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Abstract We investigate the feasibility of reconstructing an
arbitrarily-shaped specular scene (refractive or mirror-like)
from one or more viewpoints. By reducing shape recovery
to the problem of reconstructing individual 3D light paths
that cross the image plane, we obtain three key results. First,
we show how to compute the depth map of a specular scene
from a single viewpoint, when the scene redirects incom-
ing light just once. Second, for scenes where incoming light
undergoes two refractions or reflections, we show that three
viewpoints are sufficient to enable reconstruction in the gen-
eral case. Third, we show that it is impossible to recon-
struct individual light paths when light is redirected more
than twice. Our analysis assumes that, for every point on
the image plane, we know at least one 3D point on its light
path. This leads to reconstruction algorithms that rely on an
“environment matting” procedure to establish pixel-to-point
correspondences along a light path. Preliminary results for a
variety of scenes (mirror, glass, etc.) are also presented.
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1 Introduction

The reconstruction of general specular scenes, either re-
fractive or mirror-like, is one of the few remaining open
problems in visual reconstruction. Examples include scenes
that contain glass objects, mirrors, or liquids, where refrac-
tion and specular reflection dominate the image formation
process. Such scenes cannot be reconstructed by laser scan-
ners or by 3D reconstruction algorithms designed for objects
that scatter incident light (e.g., Faugeras and Keriven 1998;
Hertzman and Seitz 2003; Zickler et al. 2002). Reconstruct-
ing such scenes, on the other hand, could have implications
in many disciplines, including graphics (Matusik et al. 2002;
Zongker et al. 1999), optics (Baba et al. 2001; Halstead et
al. 1996), 3D scanning (Zheng and Murata 2000; Tarini et
al. 2005), and fluid modeling (Zhang and Cox 1994).

Specular objects do not have an “appearance” of their
own—they simply distort the appearance of other objects
nearby, creating an indirect view of the original objects.
Unlike perspective images, where 3D points project along
straight lines, indirect views are created by light that travels
along a piecewise-linear light path (Fig. 1). The complex-
ity of this projection process and the difficulty of inverting
it has brought about new image-based techniques, such as
environment matting (Zongker et al. 1999; Matusik et al.
2002; Agarwal et al. 2004), that side-step 3D reconstruc-
tion altogether. Instead of computing shape, they compute
the shape’s effect on appearance—all they recover is a func-
tion that maps points on a pattern placed near the scene to
pixels in the pattern’s distorted, indirect view.

In this paper, we investigate the reconstruction of such
scenes with an approach that seeks to invert the indirect pro-
jection process. Despite the problem’s apparent intractabil-
ity in the general case, it is possible to characterize the class
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Fig. 1 Viewing a known reference point indirectly via (a) an opaque
specular scene (a mirror) and (b) a transparent specular scene (a vol-
ume of water)

of reconstructible scenes and to develop simple reconstruc-
tion algorithms for some important cases. In particular, our
work considers three questions:

• suppose we are given a function that maps each point
in the image to a 3D “reference point” that indirectly
projects to it; can we recover the point’s light path?

• if so, under what conditions?
• how do we design reconstruction algorithms that do not

impose any a priori constraints on the shape of the un-
known specular scene?

Little is known about how to address these questions in
the general case, although specialized reconstruction algo-
rithms for a few cases have been developed. The earliest al-
gorithms come from multi-media photogrammetry (Höhle
1971; Maas 1995), where the scene is assumed to have
a known parametric form. These approaches solve a gen-
eralized structure-from-motion problem that takes into ac-
count refractions and reflections caused by parametric sur-
faces with a few known degrees of freedom (e.g., underwater
objects viewed from above a planar sea surface). An algo-
rithm along these lines was recently proposed by Ben-Ezra
and Nayar (2003) for reconstructing glass objects modeled
as super-ellipsoids. Knowledge of a scene’s low-order para-
metric form implies that these techniques cannot be used for
reconstructing objects with fine detail or with a complicated,
unknown shape.

Most computer vision research on the topic has followed
a “shape-from-distortion” approach for reconstructing either
mirrors (Savarese and Perona 2002; Tarini et al. 2005) or
liquids (Keller and Gotwols 1983; Jähne et al. 1994; Murase
1990). In this approach, 3D shape is recovered by analyzing
the distortion of a known pattern placed near the specular
surface. Unfortunately it is impossible, in general, to recon-
struct the 3D shape of an unknown specular scene from just
one image of a nearby pattern. This has prompted a vari-
ety of assumptions, including approximate planarity (Jähne

et al. 1994; Murase 1990; Ikeuchi 1981), surface smooth-
ness (Savarese and Perona 2002), integrability (Tarini et al.
2005), far-field illumination (Sanderson et al. 1988) and spe-
cial optics (Keller and Gotwols 1983; Zhang and Cox 1994;
Wang and Dana 2003). These approaches are restricted to
the simplest forms of indirect viewing, where light bounces
at most once before reaching the camera (e.g., by reflect-
ing off a mirror or refracting once through the air-water
boundary). Moreover, specialized research on reconstruct-
ing specular transparent objects has followed one of three
basic approaches—they either ignore the object’s specu-
lar properties, relying exclusively on the object’s silhou-
ette for reconstruction (Matusik et al. 2002), they analyze
the polarization of light specularly reflected from its surface
(Miyazaki et al. 2004), or they reduce reconstruction to a
standard computerized tomography problem (Trifonov et al.
2006; Sharpe et al. 2002). Unfortunately, silhouette-based
approaches are limited to recovering a visual hull approx-
imation, and polarization-based analysis is difficult when
transmission, rather than specular reflection, dominates im-
age formation. While computerized tomography enables re-
construction of very complex semi-transparent shapes when
light propagation is linear (Sharpe et al. 2002; Hasinoff and
Kutulakos 2003), enforcing linear propagation through glass
media is fairly intrusive (e.g., it requires immersing the glass
object in a semi-transparent liquid with an identical refrac-
tion index (Trifonov et al. 2006)) and may even be impos-
sible to achieve (e.g., when the object contains inaccessible
cavities or opaque regions).

Our goal is to develop a general framework for analyzing
specular scenes that does not impose a priori assumptions
on the shape of their surfaces or the nature of their media
(e.g., opaque or transparent). To achieve this, we formulate
the reconstruction of individual light paths as a geometric
constraint satisfaction problem that generalizes the familiar
notion of triangulation to the case of indirect projection.

