed
offline. Unfortunately, feature localization can be unstable
because different regions of the scene are defocused in dif-
ferent images. This makes sub-pixel feature estimation and

alignment problematic at large apertures (see Fig. 1a, for ex-
ample).

We deal with this issue by using Lucas-Kanade registra-
tion to compute the residual stochastic translations in an
image-based fashion (Darrell and Wohn 1988; Baker and
Matthews 2004). To avoid registration problems caused by
defocus we (1) perform the alignment only between pairs
of “adjacent” images (same focus and neighboring aperture,
or vice versa) and (2) take into account only image patches
with high frequency content. In particular, to align images
taken at aperture settings αi,αi+1 and the same focus set-
ting, we identify the patch of highest variance in the im-
age taken at the maximum aperture, αA, and the same focus
setting. Since this image produces maximum blur for defo-
cused regions, patches with high frequency content in the
images are guaranteed to contain high frequencies for any
aperture.

7 Confocal Constancy Evaluation

Together, image alignment and relative exitance estimation
allow us to establish a pixel-wise geometric and radiometric
correspondence across all input images, i.e., for all aperture
and focus settings. Given a pixel (x, y), we use this corre-
spondence to assemble an A × F aperture-focus image, de-
scribing the pixel’s intensity variations as a function of aper-
ture and focus (Fig. 6a):

The Aperture-Focus Image (AFI) of pixel (x, y)

AFIxy(α,f ) = 1

Rxy(α,f )
Îαf (x, y), (7)

where Îαf denotes the images after global lighting correc-
tion (Sect. 5) and geometric image alignment (Sect. 6).

AFIs are a rich source of information about whether or
not a pixel is in focus at a particular focus setting f . We
make this intuition concrete by developing two functionals
that measure how well a pixel’s AFI conforms to the con-
focal constancy property at f . Since we analyze the AFI
of each pixel (x, y) separately, we drop subscripts and use
AFI(α,f ) to denote its AFI.

7.1 Direct Evaluation of Confocal Constancy

Confocal constancy tells us that when a pixel is in focus, its
relative intensities across aperture should match the varia-
tion predicted by the relative exitance of the lens. Since (7)
already corrects for these variations, confocal constancy at a
hypothesis f̂ implies constant intensity within column f̂ of
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Fig. 6 (a) The A×F measurements for the pixel shown in Fig. 1. Left:
prior to image alignment. Middle: after image alignment. Right: after
accounting for relative exitance (7). Note that the AFI’s smooth struc-
ture is discernible only after both corrections. (b) Direct evaluation
of confocal constancy for three focus hypotheses, f̂ = 3, 21 and 39.
(c) Mean color of the corresponding AFI columns. (d) Boundaries of

the equi-blur regions, superimposed over the AFI (for readability, only
a third are shown). (e) Results of AFI model-fitting, with constant in-
tensity in each equi-blur region, from the mean of the corresponding
region in the AFI. Observe that for f̂ = 39 the model is in good agree-
ment with the measured AFI ((a), rightmost)

the AFI (Fig. 6b, c). Hence, to find the perfect focus setting
we can simply find the column with minimum variance:

f ∗ = arg min
f̂

Var
{
AFI(1, f̂ ), . . . ,AFI(A, f̂ )

}
. (8)

To handle color images, we compute this cross-aperture
variance for each RGB channel independently and then sum
over channels.

The reason why the variance is higher at out-of-focus set-
tings is that defocused pixels integrate regions of the scene
surrounding the true surface point (Fig. 2b), which generally
contain “texture” in the form of varying geometric struc-
ture or surface albedo. Hence, as with any method that does
not use active illumination, the scene must contain sufficient
spatial variation for this confocal constancy metric to be dis-
criminative.

7.2 Evaluation by AFI Model-Fitting

A disadvantage of the previous method is that most of the
AFI is ignored when testing a given focus hypothesis f̂ ,
since only one column of the AFI participates in the cal-
culation of (8) (Fig. 6b). In reality, the 3D location of a
scene point determines both the column of the AFI where
confocal constancy holds as well as the degree of blur that
occurs in the AFI’s remaining, “out-of-focus” regions.6 By

6While not analyzed in the context of confocal constancy or the AFI,
this is a key observation exploited by depth from defocus approaches

taking these regions into account, we can create a focus de-
tector with more resistance to noise and higher discrimina-
tive power.

In order to take into account both in- and out-of-focus re-
gions of a pixel’s AFI, we develop an idealized, parametric
AFI model that generalizes confocal constancy. This model
is controlled by a single parameter—the focus hypothesis
f̂ —and is fit directly to a pixel’s AFI. The perfect focus
setting is chosen to be the hypothesis that maximizes agree-
ment with the AFI.

