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Abstract. We consider the problem of reconstructing a smooth surface under
constraints that have discrete ambiguities. These problems arise in areas such as
shape from texture, shape from shading, photometric stereo and shape from defo-
cus. While the problem is computationally hard, heuristics based on semidefinite
programming may reveal the shape of the surface.

1 Introduction

An important problem in surface reconstruction is the handling of situations in which
there are not enough constraints to uniquely determine the surface shape. In these under-
constrained situations there are multiple interpretations of the surface that are consistent
with the available constraints. The ambiguities can be continuous, such as unknown
depth, or discrete, such as in/out reversal. In this paper we deal with constraints that
have discrete ambiguities. We show that the problem of integrating a smooth surface
under ambiguous constraints can be addressed with semidefinite programming (SDP).

SDP has been applied to a wide range of combinatorial optimization problems. For a
general introduction to SDP see [1,2,3]. Recently, SDP-based approximation algorithms
have been developed for several computer vision problems, such as image restora-
tion [4,5], segmentation [4,6], graph matching [7,8,9] and finding correspondences in
stereo [10]. Zhu and Shi [11] used SDP to solve in/out reversal ambiguities of surface
patches in shape from shading.

In this paper we show that a similar mathematical formulation applies to other sur-
face reconstruction problems. Our primary interest is resolving the inherent ambigui-
ties in shape from texture. Similar ambiguities arise in two-light photometric stereo and
shape from defocus.

The general approach starts by representing the surface as a spline, i.e. the shape is
controlled by a set of continuous variables. Additional discrete variables are used to
form the ambiguous constraints. A quadratic cost function measuring surface smooth-
ness and constraint satisfaction is defined. The continuous variables are eliminated,
leading to a quadratic cost function in the discrete variables only. An SDP relaxation
embeds the discrete variables in a continuous high dimensional space. Finally, a round-
ing step sets the discrete variables and proposes a 3D shape.

The problems we deal with are larger than those considered by Zhu and Shi, and
standard Goemans-Williamson random hyperplane rounding technique [12] will usu-
ally produce sub-optimal results. We describe several heuristics that can improve the
solution considerably.
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Fig. 1. Left to right: surfaces textured with squares, input images, parallelograms extracted from
the images and the computed surfaces

2 Problem Formulation

We show below that several surface reconstruction problems can be written in the form

argmin
v,d

‖Av − Bd‖2 , (1)

where A and B are matrices, d∈{−1, 1}n is a vector of discrete decision variables, and
v∈IRm is a vector of continuous parameters that controls the surface. We represent the
surface as a spline, i.e. a linear combination of basis functions

z(x, y) =
m∑

i=1

bi(x, y)vi . (2)

The specific bases we use are described in the appendix. Controlling the surface by a
relatively low dimensional vector of parameters v reduces the computational load and
prevents over-fitting noisy constraints. We discuss several specific problems of this form
next. Algorithms for solving (1) are discussed in Sect. 3.

2.1 Shape from Two-Fold Ambiguous Normals

Traditional shape from texture deals with estimating surface normals from the distor-
tion of texture under projection. Under orthographic projection, normal estimates usu-
ally have a two-fold tilt ambiguity, because the projections of local planar patches with
normals (p, q, 1) and (−p,−q, 1) are identical. We address the problem of estimating
the shape of a surface given a large number of ambiguous normal estimates, as demon-
strated in Fig. 1.

For sparse texture the problem is under-constrained, since the surface can be inte-
grated for any choices of the normals. In addition, under orthographic projection there
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is one global in/out reversal ambiguity, and a continuous ambiguity in absolute depth.
However, if we make the assumption that the surface is smooth, we can identify the
more probable shapes of the surface. In related work, Forsyth [13,14] proposed alter-
nating between optimizing surface smoothness and selecting the normals. We show in
Sect. 3 that by using a quadratic smoothness term the problem can be converted into an
entirely discrete optimization problem.

