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Abstract
This paper considers the problem of reconstructing vi-

sually realistic 3D models of fire from a very small set
of simultaneous views (even two). By modeling fire as a
semi-transparent 3D density field, we show that fire recon-
struction is equivalent to a severely under-constrained com-
puterized tomography problem, for which traditional meth-
ods break down. Our approach is based on the observa-
tion that every pair of photographs of a semi-transparent
scene defines a unique density field, called a Flame Sheet,
that (1) concentrates all its density on one connected, semi-
transparent surface, (2) reproduces the two photos exactly,
and (3) is the most spatially-coherent density field that does
so. From this observation, we reduce fire reconstruction to
the convex combination of sheet-like density fields, each of
which is derived from the Flame Sheet of two input photos.
Experimental results suggest that this method enables high-
quality view extrapolation without over-fitting artifacts.

1. Introduction

The computational modeling of physical phenomena
such as fire and smoke has received significant attention in
computer graphics [1–6] as well as in other fields of ex-
perimental science [7–13]. While photographs provide a
great deal of information about such phenomena, very little
is known about how 3D models can be extracted from im-
ages. Extracting such information could open up new op-
portunities for creating better visual models [1–3]; develop-
ing image-based representations of fire [14]; permitting the
manipulation of scene appearance in photographs that con-
tain such phenomena; and developing new, dynamic simu-
lation systems that use real-world data as input.

Toward this end, this paper considers the problem of re-
constructing 3D fire densities from a set of simultaneously-
captured images or videos. Using optical models of fire
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developed in the combustion literature [8, 9, 15], we model
fire as a semi-transparent density field whose appearance at
a projected pixel is a linear function of the transparencies
along the corresponding ray.

We believe that any practical method for the image-based
modeling of fire must satisfy three criteria:

• Small viewpoint coverage: Fire is an inherently dy-
namic phenomenon and, as such, requires simultane-
ous image capture. While multi-view systems with
tens of video cameras do exist [8, 16], the method
should not break down for small datasets.

• Photo-consistency: To preserve visual realism, recon-
structed densities must reproduce the input images.

• Good view extrapolation: All views should be ren-
dered with high quality, without “over-fitting” the lim-
ited number of input views.

Even though these criteria have received much attention in
the case of opaque objects [16], satisfying them for fire or
other semi-transparent scenes is not well understood.

At the heart of our approach lies the observation that ev-
ery pair of photos of a transparent density field uniquely
determines two special fields, called Flame Sheets, each of
which reproduces the photographs exactly and concentrates
all its density along a single connected surface. Using this
observation as a starting point, we show that: (1) Flame
Sheets can be decomposed into a family of solutions involv-
ing further sheet-like structures, (2) this family is a basis
of the space of density fields photo-consistent with two or
more views, and (3) the space of photo-consistent density
fields is linear and convex. These results lead to a simple
and efficient algorithm, called Flame-Sheet Decomposition,
that computes the fire density field as a convex combination
of sheet-like densities derived from pairs of input views.

While not a topic of previous computer vision research,
several methods in the combustion literature have mod-
eled 3D flames and their physical properties. Common ap-
proaches use lasers [12], complex optical systems [8], and
thermography devices [7, 9] to extract a fire’s physical prop-
erties. The most closely related work involves the use of
computerized tomography methods for flame reconstruc-



tion. Because classic back-projection or algebraic methods
[17] require tens or hundreds of frames to obtain accurate
results, these methods have not been applied to fire datasets.
Even tomography methods specialized to the sparse-view
case, typically favoring local smoothness in a statistical
framework [18, 19], do not generate 3D reconstructions ad-
equate for view synthesis. Instead, previous methods of
flame reconstruction capture images with multiple-second
exposures [7, 9, 10] or assume a “stationary” fire [8] to re-
construct rough approximations to the density field. As a
result, these methods are not appropriate for view extrap-
olation and cannot be used to model flickering or complex
flames (e.g., Figure 9), whose structures can change dramat-
ically from one instant to the next.