Our AFI model is based on two key observations. First,
the AFI can be decomposed into a set of F disjoint equi-
blur regions that are completely determined by the focus
hypothesis f̂ (Fig. 6d). Second, under mild assumptions on
scene radiance, the intensity within each equi-blur region
will be constant when f̂ is the correct hypothesis. These ob-
servations suggest that we can model the AFI as a set of
F constant-intensity regions whose spatial layout is deter-
mined by the focus hypothesis f̂ . Fitting this model to a
pixel’s AFI leads to a focus criterion that minimizes inten-
sity variance in every equi-blur region (Fig. 6e):

f ∗ = arg min
f̂

F∑
i=1

(
w

f̂
i Var

{
AFI(α,f ) | (α,f ) ∈ Bf̂

i

})
, (9)

(Pentland 1987; Subbarao and Surya 1994; Farid and Simoncelli 1998;
Watanabe and Nayar 1998; Favaro and Soatto 2003, 2005).
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where Bf̂
i is the i-th equi-blur region for hypothesis f̂ , and

w
f̂
i weighs the contribution of region Bf̂

i . In our experi-

ments, we set w
f̂
i = area(Bf̂

i ). For color images, as in (8),
we compute the focus criterion for each RGB channel inde-
pendently and then sum over channels.

To implement (9) we must compute the equi-blur regions
for a given focus hypothesis f̂ . Suppose that the hypothe-
sis f̂ is correct, and suppose that the current aperture and
focus of the lens are α and f̂ , respectively, i.e., a scene
point p̂ is in perfect focus (Fig. 7a). Now consider “defo-
cusing” the lens by changing its focus to f (Fig. 7b). We
can represent the blur associated with the pair (α,f ) by a
circular disc centered at point p̂ and parallel to the sensor
plane. From similar triangles, the diameter of this disc is
equal to

bαf = λ

α

|dist(f̂ ) − dist(f )|
dist(f )

, (10)

where λ is the focal length of the lens and dist(·) converts
focus settings to distances from the aperture.7 Our represen-
tation of this function assumes that the focal surfaces are
fronto-parallel planes (Smith 2000).

Given a focus hypothesis f̂ , (10) assigns a “blur di-
ameter” to each point (α,f ) in the AFI and induces a
set of nested, wedge-shaped curves of equal blur diame-
ter (Figs. 6d and 7). We quantize the possible blur diame-
ters into F bins associated with the widest-aperture settings,
i.e., (αA,f1), . . . , (αA,fF ), which partitions the AFI into F

equi-blur regions, one per bin.
Equation (10) fully specifies our AFI model, and we have

found that this model matches the observed pixel variations
quite well in practice (Fig. 6e). It is important, however, to
note that this model is approximate. In particular, we have
implicitly assumed that once relative exitance and geomet-
ric distortion have been factored out (Sects. 5–6), the equi-
blur regions of the AFI are well-approximated by the equi-
blur regions predicted by the thin-lens model (Smith 2000;
Asada et al. 1998b). Then, the intensity at two positions in
an equi-blur region will be constant under the following con-
ditions: (i) the largest aperture subtends a small solid angle
from all scene points, (ii) outgoing radiance for all scene
points contributing to a defocused pixel remains constant
within the cone of the largest aperture, and (iii) depth vari-
ations for such scene points do not significantly affect the
defocus integral. See Appendix B for a formal analysis.

7To calibrate the function dist(·), we used the same calibration pattern
as in Sect. 6, mounted on a translation stage parallel to the optical axis.
For various stage positions spanning the workspace, we used the cam-
era’s autofocus feature and measured the corresponding focus setting
using a printed ruler mounted on the lens. We related stage positions
to absolute distances using a FaroArm Gold 3D touch probe, whose
single-point accuracy was ±0.05 mm.

Fig. 7 Quantifying the blur due to an out-of-focus setting. (a) At fo-
cus setting f̂ , scene point p̂ is in perfect focus. The aperture’s effective
diameter can be expressed in terms of its f-stop value α and the focal
length λ. (b) For an out-of-focus setting f , we can use (10) to compute
the effective blur diameter, bαf . (c) A second aperture-focus combina-
tion with the same blur diameter, bα′f ′ = bαf . In our AFI model, (α,f )

and (α′, f ′) belong to the same equi-blur region

8 Experimental Results

To test our approach we used two setups representing dif-
ferent grades of camera equipment. Our first setup was de-
signed to test the limits of pixel-level reconstruction ac-
curacy in a high-resolution setting, by using professional-
quality camera with a wide-aperture lens. In the second
setup, we reproduced our approach with older and low-
quality equipment, using one of earliest digital SLR cam-
eras, with a low-quality zoom lens.

