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Abstract. This paper studies the inference of 3D shape from a set of n noisy
photos. We derive a probabilistic framework to specify what one can infer about
3D shape for arbitrarily-shaped, Lambertian scenes and arbitrary viewpoint con-
figurations. Based on formal definitions of visibility, occupancy, emptiness, and
photo-consistency, the theoretical development yields a formulation of the Photo
Hull Distribution, the tightest probabilistic bound on the scene’s true shape that
can be inferred from the photos. We show how to (1) express this distribution
in terms of image measurements, (2) represent it compactly by assigning an oc-
cupancy probability to each point in space, and (3) design a stochastic recon-
struction algorithm that draws fair samples (i.e., 3D photo hulls) from it. We also
present experimental results for complex 3D scenes.

1 Introduction

Many applications, from robotics [1] to computer graphics [2] and virtual reality, rely
on probabilistic representations of occupancy to express uncertainty about the physical
layout of the 3D world. While occupancy has an intuitive and well-defined physical
interpretation for every 3D point (i.e., a point is occupied when the scene’s volume
contains it), little is known about what probabilistic information regarding occupancy is
theoretically computable from a set of n noisy images. In particular, what information
about the occupancy and emptiness of space is intrinsic to a set of n stochastically-
generated photos taken at arbitrary viewpoints? Importantly, how can we answer this
question for general scenes whose shape is arbitrary and unknown?

This paper outlines a general probabilistic theory of occupancy and emptiness for
Lambertian scenes that is intended to handle arbitrary 3D shapes, arbitrary viewpoint
configurations and noisy images. Based on formal definitions of several key concepts,
namely, visibility, occupancy, emptiness and photo-consistency, our theoretical devel-
opment yields a formulation of the Photo Hull Distribution. The Photo Hull Distribution
is the tightest probabilistic bound on the scene’s true shape that can be inferred from the
n input photos. Importantly, we show that the theory leads directly to a stochastic algo-
rithm that (1) draws fair samples from the Photo Hull Distribution and (2) converges to
an optimal conservative estimate of the occupancy probability, i.e., to the lowest upper
bound on that probability that is theoretically computable from the photos. Experimen-
tal results illustrating the applicability of our framework are given for real scenes.

Our work is motivated by four objectives that we believe are key to designing a
general and useful probabilistic theory of occupancy and emptiness:

– Understanding stereo ambiguities: Since stereo reconstruction can be ambiguous
even in the noiseless case, a clear understanding of the mathematical relationship
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Figure 1. (a) Noiseless images of four Lambertian points with identical albedos afford seven
consistent scene interpretations—f2,3g,f1,4g f1,2,3g, f1,2,4g, f1,3,4g,f2,3,4g, and f1,2,3,4g.
Maximizing image consistency in the presence of even small amounts of noise will cause one
of these interpretations to be arbitrarily preferred. The resulting shape (e.g., f2; 3g), however,
cannot conclusively rule out the possibility that other points may also be occupied (e.g., f1g).
(b) The probabilistic event “5 is visible from L” implies that points 6 and 7 are in empty space,
thereby inducing a cycle of probabilistic dependencies (arrows) that make the events “4 is visible
from L” and “5 is visible from L” dependent on each other. Such cycles characterize the visibility
and occupancy dependencies between every pair of points in IR3 within the cameras’ view.

between shape ambiguity and shape uncertainty, and their effect on occupancy
computation, becomes crucial in the design of stable algorithms (Figure 1a).

– Probabilistic treatment of visibility: Unconstrained scenes induce arbitrarily com-
plex visibility relationships between cameras and surface points, and arbitrarily
long probabilistic dependency cycles between any two 3D points (Figure 1b). One
must provide a physically-valid and self-consistent probabilistic interpretation of
occupancy (which refers to individual points) and visibility (which depends on a
scene’s global shape).

– Algorithm-independent analysis of occupancy: Without a clear understanding of
what is theoretically computable from a set of input images, it is difficult to assess
the performance of individual algorithms and the effect of heuristics or approxima-
tions they employ.

– Handling sensor and model errors: Since computational models are inherently
limited in their ability to describe the physical world and the true image formation
process, it is important to account for such errors.