Denote the partial derivatives of the surface by p = dz
dx , q = dz

dy . The texture observed
at a specific image point, say (xi, yi), provides two choices for the surface derivatives,
namely (pi, qi)di, with di = ±1. By differentiating (2) we can express the derivatives
of the spline surface in terms of the vector v. This provides two known row vectors api

and aqi such that

(0, . . . , 0, pi, 0, . . . , 0)d = api · v , (0, . . . , 0, qi, 0, . . . , 0)d = aqi · v , (3)

where d is a n-vector formed from the sign bits di.
To regularize the surface we use a quadratic smoothness term. The smoothness term

can be expressed in terms of the spline parameters using a matrix E such that ‖Ev‖2

is the smoothness energy (see the appendix for more details). The smoothness energy
is weighted with a regularization parameter λ that balances between the smoothness
energy and the constraint error. Together, these terms can be written in the form of (1),

argmin
v,d

∥∥∥∥

[√
λE
A′

]

︸ ︷︷ ︸
A

v −
[

0
B′

]

︸ ︷︷ ︸
B

d

∥∥∥∥
2

. (4)

Here A′ and B′ are matrices formed from the constraints in (3), with each constraint
in (3) appearing as a single row in A′v = B′d.

2.2 Two-Light Photometric Stereo

In standard photometric stereo of a Lambertian surface, at least three light sources at
known positions are used to determine the surface normals. For a given light source, the
image brightness at a point constrains the corresponding surface normal to a circle on
the unit sphere. Two light sources may limit the normal to two possibilities, which are
the intersections of the two circles. The third light disambiguates the normal. In special
cases, two lights are sufficient. This occurs when the two circles on the unit sphere touch
at a point, or when one of the intersection points of the two circles is on the occluded
half-hemisphere. Onn and Bruckstein [15] studied photometric stereo of Lambertian
surfaces using two lights. Their method uses the points that are uniquely determined by
two lights to divide the image into regions. Inside each region integrability is used to
choose between the two possibilities of the normal. However, detecting the boundaries
of these regions on a discrete grid is susceptible to errors, especially when the surface
has discontinuous derivatives.

Our formulation for two-light photometric stereo avoids region detection and adds
a surface smoothness prior. We assume knowledge of points (x, y) where we have two
choices for the surface derivatives, (p1, q1) or (p2, q2). Onn and Bruckstein [15] de-
rived the formulas for the possible derivatives in the Lambertian case. For other shading
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Fig. 2. Top row: setup of 112 matchsticks on a smooth surface. Bottom row: the input image (left)
and extracted segments (right). Right: computed surface using 50 basis functions.

models these choices may be determined experimentally. However, more complicated
shading models might require more images, since the corresponding two curves on the
unit sphere might intersect more than twice. We don’t deal with these cases here.

The two choices for the surface derivatives at point (x, y) can be expressed as func-
tions of a sign bit dxy = ±1

(
p
q

)
=

(
psum

qsum

)
+

(
pdiff

qdiff

)
dxy ,

(
psum

qsum

)
=

1
2

(
p1 + p2

q1 + q2

)
,

(
pdiff

qdiff

)
=

1
2

(
p1 − p2

q1 − q2

)
.

(5)

As in the previous subsection, the spline derivatives can be written as p = ap · v,
q = aq · v. Collecting the equations for all points and adding the smoothness term we
arrive at

argmin
v,d′

∥∥∥∥

[√
λE
A′

]
v−

[
0

B′

]
d′−

(
0
b′

)∥∥∥∥
2

= argmin
v,d′
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[√
λE
A′

]
v−

[
0 0

B′ b′

](
d′

1

)∥∥∥∥
2

.

(6)
Here the nonzero entries of the matrix B′ are made of pdiff , qdiff , and the vector b′ is
made of psum , qsum according to (5). A standard transformation to bring (6) to the form

of (1) is to solve for d =
(

d′

1

)
. Note that the cost of a pair (v, d) in (1) equals the cost

of (−v,−d). Thus, if after solving (6) the last coordinate of d is −1, we need to negate
the solution.

2.3 Segments of Known Length

Assume a collection of segments of known 3D length (or pairs of features with known
3D distances) is detected on a smooth surface, as shown in Fig. 2. Given an orthographic
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view, each segment can have a front/back reversal. Similar problems were considered
by Naito and Rosenfeld [16] and Koenderink and van Doorn [17].

The depth difference of the segment’s endpoints is constrained by

zi − zj = dij

√
l2 − r2

ij = Δijdij , (7)

where dij = ±1, l is the 3D length of the segment and rij is the observed length in
the image. l, rij (and hence Δij) are assumed to be known. By (2), the depth zi at a
point (xi, yi) is a linear combination of the spline bases at that point. That is, zi can be
expressed as ai · v, where ai is a known row vector, and similarly for zj . Each depth
constraint can be written as

(ai − aj)v = (0, . . . , 0, Δij , 0, . . . , 0)d . (8)

Collecting these equations over all constraints and adding the smoothness term can be
written as in (4).