For the first setup, we used two different digital SLR
cameras, the 16MP Canon EOS-1Ds Mark II (“box” dataset),
and the 12MP Canon EOS-1Ds (“hair” and “plastic” data-
sets). For both cameras we used the same wide-aperture,
fixed focal length lens (Canon EF85mm f1.2L). The lens
aperture was under computer control and its focal setting
was adjusted manually using a printed ruler on the body of
the lens. We operated the cameras at their highest resolu-
tion, capturing 4992 × 3328-pixel and 4604 × 2704-pixel
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Fig. 8 Behavior of focus criteria for a specific pixel (highlighted
square) in three test datasets. The dashed graph is for direct confocal
constancy (8), solid is for AFI model-fitting (9), and the dotted graph
is for 3 × 3 variance (DFF). While all three criteria often have corre-
sponding local minima near the perfect focus setting, AFI model-fitting
varies much more smoothly and exhibits no spurious local minima in

these examples. For the middle example, which considers the same
pixel shown in Fig. 1, the global minimum for variance is at an incor-
rect focus setting. This is because the pixel lies on a strand of hair only
1–2 pixels wide, beyond the resolving power of variance calculations.
The graphs for each focus criterion are shown with relative scaling

images respectively in RAW 12-bit mode. Each image was
demosaiced using Canon software and linearized using the
algorithm in Debevec and Malik (1997). We used A = 13
apertures ranging from f1.2 to f16, and F = 61 focal set-
tings spanning a workspace that was 17 cm in depth and
1.2 m away from the camera. Successive focal settings there-
fore corresponded to a depth difference of approximately
2.8 mm. We mounted the camera on an optical table in order
to allow precise ground-truth measurements and to mini-
mize external vibrations.

For the second setup, we used a 6MP Canon 10D cam-
era (“teddy” dataset) with a low-quality zoom-lens (Canon
EF24-85mm f3.5-4.5). Again, we operated the camera in
RAW mode at its highest resolution, which here was 3072×
2048. Unique to this setup, we manipulated focal setting
using a computer-controlled stepping motor to drive the
lens focusing ring mechanically (Technical Innovations).
We used A = 11 apertures ranging from f3.5 to f16, and
F = 41 focal settings spanning a workspace that was 1.0 m
in depth and 0.5 m away from the camera. Because this
lens has a smaller maximum aperture, the depth resolution
was significantly lower, and the distance between succes-
sive focal settings was over 8 mm at the near end of the
workspace.8

To enable the construction of aperture-focus images, we
first computed the relative exitance of the lens (Sect. 5) and
then performed offline geometric calibration (Sect. 6). For
the first setup, our geometric distortion model was able to
align the calibration images with an accuracy of approxi-
mately 0.15 pixels, as estimated from centroids of dot fea-

8For additional results, see http://www.cs.toronto.edu/~hasinoff/
confocal.

tures (Fig. 5c). The accuracy of online alignment was about
0.4 pixels, i.e., worse than during offline calibration but
well below one pixel. This penalty is expected since we
use smaller regions of the scene for online alignment, and
since we align the image sequence in an incremental pair-
wise fashion, to avoid alignment problems with severely de-
focused image regions (see Sect. 6.4). Calibration accuracy
for the second setup was similar.

While the computation required by confocal stereo is
simple and linear in the total number of pixels and focus
hypotheses, the size of the datasets make memory size and
disk speed the main computational bottlenecks. In our ex-
periments, image capture took an average of two seconds per
frame, demosaicking one minute per frame, and alignment
and further preprocessing about three minutes per frame. For
a 128 × 128 pixel patch, a Matlab implementation of AFI
model-fitting took about 250 seconds using 13 × 61 images,
compared with 10 seconds for a depth from focus method
that uses 1 × 61 images.

Quantitative Evaluation: “Box” Dataset To quantify re-
construction accuracy, we used a tilted planar scene consist-
ing of a box wrapped in newsprint (Fig. 8, left). The plane
of the box was measured using a FaroArm Gold 3D touch
probe, as employed in Sect. 7.2, whose single-point accu-
racy was ±0.05 mm in the camera’s workspace. To relate
probe coordinates to coordinates in the camera’s reference
frame we used the Camera Calibration Toolbox for Mat-
lab (Bouguet 2004) along with further correspondences be-
tween image features and 3D coordinates measured by the
probe.

We computed a depth map of the scene for three fo-
cus criteria: direct confocal constancy (8), AFI model-fit-
ting (9), and a depth from focus (DFF) method, applied to

http://www.cs.toronto.edu/~hasinoff/confocal
http://www.cs.toronto.edu/~hasinoff/confocal
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Table 1 Ground-truth accuracy results. All distances were measured relative to the ground-truth plane, and the inlier threshold was set to 11 mm.
We also express the RMS error as a percentage of the mean camera-to-scene distance of 1025 mm