Unlike existing methods, Flame-Sheet Decomposition is
specifically designed to capture models that are both photo-
consistent and have good extrapolation capabilities. Intu-
itively, Flame Sheets represent the most spatially coherent
interpretation of the input views. Hence, even though the
problem of computing densities from a few images is inher-
ently under-constrained, Flame Sheets provide a strong bias
toward solutions that are both photo-consistent and spatially
coherent. Moreover, unlike tomographic methods, which
are ill-posed for a small number of views, Flame Sheets
are unique and lead to a reconstruction method that is well-
posed and easy to implement. This allows us to reconstruct
flames from as few as two input views, while also being able
to incorporate more views if they are available.

Our approach offers five contributions over the exist-
ing state of the art. First, unlike methods where photo-
consistency is the only objective, our approach establishes
both photo-consistency and spatial coherence as objectives
for visual reconstruction. Second, it leads to a well-posed
reconstruction algorithm that can handle any number of in-
put views. Third, it introduces Flame Sheets as a complete
basis for the space of photo-consistent density fields, en-
abling their potential use for reconstructing and rendering
semi-transparent scenes other than fire (whenever the lin-
ear image formation model is valid). Fourth, the sheet-like
structure of the Flame-Sheet Decomposition enables use of
simple warp-based methods [20] to create photo-realistic
views of the reconstructed fire. Fifth, our results show that
the algorithm is able to render detailed reconstructions of
complex flames without over-fitting artifacts.

2. Image Formation Model

Consider a fire viewed by a set of orthographic cameras
lying on a single viewing plane (Figure 1). We represent
this fire as a 3D density field, D(r, c, z), of luminous fire re-
action products, with the z-axis perpendicular to the view-
ing plane. Reconstruction of this density field can there-
fore be expressed as a sequence of 2D reconstruction prob-
lems, each of which reconstructs a single slice, D(r, c, z0),
of the field. Our goal is to reconstruct such a slice from cor-
responding epipolar lines in the input views. To achieve

Figure 1. Viewing geometry. Two simultaneous ortho-
graphic images of a flame corresponding to a 90◦ rotation
about the vertical z-axis. White horizontal lines indicate
the corresponding epipolar lines at height z0. A top view of
their epipolar plane is shown on the right.

this, we first relate the 2D field, D(r, c, z0), to the one-
dimensional images it generates. For notational simplicity,
we drop the z coordinate for the remainder of the paper.

The image formation model of fire can be expressed as a
special case of the general radiative transfer model. Given
an image Î aligned with the c-axis, the intensity of pixel Î(c)
is a sum of two terms—a term that integrates radiance from
luminous fire material on the ray through that pixel and a
term that incorporates background radiance [21]:

Î(c) =
∫ L

0

D(r, c) τ(r)J(r) dr + Îbgτ(L), (1)

where D is the fire’s density field; J models the total effect
of emission and in-scatter less any out-scatter per unit mass;
L defines the interval [0, L] along the ray where the field is
non-zero; Îbg is the radiance of the background; and τ mod-
els transparency, i.e., the degree by which the fire products
between the pixel and a position x along the ray block radi-
ance further away from reaching that pixel,

τ(x) = exp
(
−σt

∫ x

0

D(r, c) dr

)
, (2)

where σt is a positive constant dependent on the medium.
To simplify this model further, we rely on two assump-

tions used in existing literature on combustion analysis:

• Negligible scattering: This is a good approximation
for fire not substantially obscured by smoke because
emission from luminous soot particles dominates radi-
ance [3, 8, 9, 13]. In this case, the function J(r) be-
comes a pure self-emission term.

• Constant self-emission: This assumption models fires
whose brightness depends only on the density of lu-
minous soot particles [15], allowing us to assume that
self-emission is constant per unit mass, i.e., that J(r)
is a constant, J0.