A key aspect of our analysis is the explicit distinction we make between the notions
of ambiguity and uncertainty. Intuitively, we interpret shape ambiguity as the multi-
plicity of solutions to the n-view reconstruction problem given noiseless images. Shape
uncertainty, on the other hand, exists in the presence of noise and modeling errors and
is modeled as a probability distribution that assigns a probability to every 3D shape.

While ambiguities have long been recognized as an important problem in stereo
(e.g., [3]), the question of how these ambiguities affect the estimation of occupancy and
emptiness is not well understood. Existing stereo algorithms make one or more assump-
tions that allow one to estimate a unique shape. Most methods compute the shape that
maximizes some form of image consistency likelihood (i.e., that a reconstructed shape
is consistent with the image measurements), assuming constraints or prior beliefs about
shape and image disparities. Examples include the use of SSD-based likelihoods [4],
window-based correlation [5], ordering constraints on correspondence [6, 7], shape pri-
ors [8], as well as MRF [9, 10] and parametric models [11, 12]. But these approaches do
not estimate the probability that a region is empty or occupied. This is because image



consistency is not equivalent to occupancy, nor is it the opposite of emptiness (Figure
1a). In general, ascertaining the emptiness of a region requires that one consider the
likelihood that no consistent scene interpretation intersects that region, a problem for
which no formal analysis currently exists.

Even though recent formulations of the n-view stereo problem have demonstrated
an ability to resolve global visibility relationships among views [13–19], most of these
ignore the existence of noise and the resulting model uncertainty. Two notable excep-
tions are the Roxel Algorithm [20] and the Probabilistic Space Carving Algorithm [21],
which attempt to capture shape uncertainty by assigning a “soft” occupancy value be-
tween zero and one to every voxel in space. Working under the assumption that an
accurate treatment of long-range probabilistic dependencies is intractable, these ap-
proaches rely on heuristic approximations to assess a voxel’s visibility. For instance,
the Roxel Algorithm assesses a voxel’s visibility by assuming that voxels in front of it
are “semi-transparent,” an assumption that is not consistent with image formation mod-
els for opaque scenes. Analogously, the Probabilistic Space Carving Algorithm assumes
that visibilities of distant voxels are independent from each other and that visibility in-
formation can be propagated locally from voxel to voxel without regard to any specific
global 3D shape. Neither algorithm takes into account the global nature of visibility,
leading to occupancy calculations that do not afford a probabilistic interpretation in a
strict mathematical sense. Similar problems would arise in any method that relies on a
local model for propagating probabilities since long-distance dependency cycles, like
those depicted in Figure 1b, must be taken into account.

To our knowledge, no attempts have been made to define the notions of “occupancy
probability” and “emptiness probability” in a mathematically rigorous manner when
noisy images are given as input. Instead, existing approaches define their goal procedu-
rally, by giving an algorithm that assigns soft occupancies to 3D points. The question
of what probabilistic information is theoretically computable from a set of n noisy im-
ages, without regard to specific algorithms or implementations, is therefore still open.
In practice, this makes it difficult to characterize the behavior of individual algorithms,
to define precise notions of optimality and to compare results from different algorithms.

In this paper, we argue that a probabilistic treatment of occupancy and emptiness
that accounts for stereo ambiguities, shape uncertainty and all long-range probabilis-
tic dependencies caused by visibility can be formulated. Moreover, it leads to a fairly
straightforward reconstruction algorithm. At the heart of our approach lies the realiza-
tion that we can overcome technical difficulties via a probabilistic modeling of shape
space, i.e., the space of all 3D reconstructions. Using the photo-consistency theory in
[19] as a starting point, we show that shape-space modeling allows one to derive a com-
plete theory of occupancy and emptiness. This theory arises from a small set of “ax-
ioms” (a generative image formation model and a radiance independence assumption)
and does not rely on heuristic assumptions about scene shape or the input photos.