Our approach can be thought of as complementing two
lines of recent work. Research on environment matting and
generalized imaging models (Zongker et al. 1999; Grossberg
and Nayar 2001; Pless 2002) represents an arrangement of
cameras, mirrors and lenses as an abstract function that maps
3D points or 3D rays to points on the image plane. These
techniques focus on computing this function and treat the
arrangement itself as an unknown “black box.” In contrast,
here we assume that this function is known and study the
problem of reconstructing the arrangement. Work on specu-
lar stereo (Sanderson et al. 1988; Bonfort and Sturm 2003;
Blake 1985; Oren and Nayar 1995) relies on a two-camera
configuration or a moving observer to reconstruct a mirror-
like object. These algorithms solve the light path reconstruc-
tion problem for one specific case; our framework leads to
several generalizations, including a stronger two-view result
(Morris and Kutulakos 2005) that enables reconstruction of
a refractive scene even when its refractive index is unknown.
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On the theoretical side, our work has five key contribu-
tions. First, we provide a unified analysis of refractive and
mirror-like scenes, leading to algorithms that work for both
problems. Second, we characterize the set of reconstructible
scenes in a way that depends only on the number of vertices
along a light path. As such, our results apply to any spe-
cific scene geometry that produces paths of a given length.
Third, we identify a very simple algorithm for computing the
depth map of a mirror surface from one viewpoint. The algo-
rithm relies on knowledge of a function that maps each im-
age point to two known reference points along its light path
and places no restrictions on shape, except that light must
bounce exactly once before reaching the camera. Fourth, we
establish the most general class of scenes that can be recon-
structed using an efficient, stereo-like algorithm: these are
scenes where light bounces twice before reaching the cam-
era. To our knowledge, this problem, which requires three
viewpoints to solve it, has not been previously analyzed.
Fifth, we show that, while efficient algorithms may not exist
for scenes with light paths of length K ≥ 3, there is enough
information in 3(K − 1) viewpoints to reduce shape ambi-
guities to a discrete set.

Even though our emphasis here is on the underlying
theory, we present preliminary results on real scenes, both
refractive and mirror-like. These results have several impli-
cations. First, they show that we can reconstruct mirror sur-
faces with a technique whose accuracy is bounded by the
calibration accuracy of a single stationary camera and by the
accuracy of environment matting (which can be very high
using well-known techniques (Bouguet 2001; Zongker et al.
1999)). Second, it is possible to reconstruct each point on
a specular 3D scene (mirror, liquid, glass) independently of
all other points. This allows reconstruction of scenes with
fine surface detail and/or discontinuities. Third, we can com-
pute a separate depth and a separate normal for each surface
point; this is unlike typical stereo or laser-scanning tech-
niques (which compute a point-set that must be differenti-
ated to get normals) or photometric stereo (which computes
a normal map that must be integrated to obtain depth). As
such, our algorithms yield richer 3D data for inferring an
object’s unknown shape (Zickler et al. 2002; Nehab et al.
2005).

2 Light-Path Triangulation

Perspective projection requires that every 3D point projects
to an image along a straight line. When the scene is com-
posed of refractive or mirror-like objects, this linear projec-
tion model is not valid anymore. Here we extend this model
by studying indirect projections of 3D points. Informally, in-
direct projection occurs anytime a point is viewed indirectly,
via one or more specular surfaces.

Fig. 2 An example light path. The dark gray region denotes a mir-
ror-like object and the light gray region a transparent object. Here, the
light path from p intersects three surfaces before reaching point q on
the image plane, and therefore has three vertices, v1,v2 and v3, and
four rays. In light-path triangulation, the coordinates of c,q and p are
known and the goal is to determine the coordinates and normals of
the vertices. By convention, we order vertices and rays along a path
according to the direction of light travel

Consider a scene that is viewed from one or more known
viewpoints and contains one or more objects of unknown
shape. We assume that each object is a volume composed of
a homogeneous medium (opaque or transparent) and whose
surface is smooth, i.e., it does not contain surface irregular-
ities that scatter the incident light. In this case, the propaga-
tion of light through the scene is characterized by three basic
processes (Glassner 1995; Nayar et al. 1991)—specular re-
flection at an object’s surface, specular transmission (i.e.,
refraction) at the surface of a transparent object, and linear
propagation within an object’s interior and through empty
space.

Given an arbitrary 3D point p, a known viewpoint c, and
a known image plane, the point’s projection is determined
by the 3D path(s) that light would trace in order to reach
that viewpoint (Fig. 2). We use the term light path to refer to
such a path. If a light path exists, it will be a piecewise-linear
curve between p and c whose vertices, if any, will always
lie on the surface of some object in the scene. The number
of vertices along a path is therefore equal to the number of
surfaces it intersects. In general, there may be more than one
light path connecting a 3D point to a viewpoint, or there may
be none at all.1 We say that point q is an indirect projection
of p if there is a light path between p and c that crosses the
image plane at q.

2.1 The Light-Path Triangulation Problem

Suppose the specular scene is viewed from N known view-
points. We assume that for every point on the associated im-
age planes there is a unique light path that describes light
propagation toward that point.2 Furthermore, suppose we

1See (Gluckman and Nayar 1999) for a camera-mirror arrangement
that forces scene points to indirectly project twice onto the image plane.
2More generally, our theory applies when the mapping from image
points to light paths is one-to-L with L finite and bounded; for sim-
plicity of presentation, however, we assume L = 1 in this paper.
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Fig. 3 Basic geometry of 〈N,K,M〉-triangulation

are given a function which tells us, for every such point, the
3D coordinates of M “reference points” that project to that
point indirectly (Fig. 3). Now, suppose we choose a point q
on one of the image planes and assign it a “depth” value, i.e.,
a hypothetical distance to the last vertex along its light path.
Under what conditions can we decide unambiguously the
correctness of this depth? Our goal is to answer this ques-
tion in the general case, i.e., for smooth scenes of arbitrary
shape, N ≥ 1 viewpoints, M ≥ 1 known reference points,
and light paths with K ≥ 1 vertices. To simplify our exposi-
tion, we assume without loss of generality that all light paths
have the same number, K , of vertices and that this number
is known.