2.4 Shape from Defocus

In shape from defocus, depth is estimated by measuring blur level differences between
multiple images taken with different focus and aperture camera settings. Here we con-
sider a simple case involving just two images, both taken with the same focus setting.
One image is obtained using a small aperture and is assumed to be sharp. The second
image is taken with a large aperture and exhibits more blurring. The blur of a local re-
gion is measured as the standard deviation σ of a Gaussian that needs to be convolved
with the sharp image to match the blurred image. The estimated σ > 0 for an image
patch corresponds to a two-fold ambiguity for the depth, with one depth in front of the
in-focus plane and the other behind. The formulas relating σ and the camera parameters
to the two possible depths were developed by Pentland [18]. In Sect. 4 we experiment
with a first-order simplified model that assumes the depth is proportional to ±σ. This
model falls naturally into the form (4), where now the matrix A′ contains the depths of
the spline bases vectors, and the matrix B′ the estimated σ for a collection of points. Al-
ternatively, Pentland’s model could be expressed in the same general form using sums
and differences as in (5) and (6).

Note that this example is meant only to demonstrate the formulation, as the practical
use of this approach is rather limited. For points far from the in-focus plane the blur in
the second image may be too heavy for us to reliably resolve σ. Moreover, for points
in the second image which are nearly at the focused depth, it is again difficult to get
an unbiased estimate of σ. As a consequence, useful information from the aperture
change is only available over a narrow range of depths. In practice it is simpler to place
the object on one side of the in-focus plane or take more images with different focus
settings.

3 SDP Rounding Heuristics

We now turn into solving problems of the form (1). For any vector d, the optimal v is

v = A+Bd , (9)
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where A+ is the pseudo-inverse of A. Plugging v back into equation (1) we get
‖(AA+B − B)d‖2 = C • X , where C = (AA+B−B)t(AA+B−B) = Bt(I−
AA+)B, X = ddt, and • is the inner product of matrices (C • X =

∑
CijXij).

Therefore, the problem is reduced into a combinatorial optimization problem of finding
the discrete vector d∈{−1, 1}n which minimizes C •(ddt). Once d is found, v is given
by (9) and the 3D shape is given by (2).

Unfortunately the general problem is NP-hard and difficult to approximate [19].
Semidefinite programming is widely used to find approximate solutions for problems of
this kind. The standard SDP relaxation requires the matrix X to be symmetric positive
semidefinite (instead of rank one) with ones on the main diagonal (since d2

i = 1), i.e.
solving

argmin
X

C • X s.t. Xii = 1 , X � 0 . (10)

Since this problem is convex, the relaxation can be solved in polynomial time using an
SDP solver. A discrete vector d is obtained from the continuous solution matrix X in
a rounding phase. The Goemans-Williamson random hyperplane rounding scheme [12]
uses the Cholesky factorization of the matrix X , X = RRt. Let ui denote the i-th row
of R. Since Xii = ui · ut

i = 1, the rows of R can be viewed as an embedding of the
decision variables into the unit sphere in IRn (this embedding is not unique). Rounding
is done by picking a random hyperplane with normal N and setting di = sign(ui · N ).

For matrices C with nonnegative entries arising from the max-cut problem, this
scheme provides a strong, provable expected approximation ratio of at least 0.878.
However, this result does not apply directly to our problem for several reasons. First,
their analysis is for the cost of the resulting cut, not the quadratic cost function itself.
Secondly, our matrices may have negative elements. Thirdly, we are interested in the
shape of the surface, not the number of correctly classified sign bits. A small number
of misclassifications may have large influence on the shape or may not be visible at all.
Note that it is possible to have different solutions with very different shapes but similar
objective values. It is also possible that the correct surface is not the minimal solution
(e.g. when the correct surface is not smooth, or when there are insufficient or noisy
constraints). This depends on the instance of the problem.

In our setting, random hyperplane rounding typically requires a huge number of iter-
ations to produce high quality results. We apply a series of heuristics for improvement:

1. Instead of picking plane normals from a uniform distribution on the sphere, we
use the principle singular vectors of R (that correspond to largest singular values).
For example, if we had to choose a single plane, a good choice for the normal
would be the principle singular vector. Such “inertial” splitting methods have been
previously used for other embeddings [20,21], but to our best knowledge not for the
SDP embedding. To widen the choices of planes, we randomly pick normals as a
weighted linear combination of the singular vectors that correspond to the k-largest
singular values, i.e.