2 Shape-Space Modeling: Photo Hulls, Occupancy, and Emptiness

In the formulation of shape ambiguity and uncertainty that follows, we represent shapes
using a discrete volumetric approximation and we further define a bounding volume
V � <3 that is assumed to contain the scene. The shape space of V is defined simply
as its powerset, 2V . With these definitions, we use the photo-consistency theory of
Kutulakos and Seitz [19] to model shape ambiguities and to introduce the concept of
the Photo Hull Distribution to model shape uncertainty.
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Figure 2. (a) The photo hull H(V; I) contains all photo-consistent shapes (e.g., S� and a shape
S). (b) When noise is present, the photo hull cannot be established with certainty. The Photo Hull
Distribution assigns a probability to every possible hull (e.g., H1 and H2). (c) Foreground and
background modeling: the foreground and background models are satisfied for voxels v and v

0,
respectively.

2.1 The Photo Hull

Photo-consistency is based on the idea that a valid solution to the reconstruction prob-
lem should reproduce the scene’s input photographs exactly when no image noise is
present. When one or more such photographs are available, each taken from a known
viewpoint, they define an equivalence class of solutions called photo-consistent shapes.
For Lambertian shapes, a voxel v 2 S is photo-consistent if (1) v is not visible to any
camera, or (2) we can assign a radiance to v that is equal to the color at v’s projection
in all photos where v is visible. Accordingly, a shape S 2 2V is photo-consistent if all
its voxels are photo-consistent.

The equivalence class of photo-consistent shapes captures all the ambiguities present
in a set of n noiseless images and is closed under set union (Figure 2a):

Theorem 1 (Photo Hull Theorem [19]) For every volume V that contains the true scene and
every noiseless image set I , there exists a unique shape called the Photo Hull, H(V; I), that is
the union of all shapes in 2V that are photo-consistent with I . This shape is a superset of the true
scene and is itself photo-consistent.

The photo hull is the tightest possible bound on the true scene that can be recovered
from n photographs in the absence of a priori scene information. The photo hull is
especially important in our analysis for two reasons. First, it is algorithm-independent
and is applicable to scenes of arbitrary shape. Second, it suggests that even though
photo-consistency is an ambiguous property (i.e., many distinct 3D shapes can possess
it), emptiness of space is not; the volume V � H(V; I) cannot intersect any photo-
consistent 3D shape. Hence, by studying how noise affects the information we can re-
cover about the photo hull and about the emptiness of space (rather than about individual
photo-consistent shapes) we can establish a clear mathematical distinction between the
analyses of shape ambiguity and shape uncertainty. For simplicity and without loss of
generality we assume in this paper that the true scene S � is equal to the photo hull.

2.2 The Photo Hull Distribution

When the set I of input images is generated stochastically, the emptiness or occupancy
of voxels cannot be determined with certainty any more (Figure 2b). To model this
uncertainty, we introduce the Photo Hull Distribution:



Definition 1 (Photo Hull Probability) The Photo Hull Probability of S 2 2V is the condi-
tional probability

p [Hull(S; V; I) j V; I] : 2V ! [0; 1];

where Hull(S; V; I) is the event that S is the photo hull H(V; I).

The Photo Hull Distribution captures all the information that we can possibly extract
from noisy photographs of an arbitrarily-shaped scene in the absence of prior informa-
tion. This is because (1) scene radiances are not observable and hence shape information
cannot be extracted with certainty, and (2) the inherent ambiguities of the (noiseless)
n-view stereo problem preclude bounding the scene with anything but its photo hull.

While useful as an analytical tool, the Photo Hull Distribution is impractical as
a shape representation because it is a function over 2V , an impossibly large set. To
overcome this limitation, we also study how to reconstruct 3D shapes that have high
probability of being the photo hull and how to compute scene reconstructions that rep-
resent shape uncertainty in a compact way. To achieve the latter objective, we introduce
a probabilistic definition of occupancy:

Definition 2 (Occupancy Probability) The occupancy probability of a voxel v is given by
the marginal probability

p [Occ(v; V; I) j V; I] =
X

fSjS22V and v2Sg

p [Hull(S; V; I) j V; I] :

Intuitively, the occupancy probability defines a scalar field over V whose value at a
voxel v 2 V is equal to the probability that v is contained in the photo hull.