When we assign a depth d to a point on the image plane,
we define the 3D position of one specular point, vd , along
the ray through the selected image point. If that depth is cor-
rect, vd would redirect light toward all N viewpoints in a
way that is consistent with the laws of refraction and re-
flection, as well as the known function that maps image
points to reference points. Specifically, light would travel
along N distinct light paths whose last vertex is vd (Fig. 3).
These paths define a graph, that we call the light network
for depth d . The network connects the N perspective pro-
jections of vd to their corresponding reference points.

Definition 1 (Consistent Light Network) The light network
for depth d is consistent if we can assign a normal to vd and
3D coordinates and normals to its other vertices so that the
resulting light paths are consistent with the laws of reflection
and refraction.

Definition 2 (N,K,M-Triangulation) Assigns a depth d to
a given image point so that the resulting light network is
consistent.

Definition 3 (Tractability) A triangulation problem is tract-
able for a given image point if its solution space is a 0-
dimensional manifold, i.e., it is a collection of isolated depth
values.

Intuitively, the minimum M and N needed to make tri-
angulation tractable for a given path length K indicate the

Fig. 4 Visualizing the three properties of a light path. Vectors
n,din,dout are always coplanar. In specular reflection, shown above,
the angle between n and din is always equal to that of n and dout.
In specular transmission, Snell’s law states that the ratio of sines of
these angles is equal to the relative index of refraction (Glassner 1995).
Hence, knowing one angle allows us to determine the other in both
cases

problem’s intrinsic difficulty. We use the term light-path
triangulation to refer to the entire family of 〈N,K,M〉-
triangulation problems.

Light-path triangulation differs from traditional stereo
triangulation in three important ways. First, unlike stereo
where at least two viewpoints are needed for reconstruc-
tion, tractable light-path triangulation is possible even with
just one viewpoint (Sect. 3.1). Second, unlike stereo where
a single point is reconstructed from a pair of intersecting
3D rays, here we must reconstruct the 3D coordinates of all
N(K − 1) + 1 points in a light network, to guarantee con-
sistency. Third, while stereo triangulation does not provide
surface normal information, light-path triangulation recon-
structs normals as well. Hence, even though it is harder to
solve, light-path triangulation yields richer scene descrip-
tions than stereo both in terms of density (i.e., number
of reconstructed points) and content (i.e., points and nor-
mals).

2.2 Basic Properties of a Light Path

In principle, it is always possible to express a light-path
triangulation problem as a system of non-linear equations
that govern light propagation through the scene. Rather than
study the analytical form of those equations, which can be
quite complex, we take a geometric approach. In particu-
lar, we express 〈N,K,M〉-triangulation as a geometric con-
straint satisfaction problem whose solution space depends
on just three properties (Fig. 4):

• Planarity Property: Light propagation at a vertex always
occurs on a single plane that contains the surface normal.
That is, the vectors n,din and dout are always coplanar.
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• Deflection Property: If we know the refractive index and
know any two of vectors n,din,dout, we can determine
uniquely the third vector. Moreover, this relation is a local
diffeomorphism.3

• Double-Correspondence Property: If we are given
two distinct reference points that project indirectly to the
same image point, the first ray on the image point’s light
path must be the line that passes through both reference
points.

Note that all three properties hold for reflected and for
refracted light. As a result, our analysis does not distinguish
between these two different types of light propagation, mak-
ing our theoretical results applicable to scenes with mirror-
like or refractive objects, or both.4

While not previously used for reconstruction, the Double-
Correspondence Property has been noted in the context of
environment matting (Zongker et al. 1999) and camera cal-
ibration (Grossberg and Nayar 2001). Here, it highlights
a fundamental difference between light-path triangulations
where two or more reference points are known per image
point (M ≥ 2) versus just one (M = 1): two or more ref-
erence points provide complete information about the 3D
ray along which light propagates before it enters the scene,
which is impossible to get from just one reference point.5

This distinction is especially important in interpreting the
results of our analysis.

3 Tractable Light-Path Triangulations

Our main theoretical result is an enumeration of all tractable
light-path triangulation problems (Figs. 5, 6):

Theorem 1 The only tractable 〈N,K,M〉-triangulations
are shown in the tables below:

3Recall that a smooth map, f , between two manifolds is a local dif-
feomorphism at a point p if its derivative, dfp , is one-to-one and onto
(Guillemin and Pollack 1974).
4In fact, our analysis covers the case where a scene point causes a re-
fraction along the light path of a point in an image and causes a specu-
lar reflection along the path of some other image point (in the same or
another viewpoint).
5Note that the direction of this 3D ray can be determined from a single
reference point “at infinity,” i.e., located far from the specular scene
(Sanderson et al. 1988). Since this direction is not sufficient to localize
the ray in 3D, the information provided by a single reference point at
infinity is weaker than knowledge of two reference points.

One reference point (M = 1)

K = 1 K = 2 K ≥ 3
N = 1
N ≥ 2 � ×
Two or more reference points (M ≥ 2)

K = 1 K = 2 K ≥ 3
N = 1 � ×
N = 2 � ×
N = 3 � × �
N ≥ 4 � × � ×

where ‘�’ marks tractable problems where the scene is ei-
ther known to be a mirror or its refractive index is known;
‘×’ marks tractable problems where the refractive index (or
whether it is a mirror) is unknown; and blanks correspond
to intractable cases.

We obtain this result through a case-by-case analysis in
which the three properties of Sect. 2.2 are applied to the
above cases. Proofs for the cases of 〈1,1,2〉-triangulation
and 〈3,2,2〉-triangulation are given in Sects. 3.1 and 3.2,
respectively. Each of these proofs is constructive and leads
directly to a reconstruction algorithm. See (Morris and Ku-
tulakos 2005) for a detailed investigation of a third case,
〈2,1,1〉-triangulation, which includes a proof, algorithmic
details, and experimental results on reconstructing dynamic
surfaces of liquids.

Theorem 1 can be interpreted both as a negative and as a
positive result. On the negative side, it tells us that light-path
triangulation quickly becomes intractable for scenes where
a light path intersects many surfaces. Moreover, our capabil-
ities are severely limited when M = 1, i.e., when one known
reference point projects to each image point.

On the positive side, the theorem identifies three non-
trivial cases that are tractable: (1) reconstructing a mirror
from just one viewpoint; (2) reconstructing a refractive sur-
face with an unknown refractive index from two viewpoints;
and (3) using three viewpoints to reconstruct scenes that re-
fract or reflect light twice.