Together, these assumptions lead to an expression for Î(c)
that depends only on the fire’s transparency along the ray:

Î(c) = J0 (1 − τ(L)) + Îbgτ(L). (3)



This expression is especially important because it allows us,
through a simple intensity transformation, to establish a lin-
ear relation between a pixel’s intensity and the density field
along the ray through that pixel. In particular, when the
camera’s settings do not allow pixel saturation, we have

I(c) = − log

(
Î(c) − J0

Îbg − J0

)
= σt

∫ L

0

D(r, c) dr. (4)

In practice, images are discrete and the factor σt, which
is constant across all pixels and input views, is unknown.
Moreover, the linearity of Eq. (4) tells us that the sum of all
transformed pixel intensities in an image does not change
with viewpoint. Therefore, without loss of generality, we
represent each image as an N -dimensional column vector
of transformed pixel intensities whose rows sum to one,1

and represent the fire density field as an N × N matrix D
that can be recovered only up to an unknown scale factor.
This leads to the following 3D fire reconstruction problem:

Definition 1 (Photo-Consistent Fire Reconstruction). Given
column vectors I1, . . . , IV representing V views of the fire density
field, reconstruct a matrix D that is photo-consistent with these
views, i.e., every pixel Iv(c) satisfies the discrete form of Eq. (4).

3. The Flame Sheet

For two views of a fire density field, the reconstruction
problem is extremely under-determined (Figure 2). In fact,
given images I1 and I2 corresponding to row and column
sums of the field respectively, it is trivial to show that

D = I1IT
2

is a solution, which we call the multiplication solution.2

While photo-consistent, the multiplication solution does not
generalize to more views and causes significant artifacts
during view synthesis. For instance, Figure 2 shows that
double images are created in intermediate views, resulting
in blurring (see also Figure 9, rows 1-2). Intuitively, the
multiplication solution represents the most spread-out and
least-coherent solution.3

To avoid these problems while preserving photo-
consistency, we define an alternative, maximally-coherent
solution. Intuitively, the construction of this solution can be
visualized as follows (Figure 3a,b). Imagine “pushing” the
densities accumulated in image I upward along the columns
of the density field, concentrating them on a monotonic
curve, so that the field becomes photo-consistent with the
other input image. This pushing and spreading procedure
will always be possible because both images sum to one.
We describe a method for constructing two such curves of
opposite diagonal orientation, called Flame Sheets, in the
course of an inductive proof for their existence.

1This normalization implicitly assigns a value to the unknown σt.
2Note that any two images can be reduced to this orthogonal-view case

by a known and invertible 2D warp [20] of the epipolar plane.
3It is possible to show that it is the maximum entropy solution.

Figure 2. Ambiguities in two-view fire reconstruction.
Dark gray squares represent twice the density of light gray
ones. All three density fields are photo-consistent with the
two orthogonal views, I1, I2, but their images differ along
the third. The right-most field is the multiplication solution.

(a) (b) (c)

Figure 3. Creating Flame Sheets. (a) Moving from left to
right in image I, the density of each pixel in I is “pushed”
in the direction of the arrows to ensure the field’s photo-
consistency with the second image. (b) A second sheet is
defined by switching the roles of the input images. (c) The
corresponding multiplication solution.

Theorem 1 (Flame Sheet Theorem). Every pair of non-negative
vectors, I1, I2, with equal column sums define two unique matri-
ces, D,D′, with the following properties:

• Their row and column sums are equal to I1, I2 respectively.
• D = 0 everywhere except a discrete monotonic curve from

D(1, 1) to D(N, N).
• D′ = 0 everywhere except a discrete monotonic curve from

D′(1, N) to D′(N, 1).

Proof. (By induction) Denote the marginals
∑

c D(r, c) and∑
r D(r, c) as D(r) and D(c) respectively. We maintain the

following induction hypothesis for a moving “frontier element,”
(r, c), that traces a Flame Sheet in the density field (Figure 4):

1. The sub-vectors I1(1, . . . , r−1) and I2(1, . . . , c−1) define
a Flame Sheet solution.

2. Intensities at the projection of (r, c) are unaccounted for in
at most one vector. Specifically, either D(r) = I1(r) and
D(c) ≤ I2(c), or D(r) ≤ I1(r) and D(c) = I2(c).

For the base case, set D to zero everywhere except D(1, 1) =
min(I1(1), I2(1)). There are now three cases to consider, each
corresponding to a move of the frontier element that expands the
curve monotonically while maintaining our induction hypothesis:

• (→ ) D(r) < I1(r)
Set D(r, c + 1) = min(I1(r) − D(r), I2(c + 1)).

• ( ↓ ) D(c) < I2(c)
Set D(r + 1, c) = min(I1(r + 1), I2(c) − D(c)).