Median abs. Inlier RMS % RMS % dist.
dist. (mm) dist. (mm) inliers to camera

3 × 3 spatial variance (DFF) 2.16 3.79 80 0.374

Confocal constancy evaluation 3.47 4.99 57 0.487

AFI model-fitting 2.14 3.69 91 0.356

Fig. 9 Visualizing the accuracy of reconstruction and outlier detection
for the “box” dataset. Top row: For all three focus criteria, we show
depth maps for a 200 × 200 region from the center of the box (see
Fig. 10). The depth maps are rendered as 3D point clouds where in-
tensity encodes depth, and with the ground-truth plane shown overlaid
as a 3D mesh. Middle row: We compute confidence for each pixel as
the second derivative at the minimum of the focus criterion. For com-
parison across different focus criteria, we fixed the threshold for AFI

model-fitting, and adjusted the thresholds so that the other two criteria
reject the same number of outliers. While this significantly helps reject
outliers for AFI model-fitting, for the other criteria, which are typically
multi-modal, this strategy is much less effective. Bottom row: Subse-
quently filtering out pixels with multiple modes has little effect on AFI
model-fitting, which is nearly always uni-modal, but removes almost
all pixels for the other criteria

the widest-aperture images, that chooses the focus setting
with the highest variance in a 3 × 3 window centered at
each pixel, summed over RGB color channels. The planar
shape of the scene and its detailed texture can be thought of
as a best-case scenario for such window-based approaches.
The plane’s footprint contained 2.8 million pixels, yielding
an equal number of 3D measurements. As Table 1 shows,
all three methods performed quite well, with accuracies of
0.36–0.49% of the object-to-camera distance. This perfor-
mance is on par with previous quantitative studies (Watan-
abe and Nayar 1998; Zhang and Nayar 2006), although few

results with real images have been reported in the passive
depth from focus literature. Significantly, AFI model-fitting
slightly outperforms spatial variance (DFF) in both accuracy
and number of outliers even though its focus computations
are performed entirely at the pixel level and, hence, are of
much higher resolution. Qualitatively, this behavior is con-
firmed by considering all three criteria for specific pixels
(Fig. 8) and for an image patch (Figs. 9 and 10).

Note that it is also possible to detect outlier pixels where
the focus criterion is uninformative (e.g., when the AFI is
nearly constant due to lack of texture) by using a confidence
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Fig. 10 (Color online) Top: Depth map for the “box” dataset using AFI model-fitting. Bottom: Close-up depth maps for the highlighted region
corresponding to Fig. 9, computed using three focus criteria

measure or by processing the AFI further. We have experi-
mented with a simple confidence measure computed as the
second derivative at the minimum of the focus criterion.9 As
shown in Fig. 9, filtering out low-confidence pixels for AFI
model-fitting leads to a sparser depth map that suppresses
noisy pixels, but for the other focus criteria, where most pix-

9In practice, since computing second derivatives directly can be noisy,
we compute the width of the valley that contains the minimum, at
a level 10% above the minimum. For AFI model-fitting across all
datasets, we reject pixels whose width exceeds 14 focus settings. Small
adjustments to this threshold do not change the results significantly.

els have multiple modes, such filtering is far less beneficial.
This suggests that AFI model-fitting is a more discrimina-
tive focus criterion, because it produces fewer modes that
are both sharply peaked and incorrect.

As a final experiment with this dataset, we investigated
how AFI model-fitting degrades when a reduced number of
apertures is used (i.e., for AFIs of size A′ ×F with A′ < A).
Our results suggest that reducing the apertures to five or six
causes little reduction in reconstruction quality (Fig. 11).

“Hair” Dataset Our second test scene was a wig with a
messy hairstyle, approximately 25 cm tall, surrounded by
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Fig. 11 AFI model-fitting error and inlier fraction as a function of the number of aperture settings (“box” dataset, inlier threshold = 11 mm)

several artificial plants (Figs. 1 and 8, middle). Reconstruc-
tion results for this scene (Fig. 12) show that our confocal
constancy criteria lead to very detailed depth maps, at the
resolution of individual strands of hair, despite the scene’s
complex geometry and despite the fact that depths can vary
greatly within small image neighborhoods (e.g., toward the
silhouette of the hair). By comparison, the 3×3 variance op-
erator produces uniformly-lower resolution results, and gen-
erates smooth “halos” around narrow geometric structures
like individual strands of hair. In many cases, these “halos”
are larger than the width of the spatial operator, as blurring
causes distant points to influence the results.

In low-texture regions, such as the cloth flower petals and
leaves, fitting a model to the entire AFI allows us to exploit
defocused texture from nearby scene points. Window-based
methods like variance, however, generally yield even better
results in such regions, because they propagate focus infor-
mation from nearby texture more directly, by implicitly as-
suming a smooth scene geometry. Like all focus measures,
those based on confocal constancy are uninformative in ex-
tremely untextured regions, i.e., when the AFI is constant.
However, by using the proposed confidence measure, we can
detect many of these low-texture pixels (Figs. 12 and 16). To
better visualize the result of filtering out these pixels, we re-
place them using a simple variant of PDE-based inpainting
(Bertalmio et al. 2000).