Theorem 1 also highlights a fundamental asymmetry be-
tween the number of known reference points (M) and the
number of viewpoints (N ). Intuitively, the information we
obtain by indirectly viewing two known reference points per
image point cannot be replaced by viewing just one refer-
ence point and increasing the number of viewpoints.

3.1 Mirrors: One Viewpoint, Two Reference Points

The tractability of 〈1,1,2〉-triangulation is a trivial conse-
quence of the geometry of Fig. 4. This is because knowl-
edge of two distinct reference points on a one-vertex light
path means that we know both rays on that path. The depth
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Fig. 5 Two of the basic tractable light-path triangulation problems. The third tractable problem is shown in Fig. 6. Top row: General 3D geometry
of light paths and normals. Similarly-colored rays are on the same light path. Unknown vertices and normals are indicated along each path (there is
only one unknown vertex and normal for these two problems). Bottom row: Top-down view of the unknown scenes and light paths, and the known
reference points, for specific instances of these problems. In practice, the known reference points lie on a movable LCD panel whose 3D position
is always known (indicated by the red-blue color gradients). Two instances are shown for the case of 〈2,1,1〉-triangulation, corresponding to a
transparent and a mirror-like scene, respectively

of the path’s vertex is therefore given by the intersection of
these two rays.

Specifically, suppose that we know the two reference
points, p1,p2, that indirectly project to image point q, and
suppose that we do not know the scene’s refractive index or
whether it is a mirror. In this case, the first ray along the light
path is the ray through points p1 and p2, and the second ray
is the ray through q and the camera’s known viewpoint, c.
The unique depth solution is given by

d = ‖(p1 − c) × din‖
‖dout × din‖ (1)

where din and dout are the unit vectors in the direction of the
path’s two rays. Note that if we also know that q’s light path

is caused by specular reflection, the surface normal at the
path’s vertex is uniquely determined—it is simply the unit
vector in the direction of the bisector, (din + dout)/2.6

While 〈1,1,2〉-triangulation has a very simple solution,
we are not aware of prior work that uses it for reconstructing
specular scenes.7

6When this information is not available, one additional viewpoint is
sufficient to determine both the normal and the scene’s specular prop-
erties (i.e., whether it is reflective or refractive, and the refractive in-
dex).
7The Double-Correspondence Property was used in (Grossberg and
Nayar 2001) to recover the caustic of a mirror-based imaging system.
This caustic, however, does not coincide with the mirror’s surface and,
hence, their technique is not equivalent to 〈1,1,2〉-triangulation. More
recently, and independently from our own work (Kutulakos and Steger
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Fig. 6 〈3,2,2〉-triangulation. We use the same conventions as in
Fig. 5. Note that in addition to reconstructing transparent objects,
〈3,2,2〉-triangulation enables reconstruction of mirror-like scenes
from the “reflection of the reflection” of the reference points. The in-
stances shown above are not exhaustive; our theory also covers cases
where some of the light paths through vd are caused by refraction and
some by reflection

3.2 Glass: Three Viewpoints, Two Reference Points

Figure 7(a) shows the geometry of a typical light path in
the case of 〈3,2,2〉-triangulation. The path will contain
two vertices and three non-coplanar rays, two of which are
known (i.e., the first and the last ray). To determine the path
uniquely we therefore need just two additional scalars—
the depth d of its second vertex and the position, δ, of its
first vertex along the first ray. To prove the tractability of
〈3,2,2〉-triangulation for a known refractive index we show
that, in general, only an isolated set of (d, δ)-pairs will de-
fine a consistent light network. Intuitively, this is because
when two additional viewpoints are available, almost every
(d, δ)-pair will produce at least one “invalid” light path, i.e.,

2005), Bonfort et al. (2006) reported an algorithm identical to 〈1,1,2〉-
triangulation.

a path whose rays do not meet in 3D for one of those view-
points (e.g., the green and blue paths in Figs. 7(b) and 7(c),
respectively).

Beyond showing that it is possible to reconstruct general
doubly-refracting and doubly-reflecting scenes, our analysis
suggests a reconstruction algorithm: it tells us that we can
reconstruct all four vertices and normals in the light network
of a pixel (Fig. 5) by conducting a 2D search in (d, δ)-space.
The search is for a pair (d, δ) that produces valid light paths
in all three views.

Proposition 1 (a) 〈3,2,2〉-triangulation is tractable for al-
most all points on a generic surface with known refractive
index. (b) 〈3,2,2〉-triangulation is intractable when the re-
fractive index is unknown.

Geometrically, the proof of Proposition 1 can be thought
of as exploiting two basic observations: (1) the set of all
depth and normal assignments consistent with a single view-
point forms a 2D “constraint surface” in R × S

2; and (2) the
common intersection of three such surfaces (i.e., one for
each viewpoint) will in general be a set of isolated points.
In the following, we develop a constructive proof that for-
malizes the above intuitions.

Proof of Proposition 1 (a) For concreteness, assume that the
“true” light path of every image point contains two refrac-
tive vertices (Fig. 6, bottom left). Paths where one or both
of their vertices are reflective can be treated in an identical
way.

To prove the proposition we use two facts. First, since
M = 2, we know two rays on the light path of every im-
age point. Second, for scenes bounded by a generic (i.e.,
non-degenerate) surface (Koendering and van Doorn 1979),
the light path of almost every pixel, in a measure-theoretic
sense, will be non-planar, i.e., the first and last ray of a
light path will not lie on the same plane, and therefore these
rays will not intersect (Fig. 7(a)). This is because the pla-
narity of a light path is not a stable (Guillemin and Pollack
1974) property—almost any infinitesimal surface deforma-
tion, change in viewpoint, or change in the position of pixel
q will invalidate it.

Now let q be an arbitrary image point, let l1, l2, l3 be the
first, middle, and last ray along its light path, respectively,
and let d be a hypothetical depth value assigned to q. We
show that in general only isolated d-values can define a con-
sistent light network.