• (↘ ) D(r) = I1(r) and D(c) = I2(c)
Set D(r + 1, c + 1) = min(I1(r + 1), I2(c + 1)).

Because both vectors have the same sum, the induction will always
terminate with no unaccounted density at (N, N). Furthermore,



Figure 4. Visualizing the inductive step in the proof of The-
orem 1. Intensities in the light gray sub-vectors are fully ex-
plained by a field that concentrates non-zero densities along
a “partial” Flame Sheet curve (dark gray elements) and has
zero density everywhere else (light gray region of D). De-
pending on the unexplained intensities at the projections of
(r, c), the partial Flame Sheet is expanded in one of the
three directions shown. A sequence of five such expansions
was used to create the Flame Sheet in Figure 3b.

from D(r, N) the only possible move is (↓), and from D(N, c),
the only possible move is (→). The proof for D′ is analogous.

4. Space of Photo-Consistent Density Fields

While two-view Flame Sheets are adequate for mod-
eling simple flames, they cannot model complex flames
with large appearance variations across viewpoint and may
actually be perceived as transparent surfaces. To over-
come this limitation, we generalize our analysis to multi-
ple views. The following properties of the space of photo-
consistent densities give a way to combine multiple 2-view
solutions without working directly in the prohibitively high-
dimensional space of density fields (Figure 5):

Property 1 (Nesting Property). The space of density fields
photo-consistent with k input views is a subset of the space of
density fields photo-consistent with k − 1 of those views.

The Nesting Property suggests that every density field
photo-consistent with k views must lie in the intersection of
all 2-view solution spaces, for all pairs of input views.

Property 2 (Convexity Property). Every convex combination of
photo-consistent density fields is photo-consistent.

Proof. By definition, the discrete line integral corresponding to a
particular pixel in an input image has the same value for all photo-
consistent density fields. Hence, by the linearity of discrete inte-
gration, every convex combination of these integrals has the same
value. Thus, convex combinations of density fields are themselves
photo-consistent (and non-negative).

A key consequence of the Convexity Property is that the
space of photo-consistent density fields is a simplex. This
follows because the only two constraints we impose on the
space of density fields, i.e., photo-consistency and non-
negativity, imply a piecewise-linear boundary. Although
only the O(N2) photo-consistent density fields on the ex-
treme corners of the simplex span the V -view solutions with
their convex combination, a sparser sampling on the bound-
ary may still permit a good approximation (Figure 5).

Figure 5. Visualizing the space of density fields. A point in
the figure represents a 2D density field D. The space of den-
sity fields photo-consistent with k − 1 views is a region in
this space (outer-most polygon). The Nesting Property tells
us that as the number of input views increases to k, this re-
gion shrinks (dark gray polygon). Moreover, the Convexity
Property implies that these regions are always simplices. In
general, the simplex defined by a set of “basis (k− 1)-view
density fields” (light gray polygon) may not span the entire
V -view solution simplex.

Property 3 (Image Linearity Property). The image of a con-
vex combination of photo-consistent density fields is the convex
combination of their respective images.

Proof. Follows directly from linearity of image formation.

The Image Linearity Property implies that if we repre-
sent the space of photo-consistent fields as the convex com-
bination of “basis fields” on its boundary, we can represent
photo-consistency constraints as linear functions on the im-
ages of these fields, rather than the fields themselves. This
is especially important from a computational standpoint.

5. Flame-Sheet Decomposition

The solution-space analysis of Section 4 tells us that if
we have, for every pair of input views, a set of “basis den-
sity fields” whose simplex spans the associated 2-view so-
lution simplex, we can express every density field photo-
consistent with V views as a convex combination of all
these basis fields. Moreover, we can always find such a
convex combination using image-space computations, i.e.,
by finding a convex combination of the images of these ba-
sis fields that reproduces all input views. To turn these ideas
into an algorithm we answer two questions: (1) how do we
efficiently generate an appropriate set of basis fields from
the input views and (2) how do we find convex combina-
tions of these fields that maximize photo-consistency with
all views? We consider each question below.