N =
∑

siλiwi , (11)

where si ∼ N(0, 1) and wi is the singular vector corresponding to the singular
value λi. Finding these singular vectors can be done efficiently by power-iteration
methods.
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Fig. 3. Surface computed from a synthetic photometric stereo pair

2. Instead of making the decision based on a single normal, we randomly select a pair
of normals N 1, N2 according to (11), and perform a circular sweep for normals
in the plane spanned by N1, N2. To do this, we project the points embedded in
IRn on this plane (the first plane we check is the one spanned by the two principle
singular vectors). Then we perform a circular sweep in this plane, as described
in [22]. Basically, the sweep rotates a line through the origin that separates the
points into two groups, and picks the partition with the lowest cost. We noticed that
these angular sweeps can be made more efficient by careful bookkeeping similar to
the Kernighan-Lin (K-L) algorithm [23]. Note that the cost of splitting n points in
IRn based on a single normal is O(n2). However, scanning a series of n normals,
where at each transition a single point moves to the other side of the sweep line,
can also be carried out in O(n2).

3. The k-best results from the circular sweep phase are refined with the K-L algo-
rithm [23,24,25,26]. This is a local search procedure that will clean up a small
number of misplaced vertices. We terminate this algorithm early if no progress is
made in 50 consecutive iterations [25]. The lowest cost solution among these trials
is returned.

4 Two-Fold Ambiguity Results

Figure 1 demonstrates reconstruction from ambiguous normals. To simplify texture ex-
traction we used square texture elements (see Sect. 5 for derivation of normals from
parallelograms). The SDP solver we used is DSDP [27]. In Fig. 3 we computed a sur-
face from a pair of synthetic images of a Lambertian surface using two-light photomet-
ric stereo. The two possibilities for the surface normal are computed on a 29× 29 grid.
Points having only a single possible normal and points in attached shadow were re-
moved. The system had 425 discrete variables. Our program made the correct decision
at each of these points. However, the average deviation from the true surface is 19%
(note that two corners are in shadow).

Results for segments of known length are shown in Figs. 2 and 4. In Fig. 2, the image
was taken from a distance of about 10m with a zoom lens to approximate orthographic
projection. As suggested by Naito and Rosenfeld [16], the 3D length of the segments is
estimated as the maximum over the 2D lengths of all segments in the image. Figure 4
shows 1521 randomly oriented line segments tangent to a synthetic surface (top and
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Fig. 4. Top left: segments of known and equal length on synthetic surface. Top center: projection
of the SDP embedding on the subspace of the first two principle components. Misclassified points
with respect to the ground truth are circled. Top right: plot of the squared-length of the projections
of the embedded points on the first principle subspaces (see text). Bottom left: original surface.
Bottom middle: output of the program. Bottom right: output using random hyperplane rounding.

bottom left). The top-center plot shows the projection of the SDP embedding on the
subspace of the first two principle components. The splitting line is the lowest energy
circular cut for this projection. To check the appropriateness of the projection on a low-
dimensional subspace we projected the SDP embedding on the subspaces spanned by
the first 1, 2, 3, . . . principle vectors. The top-right plot is the squared-length of these
projections, where the 1521 values are sorted. The lowest curve is the distribution of
magnitudes of the projection on the subspace of the first principle vector; the second
curve is the distribution of magnitudes for the projection on the subspace of the first two
principle vectors, etc. It is evident that the points were embedded near a low dimensional
subspace, and this is used for more efficient rounding. The solution (bottom-center) was
computed using 300 spline bases, 1000 circular sweeps on random planes, and K-L
runs on the best 100 vectors. The program made 15 wrong decisions, and the average
height deviation from the truth surface is 1%. In comparison, a run of the Goemans-
Williamson random hyperplane rounding (bottom right) with 104 trials produced 82
misclassifications, with 2.6% average height deviation. While these numbers depend
very much on the particular instance, this example shows that the SDP approach to
ambiguities can deal with much larger instances than demonstrated by Forsyth [13].

Figure 5 demonstrates shape reconstruction from defocus using two images taken
with a narrow and a wide aperture. The camera is focused at the middle of the shape.
The blur level is estimated over a grid of 15 × 60 points. To estimate the blur level, we
convolved a window of the narrow-aperture image around each grid point with Gaus-
sians of various sizes and pick the size that best matches the blurred image. To resist
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Fig. 5. Shape reconstruction from defocus. Left: the imaged surface. Middle: the sharp (narrow
aperture) and blurred (wide aperture) input images. Right: the computed surface.

noise, we pick the median of 9 windows near a grid point. Points where the estimated
blur level is very low or very high were removed since, for these points, the relation
between the estimated defocus and the depth is inaccurate.