Since l1 is the first ray on the light path of q, it con-
tains the first vertex of q’s path. Moreover, since this ray
is known, there is a one-degree-of-freedom ambiguity in the
position of this vertex. We can therefore parameterize its po-
sition with a parameter δ ∈ (−∞,∞). For a given d , each
δ-value defines a unique position, vδ , for the path’s first ver-
tex and, consequently, a unique light path for q. In that path,



20 Int J Comput Vis (2008) 76: 13–29

Fig. 7 (a–c) Path geometries in proof of Proposition 1. (a) Light path of an image point q in the first viewpoint. The arrow indicates the direction
of incoming light. Rays l1 and l3 are known but l2 is not. The shaded plane is the plane of rays l2 and l3 and always contains the surface normal,
ndδ . Generically, this plane will not contain ray l1. (b) Light path of q′ in the second viewpoint, for a given value of d and δ. The path in (a) is
also shown. Rays l′1 and l′3 are known. Ray l′2 is uniquely determined by l′3 and ndδ . For arbitrary d and δ, the rays l′1 and l′2 will not intersect. The
dark-shaded plane is the plane of l′2 and l′3. (c) Light path of q′′ in the third viewpoint. (d) Path geometries in proof for Proposition 2

light initially propagates along l1, is refracted at vδ and then
at vd , and finally reaches q. From the Deflection Property,
only one normal at vd can redirect light according to that
path for any given value of the refractive index. Now sup-
pose that we fix the refractive index to a specific, but possi-
bly incorrect, value. In this case, it is possible to map every
pair (d, δ) to a normal, ndδ . Moreover, since l1 and l3 do not
intersect in general, this mapping is a diffeomorphism for
almost every q. Note that we can compute ndδ for any d and
δ because we know l1 and l3.

Now let q′ be the perspective projection of point vd in the
second viewpoint, and let l′1 and l′3 be the first and last ray
on its light path, respectively (Fig. 7(b)). Rays l′1 and l′3 will

also not intersect in general. Given a normal ndδ and ray l′3,
the Deflection Property tells us that there is a unique ray, l′2,
that (1) passes through vd and (2) causes light propagating
along l′2 to be refracted toward q′. This ray is completely
determined by vd , ndδ , the second viewpoint, and the im-
age point q′. In particular, there is no geometric constraint

between rays l′1 and l′2. It follows that these rays will be in
general position, i.e., they will not intersect for an arbitrary
choice of d and δ and will not form a light path. Hence, such
a choice does not produce a light network for q.

For a given d , there is only an isolated set of δ-values that
cause rays l′1 and l′2 to intersect. To see this, note that as δ

varies over the interval (−∞,∞), ray l′2 traces a ruled sur-
face whose shape has no relation to ray l′1. Since in general a
ray and a surface will only have isolated intersection points
(Guillemin and Pollack 1974), and since l′1 and l′2 intersect
precisely at those points, it follows that for every d there is
only a discrete set, �d , of δ-values that produce a light path
through q′.

Finally, consider the projection, q′′, of vd in the third
viewpoint (Fig. 7(c)). For a given d , the normals that pro-
duce light paths for the first two viewpoints are given by the
set {ndδ | δ ∈ �d}. For every normal in this set there is a
unique ray, l′′2 , that passes through point vd and forces light
propagating along l′′2 to be refracted toward pixel q′′. Since
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the set of normals is discrete, these rays form a discrete fam-
ily. Moreover, since this family of rays has no relation to ray
l′′1 and since rays in general position have no common in-
tersections, it follows that rays l′′1 and l′′2 will either never
intersect, or will intersect for an isolated set of d-values.
When the “true” refractive index is known, however, there
is at least one such value that produces a consistent light
network—the “true” depth.

(b) Our proof is a continuation of the proof for part (a).
We show that, generically, rays l′′1 and l′′2 will intersect for
an isolated set of d-values even when we use an incor-
rect refractive index. This implies the existence of a depth-
refractive index ambiguity: for almost any hypothesized
value for the refractive index, there is a depth hypothesis
that gives rise to a consistent light network.

More specifically, suppose we fix the refractive index to
an arbitrary value ρ and consider the arrangement of rays l′′1
and l′′2 in Fig. 7(c). As the hypothetical depth value d varies
in the range (−∞,∞), the vertex vd , its projection q′′ in the
third viewpoint, and rays l′′1 and l′′2 will also vary as functions
of d . To make this explicit, we parameterize l′′1 and l′′2 by the
refractive index and the depth hypothesis that give rise to
them, i.e., l′′1 (ρ, d) and l′′2 (ρ, d) are the rays corresponding
to depth hypothesis d for refractive index ρ. For a given ρ,
these rays trace a pair of ruled surfaces in 3D. When ρ varies
as well, these ruled surfaces span a 3D volume.

We now define the following two sets:

M1 = {(x, y, z, ρ, d) | (x, y, z)

is a point on ray l′′1 (ρ, d)} (2)

M2 = {(x, y, z, ρ, d) | (x, y, z)

is a point on ray l′′2 (ρ, d)}. (3)

Observe that M1 and M2 have a non-empty intersection
if and only if there is a refractive index ρ such that rays
l′′1 (ρ, d) and l′′2 (ρ, d) intersect for some depth hypothe-
sis d . These two sets are 3-dimensional manifolds in R

5

and, generically, two such manifolds intersect along a 1-
dimensional manifold (i.e., a codimension-4 submanifold of
R

5 (Guillemin and Pollack 1974)). This manifold represents
the depth-refractive index ambiguity. Hence, when the re-
fractive index is unknown, the solution space of the 〈3,2,2〉-
triangulation problem is a 1-dimensional, rather than a 0-
dimensional, manifold. �

3.3 The Limits of Light-Path Triangulation

We now prove that light-path triangulation cannot recon-
struct general scenes that redirect light more than twice.

Proposition 2 〈N,3,2〉-triangulation is intractable.

Proof It suffices to prove the proposition for the case where
the scene is refractive with a known refractive index and
is viewed from N > 1 viewpoints. Let d be a hypothetical
depth value at q, and let nd be an arbitrarily-chosen normal
for vertex vd (Fig. 7(d)). Given the projection q′ of vd in the
i-th viewpoint, we will assign coordinates and normals to all
remaining vertices on its light path in a way that is consistent
with the laws of refraction.