5.1. Generating Basis Density Fields

The Flame Sheet creation process outlined in Section 3
and in Figures 3-4 takes into account all pixels in two cor-
responding epipolar lines. To generate a whole family of 2-
view photo-consistent solutions, we simply apply the same
procedure to portions of the input views. The resulting so-
lutions, which we call Decomposed Flame Sheets, retain



Figure 6. Breaking I1 and I2 into component parts. I1 is de-
composed into a single interval of pixels I′1, whose intensi-
ties sum to w, and a sub-image I′′1 that contains the remain-
ing mass of I1 (i.e., 1 − w). I2 is decomposed in a similar
way, with the restriction that the intensities of I′2 also sum
to w. Note that, in general, I′1 and I′′1 need not cover disjoint
sets of pixels. Also shown are the two flame sheets, D′ and
D′′, computed from the partial images. These flame sheets
have opposite diagonal orientations (Section 3).

the photo-consistency and sheet-like structure of the orig-
inal Flame Sheets.

Given two input images I1 and I2, we construct a De-
composed Flame Sheet by (1) splitting each image into two
parts and (2) using these parts to construct two new Flame
Sheets, D′ and D′′. The precise splitting process, described
in Figure 6, is of the general form

I1 = wI′1 + (1 − w)I′′1
I2 = wI′2 + (1 − w)I′′2

, (5)

where 0 < w < 1, and all images sum to one. The new
Flame Sheets can now be combined to create a Decomposed
Flame Sheet that explains the complete set of input pixels:

D = wD′ + (1 − w)D′′. (6)

It follows from the Convexity and Image Linearity Proper-
ties that the field D is photo-consistent with I1 and I2.

Observe that any particular solution in the family of De-
composed Flame Sheets can be parameterized by the weight
w, the diagonal orientation of D′, and the position of I′1 and
I′2 within the original images. Therefore, given S different
weights and T distinct positions, we can create 2ST 2 De-
composed Flame Sheets.

5.2. Flame-Sheet Decomposition Algorithm

Using the procedure for generating Decomposed Flame
Sheets as a starting point, we rely on the following algo-
rithm to compute an epipolar slice of the fire density field
that maximizes photo-consistency with V views:

1. (Basis construction). For each of the P = V (V − 1)/2
pairs of views, generate a family of B Decomposed Flame
Sheets, {Dp 1,Dp 2, . . . ,Dp B}, according to Section 5.1.
Warp these into a common global coordinate system.

2. (Basis projection). Project the Decomposed Flame Sheets to
all input viewpoints, stacking their images into V P blocks of
size N × B:

Fv p =
[

Iv(Dp 1) Iv(Dp 2) · · · Iv(Dp B)
]
.

3. (QP formation). Stack the blocks from Step 2 and the input
images together,

F =




F1 1 F1 2 · · · F1 P

F2 1 F2 2 · · · F2 P

...
FV 1 FV 2 · · · FV P


 , I =




I1

I2

...
IV


 ,

and form the following quadratic programming problem:

minimize ||Fx − I||2
subject to

∑
x = 1,x ≥ 0.

4. (QP solution). Solve this quadratic optimization program
by any standard method [22]. The resulting optimal x gives
the weights needed to express the density field as a convex
combination of the Decomposed Flame Sheets from Step 1.

Note that Step 3 of the algorithm is suboptimal. This is be-
cause the convex combination of sheets computed in Step
1 may not, in general, intersect the space of V -view photo-
consistent solutions (Figure 5). While an optimization over
arbitrary linear combinations of sufficiently many sheets
would avoid this problem (since Section 5.3 shows that our
basis is complete), the computational requirements would
be increased substantially. This is because explicit enforce-
ment of non-negativity constraints for arbitrary linear com-
binations requires working in the N2-dimensional space of
density fields. In practice, we therefore use the convex ap-
proach exclusively.

5.3. Completeness Theorem

Even though Decomposed Flame Sheets are easy to gen-
erate, a sufficiently large number of them spans the space of
V -view photo-consistent densities. We derive this result by
first analyzing the space of 2-view photo-consistent densi-
ties through the notion of a switching matrix.

Lemma 1. Given two N -column vectors, all non-negative
N × N matrices that generate these vectors via their row and col-
umn sums lie in an (N − 1)2-dimensional hyperplane.