“Plastic” Dataset Our third test scene was a rigid, near-
planar piece of transparent plastic, formerly used as pack-
aging material, which was covered with dirt, scratches, and
fingerprints. This plastic object was placed in front of a dark
background and lit obliquely to enhance the contrast of its
limited surface texture (Fig. 8, right). Reconstruction results
for this scene (Figs. 13–14) illustrate that at high resolution,
even transparent objects may have enough fine-scale surface
texture to be reconstructed using focus- or defocus-based
techniques. In general, wider baseline methods like standard
stereo cannot exploit such surface texture easily because tex-
tured objects behind the transparent surface may interfere
with matching.

Despite the scene’s relatively low texture, AFI model-
fitting still recovers the large-scale planar geometry of the
scene, albeit with significant outliers (Fig. 14). By com-
parison, the 3×3 variance operator recovers a depth map
with fewer outliers, which is expected since window-based

approaches are well suited to reconstruction of near-planar
scenes. As in the previous dataset, most of the AFI outliers
can be attributed to low-confidence pixels and are readily
filtered out (Fig. 16).

“Teddy” Dataset Our final test scene, captured using low-
quality camera equipment, consists of a teddy bear with
coarse fur, seated in front of a hat and several cushions, with
a variety of ropes in the foreground (Fig. 15). Since little of
this scene is composed of the fine pixel-level texture found
in previous scenes, this final dataset provides an additional
test for low-texture areas.

We had no special difficulty applying our method for this
new setup, and even with a lower-quality lens we obtained
a similar level of accuracy with our radiometric and geo-
metric calibration model. As shown in Fig. 15, the results
are qualitatively comparable to depth recovery for the low-
texture objects in previous datasets. The large-scale geom-
etry of the scene is clearly recovered, and many of the out-
liers produced by our pixel-level AFI model-fitting method
can be identified as well.

Online Alignment To qualitatively assess the effect of on-
line alignment, which accounts for both stochastic sub-pixel
camera motion (Sect. 6.4) as well as temporal variations in
lighting intensity (Sect. 5), we compared the depth maps
produced using AFI model-fitting (9) with and without this
alignment step (Fig. 16a, b). Our results show that online
alignment leads to noise reduction for low-texture, dark,
or other noisy pixels (e.g., due to color demosaicking), but
does not resolve significant additional detail. This also sug-
gests that any further improvements to geometric calibration
might lead to only slight gains.

Four observations can be made from our experiments.
First, we have validated the ability of confocal stereo to
estimate depths for fine pixel-level geometric structures.
Second, the radiometric calibration and image alignment
method we use are sufficient to allow us to extract depth
maps with very high resolution cameras and wide-aperture
lenses. Third, our method can still be applied successfully
in a low-resolution setting, using low-quality equipment.
Fourth, although the AFI is uninformative in completely un-
textured regions, we have shown that a simple confidence
metric can help identify such pixels, and that AFI model-
fitting can exploit defocused texture from nearby scene
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Fig. 12 Center: Depth map for the “hair” dataset using AFI model-
fitting. Top: The AFI-based depth map resolves several distinctive fore-
ground strands of hair. We also show the result of detecting low-
confidence pixels from AFI model-fitting and replacing them using
PDE-based inpainting (Bertalmio et al. 2000) (see Fig. 16), which sup-
presses noise but preserves fine detail. Direct evaluation of confocal
constancy is also sharp but much noisier, making structure difficult to

discern. By contrast, 3×3 variance (DFF) exhibits thick “halo” artifacts
and fails to detect most of the foreground strands (see also Fig. 8). Bot-
tom right: DFF yields somewhat smoother depths for the low-texture
leaves, but exhibits inaccurate halo artifacts at depth discontinuities.
Bottom left: Unlike DFF, AFI model-fitting resolves structure amid sig-
nificant depth discontinuities
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Fig. 13 Center: Depth map for the “plastic” dataset using AFI model-
fitting. Top: Close-up depth maps for the highlighted region, com-
puted using three focus criteria. While 3×3 variance (DFF) yields the
smoothest depth map overall for the transparent surface, there are still a
significant number of outliers. Direct evaluation of confocal constancy,
is extremely noisy for this dataset, but AFI model-fitting recovers the

large-scale smooth geometry. Bottom: Similar results for another high-
lighted region of the surface, but with relatively more outliers for AFI
model-fitting. While AFI model-fitting produces more outliers overall
than DFF for this dataset, many of these outliers can be detected and re-
placed using inpainting. Focus criteria for the three highlighted pixels
are shown in Fig. 14
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Fig. 14 Failure examples. Left to right: Behavior of the three focus
criteria in Fig. 13 for three highlighted pixels. The dashed graph is for
direct confocal constancy (8), solid is for AFI model-fitting (9), and
the dotted graph is for 3 × 3 variance (DFF). For pixel 1 all minima
coincide. Lack of structure in pixel 2 produces multiple local minima

for the AFI model-fitting metric; only DFF provides an accurate depth
estimate. Pixel 3 and its neighborhood are corrupted by saturation, so
no criterion gives meaningful results. Depth estimates at pixel 2 and 3
would have been rejected by our confidence criterion

points to provide useful depth estimates even in regions with
relatively low texture.