We use the same terminology as in the proof of Proposi-
tion 1. For a given d and nd , there is only one ray, l′3, that can
refract light toward image point q′ (Fig. 7(d)). The second
vertex, v, on q′’s light path will lie on that ray. Choose an
arbitrary location on the ray for that vertex. To fully define
a light path for q, we now need to specify its first vertex.
This vertex must lie on the known ray l′1. As in the proof
of Proposition 1, the 3D position, vδ , of this vertex can be
parameterized by a single parameter δ. Choose an arbitrary
value of δ to fix the location of that vertex as well. Now, the
Deflection Property tells us that there is a unique normal that
will redirect light from l′2 toward l′3 at v. Similarly, there is
a unique normal that will redirect light from l′1 toward l′2 at
vδ . Hence, we have found an assignment of 3D coordinates
and normals for all path vertices that produces a light path
for q′. Since we were able to do this for an arbitrary value
of the depth d , the triangulation problem’s solution space is
dense in R. �

3.4 The Power of Global Shape Recovery

The fact that light-path triangulation is intractable for scenes
with long light paths does not necessarily mean that recon-
struction of such scenes is hopeless. Intuitively, light-path
triangulation operates at a completely local level—for any
two points on the same image plane, it attempts to recon-
struct the associated light networks independently of each
other. So what if we had a procedure that reasoned about
multiple light networks simultaneously? Here we briefly
sketch a partial answer to this question: we show that a suf-
ficiently large collection of viewpoints does contain enough
information to reduce shape ambiguities to a discrete set.
Although this existence result does not point to any algo-
rithms, it does suggest that, with enough images, we can test
with reasonable confidence the validity of a hypothesized
3D scene model:

Proposition 3 Given an arrangement of viewpoints for
which there is a constant K such that (1) every scene point is
intersected by at least 3(K−1) light paths of length ≤K and
(2) the first and last ray of all these paths is known, the lo-
cation of each scene point is constrained to a 0-dimensional
solution manifold.

Intuitively, Proposition 3 gives us a lower bound on the
number of viewpoints we need for shape verification: for
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Fig. 8 The space of solvable specular scene reconstruction problems.
For values of N,K in the dark-colored region (red), reconstruction
is possible by 〈N,K,2〉-triangulation, according to Theorem 1. When
N,K are in the light-colored region (yellow), 〈N,K,2〉-triangulation
is intractable, but Proposition 3 tells us that reconstruction may still be
possible using a global approach

light paths of maximum length K , each scene point must
project indirectly to least 3(K − 1) viewpoints. We prove
this result inductively, using Proposition 1 both as the base
case and for proving the inductive step.

Proof sketch The base case is covered by Proposition 1. To
show that it holds for K = k, we define a partitioning of
the scene into k “layers”, S1, . . . ,Sk , where the i-th layer
contains scene points that (1) participate as the i-th vertex
on at least one light path with known first and last rays
and length ≤ k, and (2) they never participate as a lower-
numbered vertex on such a path. The proof is restricted to
scenes where each of the Si is a smooth manifold. Now as-
sume that we know the 3D position and surface normal of
all points in Sk . This assumption uniquely determines the
second-to-last ray of all k-vertex light paths with known first
and last ray. We now apply the proposition with K = k − 1
to the scene defined by the first k − 1 layers, using 3(k − 2)

of the 3(k − 1) light paths that cross each point and have
known first, last and second-to-last ray. It follows that if
Sk is known, each point on the remaining layers is con-
strained to a 0-dimensional solution manifold. We can now
use a proof identical to that of Proposition 1 to show that
the remaining three light paths that cross each point and
were not used in the inductive step, constrain the 3D po-
sition of each point on layer Sk to a 0-dimensional manifold
as well. �

4 Experimental Results

While our emphasis in this article is on the underlying the-
ory, we performed initial experiments on all three tractable

Fig. 9 Acquisition setup for 〈3,2,2〉-triangulation. (a) A linear trans-
lation stage moves the LCD monitor in a forward/backward direction.
To change viewpoint, the object is rotated by a computer-controlled
rotation stage. (b) During image acquisition, the LCD displays a black
background with a moving horizontal or vertical stripe. This stripe is
used to establish a correspondence between pixels in the image and the
3D locations on the LCD monitor that project to those pixels indirectly

instances of light-path triangulation. Below we briefly
present results for two of those instances, namely 〈1,1,2〉-
triangulation and 〈3,2,2〉-triangulation. For detailed case
studies of 〈2,1,1〉-triangulation and 〈3,2,2〉-triangulation,
including algorithms, implementation details and more re-
sults, see (Morris and Kutulakos 2005; Morris 2004) and
(Steger 2006), respectively.

For the experiments below, we used a 720 × 484-pixel
Sony DXC-9000 video camera for image acquisition and
a DELL 1600 × 1200 LCD display for displaying refer-
ence patterns, whose position was under computer control
(Figs. 9 and 10). To calibrate the camera with respect to the
plane of the LCD display, we used the Matlab Calibration
Toolbox (Bouguet 2001), and used an environment matting
procedure (Zongker et al. 1999) to find the correspondence
between image pixels and pixels on the display. The display
was then translated by a known amount and the procedure
was repeated, giving us two known 3D reference points per
image pixel (Fig. 10).

4.1 Reconstructing Mirrors by 〈1,1,2〉-Triangulation

We used the arrangement in Fig. 5(left) and Fig. 10. A key
feature of 〈1,1,2〉-triangulation is that reconstruction ac-
curacy largely depends on the accuracy of camera calibra-
tion, not on the shape of the object being reconstructed.
We therefore concentrated on evaluating the accuracy of
the depths and normals computed individually for each
pixel, with an object whose ground-truth shape was known
very accurately: a 130×230 mm front-surface mirror with
1
4 -wavelength flatness. To determine the mirror’s plane,
we digitized several points on it with a FaroArm Gold
touch probe, whose single-point measurement accuracy is
±0.05 mm, and then fit a plane through these points. The
mirror was placed about 1.5 m away from the camera.

To compute the depth d at a pixel, we simply inter-
sected the first and last ray along its light path (see (1)
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and Fig. 5(left)). The bisector of these rays gave us the
surface normal. This computation was done at each of
301 082 pixels in the image, giving us an equal number
of 3D position and normal measurements. No smoothing
or post-processing was applied. The RMS distance of the

Fig. 10 Acquisition setup for 〈1,1,2〉-triangulation. (a) The mirror
used in our experiment is on the far left of the image, reflecting the pat-
tern on the LCD monitor, visible on the right. (b) Close-up of the mir-
ror. (c) The LCD monitor is moved to a second position, farther from
the mirror, without changing the camera’s viewpoint. (d) Close-up of
the mirror for the new monitor position. Note that the reflection on the
mirror changed between (b) and (d) because the light path through a
given camera pixel passes through a different reference point on the
monitor. The pattern on the monitor is for illustration only; in prac-
tice, camera-to-LCD correspondences are established by displaying a
moving stripe, as in Fig. 9(b)

reconstructed 3D points from the ground-truth plane was
0.644 mm, equivalent to a single-point accuracy of roughly
99.96% of the camera-to-object distance. To assess the ac-
curacy of reconstructed normals, we measured the angle
between each computed normal and the ground-truth nor-
mal; the mean error was 0.182 degrees, showing that single-
point orientation measurements were also highly accurate.
We emphasize that these accuracies were obtained without
using any information about the scene’s shape and without
combining measurements from multiple pixels.