5 Four-Fold Ambiguities

The previous sections looked at problems where each decision had two options. In
this section we demonstrate an extension to discrete ambiguities with four options. As
a model, we look at a shape from texture problem. Suppose a collection of similar
triangles are scattered on a smooth surface viewed orthographically. All triangles are
scaled versions of a known triangle. In addition, we assume that one edge on each
triangle can be identified. For instance, if the texture elements are rectangles, as in
Fig. 6, we can identify the diagonal. This information leads to four-fold ambiguity since
there are two ways to match the image segments with the edges of the known triangle.

Algebraically, let (xi, yi, zi), i = 1, 2, 3, be the three vertices of a triangle in the
image. Denote dxij = xi − xj , dyij = yi − yj , dzij = zi − zj = p · dxij + q · dyij ,
where p, q are the slopes of the triangle’s plane. Since the triangle is similar to the
model triangle, the 3D length ratios are known

r1 =
dx2

12 + dy2
12 + dz2

12

dx2
13 + dy2

13 + dz2
13

, r2 =
dx2

23 + dy2
23 + dz2

23

dx2
13 + dy2

13 + dz2
13

. (12)

This leads to two quadratic equations in p, q. Simple manipulations lead to a quadratic
equation in q2 that can be solved for the positive root (details are omitted). Switching
between r1,r2 gives another solution. In the general case, the four solutions are of the
form ±(p1, q1) and ±(p2, q2).

In the SDP literature, the max-k-cut problem was studied by Frieze and Jerrum [28]
and de Klerk, Pasechnik, and Warners [29]. While an ideal encoding requires two bits to
encode four possibilities, their encoding uses four bits: a single indicator bit set to 1 and
the rest 0. Since the matrix X has O(n2) entries, redundant encoding makes the SDP
problem 4 times larger, which is a significant factor for current SDP solvers. There is
a natural encoding of this problem with two sign bits for each constraint using average
and offset vectors similar to the sums and difference vectors of Sect. 2.2. However, we
found that if the two bits are completely independent, the rounding phase becomes more
difficult and results get worse. Instead, our encoding uses two variables d1, d2 for each
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triangle that ideally would take the values −1, 0, 1. We add the constraint d1 · d2 = 0
so that only one decision variable is active at a time

p = d1p1 + d2p2 , q = d1q1 + d2q2 , d1 · d2 = 0 . (13)

By expressing p, q for each triangle using the spline parameters and adding the smooth-
ness term, we arrive at a system of the form (1) in 2n discrete variables. The SDP
relaxation is modified to

argmin
X

C • X s.t. X2i−1,2i−1 + X2i,2i = 1 , X2i−1,2i = 0 , X � 0 . (14)

After solving the SDP problem (14) for X , Cholesky factorization X = RRt embeds
the decision variables into a sphere in IR2n. Let ui denote the i-th row of R, so that
Xij = ui ·ut

j . For each decision there are two orthogonal vectors, u2i−1,u2i, such that
‖u2i−1‖2 + ‖u2i‖2 = 1. The rounding phase has to decide which of the two vectors is
active, and round the active variable to either 1 or −1. In the ideal case, the vectors
associated with the inactive variables would concentrate near the origin. While concen-
tration can be observed, deciding which variable is active by picking the longer vector
of each pair is not powerful enough. We execute the following heuristics:

1. A column of the matrix X provides an indication about the orthogonality between
a row vector ui of R to the other rows. We multiply ui by αi, the magnitude of the
i-th column of X . This has the effect of moving vectors orthogonal to the rest (in
particular close to 0) towards the origin. In addition, the largest singular vectors of
the modified vectors become less affected by the inactive variables.

2. The vectors αiui are projected on a plane as in (11), and a line is swept circularly.
For each pair, the point with the largest projection on the sweep line is considered
active, and the sign of the projection is the rounded value (events in this circular
sweep occur at angles where the projections of the points on the sweep line are
equal in absolute value). We repeat this step for different planes and store the best
circular cut for each plane.

3. For every variable, we estimate the probability pi it is inactive as the percentage of
best cuts where it was inactive. Clearly, p2i−1 + p2i = 1. We modify the diagonal
of the matrix C to reflect this knowledge by setting Cii = Cii +μpi (μ is a tuning
parameter). The SDP is solved a second time with the modified matrix C. Due to
the constraint X2i−1,2i−1 + X2i,2i = 1, vectors which are believed to be inactive
are pushed towards the origin.