9 Discussion and Limitations

The extreme locality of shape computations derived from
aperture-focus images is both a key advantage and a major
limitation of the current approach. While we have shown
that processing a pixel’s AFI leads to highly detailed recon-
structions, this locality does not yet provide the means to
handle large untextured regions (Favaro et al. 2003a; Vaish
et al. 2006) or to reason about global scene geometry and
occlusion (Asada et al. 1998b; Schechner and Kiryati 2000;
Favaro and Soatto 2003).

Untextured regions of the scene are clearly problematic
since they lead to near-constant and uninformative AFIs.
The necessary conditions for resolving scene structure, how-
ever, are even more stringent because a fronto-parallel plane
colored with a linear gradient can also produce constant
AFIs.10 To handle these cases, we are exploring the possi-
bility of analyzing AFIs at multiple levels of detail and ana-
lyzing the AFIs of multiple pixels simultaneously. The goal
of this general approach is to enforce geometric smoothness
only when required by the absence of structure in the AFIs
of individual pixels.

Although not motivated by the optics, it is also possi-
ble to apply Markov random field (MRF) optimization, e.g.,
(Zitnick et al. 2004), to the output of our per-pixel analysis,
since (8) and (9) effectively define “data terms” measuring
the level of inconsistency for each depth hypothesis. Such an
approach would bias the reconstruction toward piecewise-
smooth depths, albeit without exploiting the structure of de-
focus over spatial neighborhoods. To emphasize our abil-
ity to reconstruct pixel-level depth we have not taken this
approach, but have instead restricted ourselves to a greedy
per-pixel analysis.

10This follows from the work of Favaro et al. (2003a) who established
that non-zero second-order albedo gradients are a necessary condition
for resolving the structure of a smooth scene.

Since AFI’s equi-blur regions are derived from the thin
lens model, it is interesting to compare our AFI model’s abil-
ity to account for the input images, compared to the pure thin
lens model. In this respect, the fitted AFIs are much better at
capturing the spatial and cross-focus appearance variations
(Fig. 17). Intuitively, our AFI model is less constrained than
the thin lens model, because it depends on F color para-
meters per pixel (one for each equi-blur region), instead of
just one. Furthermore, these results suggest that lens defo-
cus may be poorly described by simple analytic point-spread
functions as in existing methods, and that more expressive
models based on the structure of the AFI may be more use-
ful in fully accounting for defocus.

Finally, as a pixel-level method, confocal stereo exhibits
better behavior near occlusion boundaries compared to stan-
dard defocus-based techniques, that require integration over
spatial windows. Nevertheless, confocal constancy does not
hold exactly for pixels that are both near an occlusion
boundary and correspond to the occluded surface because
the assumption of a fully-visible aperture breaks down. To
this end, we are investigating more explicit methods for oc-
clusion modeling (Asada et al. 1998b; Favaro and Soatto
2003), as well as the use of a space-sweep approach to ac-
count for these occlusions, analogous to voxel-based stereo
(Kutulakos and Seitz 2000).

10 Concluding Remarks

The key idea of our approach is the introduction of the
aperture-focus image, which serves as an important primi-
tive for depth computation at high resolutions. We showed
how each pixel can be analyzed in terms of its AFI, and
how this analysis led to a simple method for estimating
depth at each pixel individually. Our results show that we
can compute 3D shape for very complex scenes, recovering
fine, pixel-level structure at high resolution. We also demon-
strated ground truth results for a simple scene that compares
favorably to previous methods, despite the extreme locality
of confocal stereo computations.



Int J Comput Vis (2009) 81: 82–104 99

Fig. 15 Top right: Sample widest-aperture f3.5 input photo of the
“teddy” dataset. Center: Depth map using AFI model-fitting. Top left:
Close-up depth maps for the highlighted region, comparing 3 × 3 vari-
ance (DFF) and AFI model-fitting, with and without inpainting of the
detected outliers. Like the “plastic” dataset shown in Fig. 13, outliers

are significant for low-texture regions. While window-based DFF leads
to generally smoother depths, AFI model-fitting provides the ability to
distinguish outliers. Bottom: Similar effects can be seen for the bear’s
paw, just in front of low-texture cushion
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Fig. 16 (Color online) (a)–(b) Improvement of AFI model-fitting due
to online alignment, accounting for stochastic sub-pixel camera mo-
tion and temporal variations in lighting intensity. (b) Online alignment
leads to a reduction in noisy pixels and yields smoother depth maps
for low-textured regions, but does not resolve significantly more detail
in our examples. (c) Low-confidence pixels for the AFI model-fitting
criterion, highlighted in red, are pixels where the second derivative at

the minimum is below the same threshold used for AFI model-fitting
in Fig. 9. (d) Low confidence pixels filled using PDE-based inpainting
(Bertalmio et al. 2000). By comparison to (b), we see that many out-
liers have been filtered, and that the detailed scene geometry has been
preserved. The close-up depth maps correspond to regions highlighted
in Figs. 12–13