4.2 Reconstructing Glass Objects
by 〈3,2,2〉-Triangulation

We used the arrangement in Fig. 6 and Fig. 9. Since this tri-
angulation requires three or more viewpoints, we place ob-
jects on a turntable between the LCD and the camera and
compute the correspondence between image pixels and pix-
els on the monitor for each object rotation.

Figure 11 shows two of the objects used in our ex-
periments, a diamond-shaped glass ornament and a glass
ashtray. We used the same viewing configuration for both
objects: a total of seven viewpoints, corresponding to
±30,±20,±10 and 0-degree rotations (Fig. 12). Both ob-
jects extended 3 to 6 cm in depth, roughly 1.2 m away
from the camera. To reconstruct them, we used all available
views and solved a 〈7,2,2〉-triangulation problem indepen-
dently for every pixel in the 0-degree viewpoint. For each
such pixel, our implementation performed a search in (d, δ)-
space for a pair of values that produce a consistent light
network, i.e., a network whose light paths are consistent
with the laws of refraction for all viewpoints (Sect. 3.2 and

Fig. 11 Views of two objects used in our 〈3,2,2〉-triangulation experiments. (a) A diamond-shaped glass object. (b) A glass ashtray



24 Int J Comput Vis (2008) 76: 13–29

Fig. 12 Six of the seven input viewpoints used for reconstruction. During image acquisition, the green background is replaced by a moving,
one-pixel-wide horizontal or vertical stripe

Figs. 7(a–c)). These values were then refined in a non-linear
optimization stage. See (Steger 2006) for details. Since the
light network of a pixel contains eight vertices, the algorithm
reconstructs eight points and eight normals per pixel—one
on the object’s front surface and seven more on the back
(Fig. 6). Importantly, since we used more viewpoints than
the minimum three required, the reconstruction was over-

constrained and allowed estimation of the objects’ refractive
index as well.

4.2.1 “Diamond” Scene

This object, shown in Fig. 11(a), has many surface features
that make reconstruction especially challenging. These in-
clude numerous planar facets on both the front and the back
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Fig. 13 Reconstruction results for the “diamond” scene. (a) Depth map for the reference view. Gray-scale values are mapped to the indicated
range (white = near, black = far). (b), (c) Reconstructed normal maps for the reference view. Gray-scale values correspond to the slant and tilt
angle, respectively, of each reconstructed normal

Fig. 14 Views of the reconstructed front surface of the “diamond”
scene. For each pixel in the reference view, we render a shiny square
patch (i.e., a surfel) whose depth is given by the depth map in Fig. 13(a)
and whose orientation is given by the normal maps in Figs. 13(b)
and 13(c)

surfaces, that produce complex light paths; many surface
discontinuities; non-planar front and back surfaces; and a
sharp, protruding tip where surface orientation is degener-
ate.

Figures 13 and 14 show reconstruction results. The ob-
ject’s index of refraction was estimated to be 1.55. The maps
for the normals’ slant and tilt angles suggest that the ob-
ject’s surface orientation was highly consistent across dif-
ferent pixels within a facet, even though light paths for dif-
ferent pixels were reconstructed completely independently,
and no smoothing or post-processing was applied. More-
over, since light path triangulation computations are per-

formed independently for each pixel in the reference view,
surface normals were reconstructed accurately even for pix-
els near the diamond’s tip, where the surface orientation
field is singular. Also observe that, as a side-effect, we ob-
tain an automatic segmentation of the scene into smooth
segments. This is because image-to-LCD correspondences
cannot be established at the precise location of a nor-
mal discontinuity and, hence, those pixels were not recon-
structed.

To further assess the precision of our reconstruction, we
measured the consistency of normals and depths within
each planar facet. These quantitative measurements are
shown in Figs. 15(a) and 15(c). They show that individually-
reconstructed normals within a facet are consistent to within
a few degrees, while depth measurements, which seem to
produce a noisier map, show deviations of about 0.1% of
the object-to-camera distance. These results confirm our ba-
sic theory and suggest that it is possible to recover detailed
shape information for refractive objects without any knowl-
edge of their shape, despite the complexity of image forma-
tion.

4.2.2 “Ashtray” Scene

Our second scene, the ashtray shown in Fig. 11(b), has very
different surface properties from the diamond. Its front sur-
face is composed of a large, smooth and concave region in
the center; a planar region in the periphery; and several small
planar facets adjacent to it. Its back surface, on the other
hand, is a large planar base. Because of the prominent con-
cavity, this scene would be impossible to reconstruct accu-
rately with a silhouette-based method (e.g., Matusik et al.
2002).

The ashtray’s index of refraction was estimated to be
1.54. Reconstruction results are shown in Figs. 16 and 17.
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Facet label (diamond) 1 2 3 4 5 6 7 8

Mean normal error (degrees) 4.46 1.70 2.80 3.15 8.32 6.42 4.14 1.53
Median normal error (degrees) 2.99 1.21 1.83 1.98 6.34 4.18 2.87 1.11
Mean position error (mm) 2.10 0.74 1.60 1.69 2.18 3.40 1.84 0.86
Median position error (mm) 0.71 0.30 0.45 0.47 1.58 0.65 0.57 0.30
RANSAC position inliers (%) 35.9 64.0 52.8 50.1 18.8 40.3 45.1 67.5

(c)

Region label (ashtray) A B C D

Mean normal error (degrees) 1.79 10.28 6.64 0.90
Median normal error (degrees) 1.63 7.51 6.75 0.21
Mean slant error (degrees) 1.99 17.20 0.82 1.00
Median slant error (degrees) 1.79 12.12 0.70 0.21
Mean tilt error (degrees) 2.35 2.46 10.63 0.92
Median tilt error (degrees) 2.08 2.24 10.77 0.17
Global mean normal error (degrees) 1.13
Global median normal error (degrees) 0.56