4. We repeat steps 1,2 with the modified C, keep the best solutions and run the K-L
algorithm as a final step. The modification of the K-L algorithm to four possibilities
is straightforward.

The method is demonstrated in Figs. 6 and 7. In Fig. 6, A collection of 415 similar
rectangles at random orientations is overlaid on a 3D surface. Our program uses tri-
angles made of the diagonal and two sides of each rectangle. Only the proportions of
the model triangle are assumed known. The circular sweep in the plane of the first two
principle components makes 148 errors in the first round (out of 830), and after modi-
fying the C matrix, makes 114 errors in the second round. Note that a large number of
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Fig. 6. Reconstruction from similar rectangles. Top left: the input image is made of similar rec-
tangles overlaid on a 3D surface. Top right: the circular cuts of the projections on the plane of
the two principle directions for the first and second SDP embeddings. Bottom Left: original sur-
face. Bottom middle: output of the program. Bottom right: spline surface using the ground truth
decision vector.

Fig. 7. Left to right: surface textured with rectangles in ratio 1:2, input image, parallelograms
extracted from the image and the computed surface

inactive variables are concentrated too close to the origin than could be distinguished in
this figure. The final computed surface (bottom middle) makes 80 errors. The average
height difference between the original and computed surfaces is 5%. Wiggles in the
computed surface arise because only 300 basis are used. Similar wiggles occur with a
spline that uses the ground truth decision vector (bottom right). In this example, the cost
function of the computed surface is lower than the cost of the ground truth spline.

6 Conclusions

Several depth cues, such as texture, shading and defocus, are inherently ambiguous at
the local level. In this paper we examined integration of discrete constraints arising
from these ambiguities with continuous objectives like surface smoothness. Problems
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of this form involve both continuous and discrete variables, and can be transformed
into an entirely discrete optimization problem, which is computationally hard. For an
approximate solution we used SDP relaxation. We improved the rounding phase using
a combination of heuristics, namely projection on planes in the subspace of the largest
principle components, efficient circular sweep, and the K-L algorithm. These general
heuristics were shown to be useful in our setting, and are potentially useful for other
SDP applications as well.

Compared to other energy minimization approaches, such as belief propagation or
graph cuts, our approach is global. Any discrete decision directly influences the cost of
the entire surface. The optimization is not based on local neighborhoods. Using a global
approach is sometimes necessary, since knowledge of a label at a point could say little
about a neighboring label. Another important property of SDP is that there is no need
for initialization. However, if a good starting vector d is available, it can be exploited
by performing the rounding phase on a linear combination of X and d · dt [30].

Our focus has been on developing a general framework for solving problems of the
form (1), involving ambiguous discrete constraints. In practice, after binary decisions
are made, the surface can be re-integrated using more robust integration methods. While
the use of smoothness was demonstrated to resolve certain shapes, for many surfaces
smoothness alone is insufficient and additional unambiguous constraints are required.
A natural extension to the approach presented here would be to replace the spline with a
shape basis, e.g. for particular shapes such as faces [31]. The general form of (1) allows
for many other variations, such as adding linear constraints (e.g. specifying depths or
normals at specific points [32]), or using shading information to disambiguate some
normals [33].
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Appendix

In this section we describe in more detail the spline (2) and smoothness energy used
in our implementation. These were chosen mainly for the sake of simplicity, and other
splines and energies (e.g. thin-plate spline) could be used. To simplify notation assume
the image is square. We used tensor-product spline bases

bij(x, y) = bi(x)bj(y) , (15)

where bi, bj are singular vectors associated with small singular values of the matrix

D =

⎡

⎢⎢⎢⎣

1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 −2 1

⎤

⎥⎥⎥⎦ . (16)

For the smoothness energy we used the sum of squared second derivatives over the
image. The energy of a basis function of the form (15), with ‖bi‖ = ‖bj‖ = 1, is

e2
ij = ‖Dbi‖2 + ‖Dbj‖2 ≈

∫∫ (
d2bij

dx2

)2

+
(

d2bij

dy2

)2

dx dy . (17)

Note that for tensor-product splines we need to integrate only one-dimensional func-
tions. The vectors Dbi are proportional to the left singular vectors of D and hence
orthogonal. Since the basis functions bi are orthogonal, as are Dbi, the smoothness of
a spline governed by v can be written as ‖Ev‖2, where E is a diagonal matrix made of
the elements eij for each basis used. The advantage of this approach over Fourier basis
is that the basis vectors are not cyclic.
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