Although shape recovery is our primary motivation, we
have also shown how, by computing an empirical model of a
lens, we can achieve geometric and radiometric image align-
ment that closely matches the behavior and capabilities of
high-end consumer lenses and imaging sensors. In this di-
rection, we are interested in exploiting the typically unno-
ticed stochastic, sub-pixel distortions in SLR cameras in or-

der to achieve super-resolution (Park et al. 2003), as well as
for other applications.
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Fig. 17 AFI model-fitting vs. the thin lens model. Left: Narrow-
aperture image region from the “hair” dataset, corresponding to
Fig. 12, top. Right: For two aperture settings, we show the cross-focus
appearance variation of the highlighted horizontal segment: (i) for the
aligned input images, (ii) re-synthesized using AFI model-fitting, and

(iii) re-synthesized using the thin lens model. To resynthesize the input
images we used the depths and colors predicted by AFI model-fitting.
At wide apertures, AFI model-fitting much better reproduces the input,
but at the narrowest aperture both methods are identical

Appendix A: Evaluation of Relative Exitance Recovery

To obtain a more quantitative evaluation of how well the
relative exitance Rxy(α,f ) can be recovered, and to validate
that it does not depend on experimental conditions, we ran
several additional experiments.

Experiment 1 To test repeatability across different captures
under fluorescent lighting, we repeated 5 trials of the radio-
metric calibration described in Sect. 5 for a diffuse white
plane, for 13 aperture settings at a fixed focus setting. We
used a Canon EF85mm 1.2L lens, as in Sect. 8.

For each pixel and aperture setting, we measured the
standard deviation of R over the 5 trials, as a fraction of
the mean. Over all pixels, the median of this fraction was
0.51% and its RMS measure is 0.59%. This indicates good
repeatability after correcting for lighting fluctuations.

Experiment 2 To validate that the ratio R measured in ra-
diometric calibration can be applied to new scenes, we re-
did the previous calibration for three additional scenes, all
at the same focus setting. To create the new scenes, we used
the same diffuse white calibration plane, but tilted it (about
45◦) to different 3D configurations, yielding calibration im-
ages with different shading.

For each of the three new scenes, we computed the rel-
ative errors between the measured ratios R, and the corre-
sponding ratios from the previous calibration (Experiment 1,
trial #1). The aggregate results are as follows:

Median mag. relative error RMS relative error

Tilted plane #1 0.76% 1.29%
Tilted plane #2 0.83% 1.63%
Tilted plane #3 0.78% 1.28%

Note that the median magnitude of the relative error corre-
sponds to 1–2 gray levels out of 255.

Experiment 3 We also compared the radiometric calibra-
tion from these experiments to the calibration used in
Sect. 8, captured several years beforehand using the same
lens.

For each pixel and aperture setting, we computed the rel-
ative error between the ratio R as originally computed, and
the corresponding ratio from the radiometric calibration in
Experiment 1, trial #1. Over all pixels, the median magni-
tude of the relative error was 1.10% and its RMS measure
is 2.21%. This agreement is good, given the fact that we did
not use the same focus setting or calibration target for this
experiment.

Experiment 4 As a final test, we redid the calibration in Ex-
periment 1 using a different lens, but of the same model,
with the calibration target placed at approximately the same
distance.

We again computed relative errors between the recov-
ered ratios R, and the corresponding ratios from the Exper-
iment 1, trial #1. Over the entire image, the median magni-
tude of the relative error was 0.87% and its RMS measure is
1.78%. This error level is on the same order as Experiment 2,
suggesting that calibration parameters persist across lenses,
and that radiometric calibration can be done just once for
each model of lens, provided that manufacturing quality is
high.

Appendix B: Conditions for Equi-blur Constancy

Section 7.2 described how it is possible to approximate a
pixel’s AFI using a set of equi-blur regions where color
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Fig. 18 Thin lens imaging model for defocus (Asada et al. 1998b;
Smith 2000). At an out-of-focus setting f , a point on the sensor plane
(x, y) integrates radiance from a region of the scene as shown. By
contrast, at the perfect focus setting f̂ , all irradiance at (x, y) would
be due to scene point p̂. We characterize the level of “blur” using a

fronto-parallel circle with diameter bαf and centered on p̂, which ap-
proximates the intersection of cone Cxy(α,f ) with the scene surface.
In our approximate model, the irradiance integrated at (x, y) will re-
main constant for any other lens setting (α′, f ′) yielding the same blur
circle diameter

and intensity remain constant. Here we establish Condi-
tions 1–5 under which this approximation becomes ex-
act.