Proof. Given any particular matrix D0 that generates these vec-
tors, we can represent the matrices in this space by the hyperplane
D0 + S, where S is a matrix with two properties:

• Row and column sums preserved: We require that 1T S = 0
and S1 = 0 so that the vectors are still reproduced.

• Non-negativity preserved: For all matrix elements (i, j), we
require that S(i, j) ≥ −D0(i, j).

Note that fixing the (N − 1) × (N − 1) upper-left block of S
uniquely defines the remaining elements, giving us an upper bound
on the dimensionality of the space.

By explicitly constructing an (N−1)2-dimensional basis
for the matrices photo-consistent with two views, we show
that the (N−1)2 dimensionality bound in Lemma 1 is tight.

Lemma 2. The hyperplane described in Lemma 1 can be spanned
by a canonical basis of (N − 1)2 switching matrices.



Proof. Extending the analysis in [19] to the case of continuous-
valued densities, we define a switching matrix N × N to be a
matrix with only four non-zero entries in a rectangle aligned with
the rows and columns as follows:

S =




...
...

· · · +α · · · −α · · ·
...

...
· · · −α · · · +α · · ·

...
...




. (7)

Adding a switching matrix to a density field has the effect of shift-
ing mass from two diagonal corners of the rectangle to the other
two corners.

We define a canonical set of switching matrices {Sij} by fix-
ing Sij(N, N) = +1, and moving another +1 over all positions
in the upper-left block of (N − 1) × (N − 1) elements. Then,
the positions of the corresponding −1’s follow immediately from
the rectangular form of the switching matrix. By expressing these
matrices as 1D vectors we see that they are clearly linearly inde-
pendent, thus forming a basis for the (N − 1)2-hyperplane. This
hyperplane can also be expressed as a linear combination of the
2-view photo-consistent matrices {D0 + Sij}.

Lemmas 1-2 and the Nesting Property imply that any lin-
early independent set of (N − 1)2 densities that are photo-
consistent with two views spans the space of V -view photo-
consistent densities.4

Theorem 2 (Flame Sheet Completeness). The family of Decom-
posed Flame Sheets forms a complete basis for the space of V -
view photo-consistent density fields.

Proof. The Decomposed Flame Sheets allow us to define a matrix
analogous to a switching matrix. Specifically, let D be a Decom-
posed Flame Sheet defined by images I1, I2 in Eq. (6) and let D̂
be one of the two basic Flame Sheets defined by these images.
Then, the difference D̂ − D can be thought of as a generalization
of a switching matrix. By varying the parameters of D (weight,
position, diagonal orientation), we can generate (N − 1)2 linearly
independent matrices of this form that span the space.

Note that Theorem 2 does not imply that a convex com-
bination of Decomposed Flame Sheets spans the space of
photo-consistent density fields. It does suggest, however,
that these sheets comprise an expressive family of solutions.

6. Experimental Results

We performed experiments with images captured from
two scenes of fire.5 The first scene (“torch”) was a citronella
patio torch, burning with a flickering flame about 10cm tall.

4Another consequence of Lemma 2 is that every Decomposed Flame
Sheet derived from two views lies on the boundary of the space of den-
sity fields photo-consistent with those views. This is because the sheets’
structure ensures that adding an infinitesimally-small switching matrix will
make the density field negative.

5See the ICCV 2003 CD-ROM for color images and video clips, and
visit http://www.cs.toronto.edu/∼hasinoff/fire for more results.

Two synchronized progressive-scan Sony DXC-9000 cam-
eras, roughly 90◦ apart, were used to acquire videos of the
flame (Figure 1). Calibration accuracy was about 0.5 pixels.

For simple flames like the “torch” scene, a two-view re-
construction consisting of one Flame Sheet produces very
realistic views (Figure 7). By comparison, the multiplica-
tion solution shows typical blurring and doubling artifacts.
An algebraic method based on fitting Gaussian blobs to the
density field [23] over-fits the two input images and pro-
duces a badly mottled appearance for extrapolated views.