(d)

Fig. 15 Precision measurements. (a), (c) Measurements for facets of the “diamond” scene: (a) Colored polygons indicate the pixels contributing
to a facet’s measurements. (c) To assess normal variations within a facet, we compute the mean normal across all pixels in a facet and measure the
angle between the normal at each pixel and the facet’s mean normal. To assess positional variations, we fit a plane to the 3D point measurements
using RANSAC (Fischler and Bolles 1981) with an inlier threshold of 0.5 mm, and then measure the distance of each reconstructed pixel from this
plane. (b), (d) Measurements for regions of the “ashtray” scene: (b) Decomposing the ashtray’s front surface into four major regions. Region A

contains all concave points that do not lie in regions B or C. (d) To assess local normal variations within each region, we compute the mean normal
in each 3 × 3 pixel neighborhood and measure the angle between the normal at each pixel in that neighborhood and the neighborhood’s mean
normal. The table reports aggregate angle measurements across all neighborhoods in a region (i.e., mean or median angle over all neighborhoods).
For region D, which is globally planar, we also computed the mean normal across all pixels in the region and measured the angle between the
normal at each pixel in D and the region’s mean normal

As in the previous example, depth and normal measurements

are computed independently for each pixel in the reference

view, and no smoothing or post-processing was applied. To

assess these results further, we examine the precision of nor-

mal estimates for the four surface regions marked A,B,C

and D in Fig. 15(b).

In region A, both the normal and the depth estimates

change very smoothly, producing a highly-consistent con-

cave surface. This is confirmed quantitatively in the ta-

ble of Fig. 15(d), where normal variation within small

pixel neighborhoods was measured to be about two de-

grees. This suggests that reconstruction quality for this
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Fig. 16 Reconstruction results for the “ashtray” scene. (a) Depth map for the reference view. (b), (c) Reconstructed normal maps for the reference
view

non-planar region is on par with that of the “diamond”
scene.

The reconstruction results for the remaining regions show
significant variations in either the depth or the normal esti-
mates of individual pixels. These regions correspond to crit-
ical configurations of 〈3,2,2〉-triangulation and illustrate
some of the limitations of our current implementation and
of our experimental setup. More specifically, the light path
of pixels in region D intersects the object along two paral-
lel planes, one on the front and one on the back side of the
ashtray. In this case, the entire light path is planar, violating
the generic light path non-planarity assumption that is ex-
ploited by 〈3,2,2〉-triangulation (Sect. 3.2 and Fig. 7(a)). It
is easy to show that in the presence of this “parallel-plane
degeneracy” we can compute the planes’ normal and their
inter-plane distance but we cannot compute absolute depth
(Steger 2006). This fact is confirmed by our results: the ta-
ble of Fig. 15(d) and the normal maps in Fig. 16 show that
normals in region D are highly consistent. In contrast, the
reconstructed depth map is not accurate in region D (e.g.,
see Fig. 16(a) and Fig. 17, bottom right).

The pixels in regions B and C, on the other hand, cor-
respond to critical configurations caused by camera place-
ment. In region B , the camera’s motion and the normal of
the front and back surfaces are all approximately coplanar;
in region C, all surface points are approximately on the ob-
ject’s axis of rotation. Both cases result in a reduced set of
geometric constraints that allow either the normal slant an-
gle or the normal tilt angle to be determined uniquely, but
not both (Steger 2006). This fact is consistent with the nor-
mal maps in Fig. 16, as well as with the normal precision
measurements shown in Fig. 15(d).

While our current implementation did not seek to detect
or overcome the above critical configurations, the process
for doing so is fairly straightforward. Pixels whose light path
is planar can be easily detected because both the first and the

Fig. 17 Views of the reconstructed front surface of the “ashtray”
scene. For each pixel in the reference view, we render a shiny square
patch (i.e., a surfel) whose depth is given by the depth map in Fig. 16(a)
and whose orientation is given by the normal maps in Figs. 16(b)
and 16(c)

last ray on their light path is known. It is therefore possible
to determine a priori whether or not a pixel has a planar light
path by checking whether or not these two rays intersect
in 3D. In addition, degeneracies caused by camera place-
ment can be avoided by relying on a 2D set of input view-
points for reconstruction, rather than single-axis rotations.
We should note, however, that the above degeneracies may
not be exhaustive—the theoretical problem of characterizing
all possible critical configurations of 〈3,2,2〉-triangulation
is largely open, and is beyond the scope of this initial study.
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5 Concluding Remarks

This article introduced light-path triangulation as a com-
putational framework for analyzing the reconstruction of
general specular scenes from photographs. We have shown
that this framework provides a unified analysis of transpar-
ent and mirror-like scenes, leading to “computability” re-
sults and practical algorithms that apply to both problems.
On the theoretical side, our main contribution was to char-
acterize the set of reconstructible scenes in a way that de-
pends only on the number of vertices along a light path.
This led to three key results. First, we derived a simple al-
gorithm for computing the depth map of a specular scene
from a single viewpoint, when the scene redirects incoming
light just once. Second, for unknown scenes where incom-
ing light undergoes two refractions or reflections, we showed
that three viewpoints are sufficient to enable reconstruction
in the general case. To our knowledge, no other algorithms
exist for reconstructing light paths of this complexity. Third,
we showed that it is impossible to reconstruct individual
light paths when light is redirected more than twice. This ef-
fectively established a “computability” limit, bounding the
complexity of scenes that can be reconstructed by an effi-
cient, stereo-like algorithm.

While our preliminary experimental results are promis-
ing, many practical questions remain open. These include
(1) how to best compute correspondences between refer-
ence points and pixels, (2) how to reconcile point and nor-
mal measurements, (3) how to find the optimal depth at a
pixel, (4) how to identify all critical configurations for spec-
ular reconstruction, and (5) how to develop algorithms and
acquisition procedures that either avoid these configurations
or operate robustly in their presence. Finally, our theoreti-
cal analysis can be thought of as a “worst-case” scenario for
reconstruction, where no constraints are placed on nearby
scene points. Since real scenes exhibit spatial coherence, it
might be possible to incorporate this constraint into an algo-
rithm that remains tractable even for scenes that refract light
more than twice.
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