Suppose that scene point p̂ is in perfect focus for setting
f̂ and projects to point (x, y) on the sensor plane. Now sup-
pose we defocus the lens to some setting (α,f ) (Fig. 18).
We assume the following condition:

Condition 1 Lens defocus can be described using the thin-
lens model (Smith 2000; Asada et al. 1998b).

Then the image irradiance at (x, y) is

Eαf (x, y) = π
(

λ
2α

)2 cos3 θ

z2

×
∫

ω∈Cxy(α,f )

L(q(ω), ω) cosβ(ω)

‖ Cxy(α,f )‖ dω, (11)

where λ
α

is the aperture diameter; θ is the angle between the
optical axis and the ray connecting (x, y) and the lens cen-
ter, C; z = ( 1

λ
− 1

dist(f )
)−1 is the distance from the aperture

to the sensor plane; Cxy(α,f ) is the cone converging to the
in-focus scene point p, which lies off the scene surface; q(ω)

is the intersection of the scene with the ray from p in direc-
tion ω; L(q(ω),ω) is the outgoing radiance from q(ω) in
direction ω; and β(ω) is the angle between the optical axis
and the ray connecting p to q(ω).

Our goal is to show that Eαf (x, y) in (11) is constant for
all points in an equi-blur region. That is, if (α′, f ′) is also in
the same equi-blur region as (α,f ), with

bα′f ′ = bαf = λ

α

|dist(f̂ ) − dist(f )|
dist(f )

, (12)

then Eα′f ′(x, y) = Eαf (x, y). We show this by showing that
Eαf (x, y) is independent of (α,f ), for all (α,f ) in the same
equi-blur region.

To do this, first we assume the following condition:

Condition 2 From any scene point, the solid angle sub-
tended by the largest aperture approaches zero, i.e.,
‖Cxy(α,f )‖ → 0.

This allow us to simplify (11), because it implies that
β(ω) → θ , giving

Eαf (x, y) = π
(

λ
2α

)2 cos4 θ

z2

∫
ω∈Cxy(α,f )

L(q(ω), ω)

‖ Cxy(α,f )‖ dω.

(13)

Note that the factor outside the integral in (13) is indepen-
dent of the scene and accounted for by radiometric calibra-
tion (Sect. 5). Therefore this factor is independent of (α,f )

and it suffices to show that the integral is independent of
(α,f ) in the equi-blur region.

The integrand in (13) is simply the contribution to irradi-
ance of a differential patch dq, centered on point q(ω) and
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subtending a solid angle of dω from p. Now consider the
following two conditions:

Condition 3 The outgoing radiance for any defocused
scene point is constant within the cone subtended by the
largest aperture, i.e., L(q(ω),ω) = L(q(ω)).

Condition 4 For any defocused scene point, the cone sub-
tended by the largest aperture does not intersect the scene
elsewhere.

Note that Conditions 3–4 are the same conditions re-
quired by confocal constancy (Sect. 3), but applied to all
points in the defocused region of the scene. The radiance of
the differential patch, namely the factor L(q(ω),ω) in (13),
is independent of (α,f ). Hence it suffices to show that the
geometric factor dω

‖ Cxy(α,f )‖ is independent of (α,f ) in the
same equi-blur region.

From the definition of solid angle, this factor is given by

dω

‖ Cxy(α,f )‖ = dq cosγ (ω) cos2 β(ω)

(Z − dist(f ))2
· dist(f )2

π
(

λ
2α

)2 cos3 θ
,

(14)

where dist(f ) is the distance from p to the aperture; Z is the
distance from q(ω) to the aperture; and γ (ω) is the angle
between the surface normal of dq and the ray connecting
q(ω) to p.

Now assume that the following condition also holds:

Condition 5 Depth variations for points within the defo-
cused region of the scene approach zero, i.e., Z → dist(f̂ ).

This condition implies that the depth, Z, of the differ-
ential patch dq can be approximated by the distance to the
scene point p̂. We thus take Z = dist(f̂ ) and substitute (12)
into (14), giving us a simplified version of (13):

Eαf (x, y)

=
(

λ
α

)2 cos θ

z2b2
αf

∫
q∈Cxy(α,f )

L(q(ω),ω) cos2 β(ω) cosγ (ω)dq,

(15)

where the blur diameter bαf is what we hold fixed, and the
only remaining terms that depend on lens setting are β(ω)

and γ (ω). But from Condition 2, both β(ω) and γ (ω) will
be constant over all (α,f ). Therefore, the contribution of a
differential scene patch dq to image irradiance is constant
over all lens settings corresponding to the same blur diame-
ter.

The only remaining issue concerns the domain of integra-
tion for (15), i.e., the scene surface intersected by Cxy(α,f ),

which varies in general with lens setting. However, given ap-
proximately constant depth at the boundary of the blur cir-
cle, as implied by Condition 5, this domain will be constant
as well.

In practice, equi-blur constancy can actually tolerate sig-
nificant depth variation within the blur circle, because such
variations will be averaged over the defocused region of the
scene.
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