The second scene (“jet”) consisted of a complex flame
emerging from a gaseous jet (Figure 9, first row). This se-
quence contained 47 frames from a promotional video for
a commercial 3D freeze-frame system [24], roughly corre-
sponding to inward-facing views arranged around a quarter-
circle. Since no explicit calibration was available for this
sequence, we assumed that the views were evenly spaced.

To test the extrapolation capabilities of our approach, we
used a subset of the 47 frames as input and used the rest to
evaluate agreement with the synthesized views (Figure 9).
Results from the multiplication and single Flame Sheet so-
lutions, which are restricted to only two input views, sug-
gest that these methods cannot capture the flame’s appear-
ance and structure accurately because of its complexity and
its large appearance variation across viewpoint. To incor-
porate more views, we applied the algebraic blob method
in [23] and the Flame Sheet Decomposition Algorithm with
the 45◦ view as a third image. In the latter algorithm, we
generated B = 150 Decomposed Flame Sheets for each of
the P = 3 pairs of input views in Step 1, giving rise to a to-
tal of 450 basis fields. To further explore the benefit of us-
ing multiple views, we optimized the convex combination
of these fields in Steps 2-4 in two ways: (1) by maximiz-
ing photo-consistency with the three input images and (2)
by maximizing photo-consistency with four additional im-
ages from the sequence. While the results in Figure 9 and
Table 1 suggest that the Flame Sheet Decomposition Algo-
rithm is superior to the other methods, they also show that
increasing the number of images during optimization has a
clear benefit. On the other hand, increasing the number of
basis fields has little effect (Figure 8).

Three observations can be made from our experiments.
First, the convex combination of Decomposed Flame Sheets
can capture the structure of complex flames because the
sheets sweep out regions of the density field, explaining
fire density at multiple depths. Second, the resulting algo-
rithm can render complex flames from a small number of
input views, without the doubling artifacts of the multipli-
cation solution or the over-fitting artifacts of the blob-based
method. This is because the family of Decomposed Flame
Sheets is expressive and induces a bias toward coherent so-
lutions. Third, the sheets’ surface-like structure enables
photo-realistic rendering of complex flames by warping and
blending the partial images in Eq. (5). Thus, the fire models
we extract are suitable for interactive graphics applications.



0◦ reconstructed view (30◦) reconstructed view (60◦) 90◦
input multiplication flame sheet blobs multiplication flame sheet blobs input

Figure 7. Views of three different reconstructions of the “torch” dataset. The same two input images were used for all methods.
Since all methods reconstruct the input views, only novel views of the reconstructed flame are shown.

reconstruction method (views)
RMS error

input all

flame sheet solution (2) 0 26.6
multiplication solution (2) 0 21.5
blob-based method (3) 13.3 19.0
flame sheet decomposition (3) 10.1 18.4
flame sheet decomposition (3/7) 11.5 15.8

Table 1. Per-pixel RMS image reconstruction error for dif-
ferent algorithms applied to the “jet” dataset. For the last
entry, three input views were used for basis generation and
seven for optimizing photo-consistency. Note that the first
two reconstructions reproduce the input views exactly.

0 100 200 300 400 500
15

20

25

30

35

number of decomposed flame sheets

R
M

S
 e

rr
or

 p
er

 p
ix

el

input views
all views

Figure 8. Dependence of image error on the number B of
generated basis fields (Section 5.2, Step 1).

7. Concluding Remarks

A current limitation of our multi-view technique is the
planar configuration of the input viewpoints. While pla-
narity is used for efficiency reasons, it may be possible
to derive an efficient reconstruction method that combines
Flame Sheets from non-planar views.

More generally, the question of how best to capture the
global 3D structure and dynamics of fire remains open. To-
ward this goal, we are investigating new spatio-temporal co-
herence constraints and are studying ways to integrate our
approach with traditional fire simulation methods.

Finally, while our limited experiments suggest that
Flame Sheets and the Flame-Sheet Decomposition Algo-
rithm are useful for fire reconstruction, these tools may also

prove useful in more general contexts. This includes sparse-
view tomography problems in medical diagnostics [17] and
accelerated image-based methods for volume rendering.
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Figure 9. Reconstruction of the “jet” dataset. Ground truth images of the fire are shown in the top row; the remaining rows
correspond to different reconstruction methods. Labels on the left indicate the method used, with the number of input views in
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