Our goal in the remainder of this paper is to characterize the information that n noisy
photos provide about the shape of an arbitrary 3D scene. We achieve this by deriving
an image-based expression for the photo hull distribution and a method for drawing fair
samples from it. Toward this end, we first factor the photo hull probability of a shape
S into two components, namely, the probability that S is photo-consistent conditioned
on the emptiness of its exterior V � S (so that the shape is visible), and the probability
that its exterior is empty:

p [Hull(S; V; I) j V; I ] =

p [PhotoC(S; I) j Empty(V � S; I); V; I ] p [Empty(V � S; I) j V; I ] : (1)

Here, PhotoC(S; I) denotes the event that S is photo-consistent with image set I . Sim-
ilarly, Empty(V � S; I) denotes the event that the exterior volume V � S does not
intersect any shape in 2V that is photo-consistent with I . The following sections derive
expressions for these two fundamental distributions in terms of image measurements.

3 Probabilistic Modeling of Photo-Consistency

When confronted with the problem of formulating the photo-consistency probability
p [PhotoC(S; I) j Empty(V � S; I); V; I] in terms of image measurements two ques-
tions arise: (1) how do we express the photo-consistency probability of a 3D shape S
in terms of individual pixels (which are projections of individual voxels on the shape),
and (2) how do we ensure that all global dependencies between 3D points are correctly
accounted for? To answer these questions, we use two key ideas.



First, we assume radiance independence, that the radiances of any two surface
points on the true scene are independent. This simplifies the probabilistic modeling
of the photo-consistency of individual voxels. The second idea, which we call the
visibility-conditioning principle, states that, with the radiance independence assump-
tion, the photo-consistency of individual voxels are conditionally independent, when
conditioned on the voxels’ visibility in the true scene, S �. This conditional indepen-
dence is derived from our image formation model that is outlined below, and leads to
the following factorization of the photo-consistency probability of shape S: 1

Lemma 1 (Photo-Consistency Probability Lemma)

p [PhotoC(S; I) j Empty(V � S; I); V; I] =
Y
v2S

p [PhotoC(v; I; �S) j I; �S(v)] ; (2)

where PhotoC(v; I; �S) denotes the event that voxel v is photo-consistent, conditioned
on the set of cameras from which it is visible, �S(v). The following sections give our
simple model of image formation and derive the form of the voxel photo-consistency
probability that it entails.

3.1 Image Formation Model

Let S� be an opaque, Lambertian 3D scene that occupies an arbitrary volume in < 3.
Also assume that the scene is viewed under perspective projection from n distinct and
known viewpoints, c1; : : : ; cn, in <3 � S

�. Then, the measured RGB value of a pixel
depends on three factors: (1) visibility; (2) surface radiance; and (3) pixel noise.

We use the term visibility state to denote the set of input viewpoints from which x is
visible. It can be represented as an n-bit vector �S�(x) whose i-th bit, [�S�(x)]i, is one
if and only if x is visible from ci. Each 3D scene produces a unique visibility function,
�S� : <3 ! f0; 1gn, mapping points to their visibility states.

The radiance, r(:), is a function that assigns RGB values to surface points on S
�.

Let r(:) be a random variable with a known distribution,R, over [0; 1]; i.e., 8x : r(x) �
R3 [0; 1]. Ignoring noise, if a surface point x is visible from viewpoint c i, then the
RGB values observed from x in the camera at ci are equal to x’s radiance [23]; more
formally,

(x 2 S
�) ^ ([�S�(x)]i = 1) =) proji(x) = r(x);

where proji(x) denotes the image RGB value at x’s projection along c i. In practice,
image measurements are corrupted by noise. Here, we model pixel noise, n, as mean-
zero Gaussian additive noise with variance �2

n
. The RGB value proji(x) is therefore

a random variable given by proji(x) = r(x) + n. Assuming that radiances and noise
are independent, it follows that (1) the mean of proj i(x) is E [r(x)], (2) its variance is
V ar [r(x)]+�2

n
, and (3) conditioned on radiance, the measured pixel color is distributed

according to the noise distribution:

proji(x)jr(x) � N (r(x); �2
n
):

In what follows we use proj(x) to denote the vector of random variables fproj i(x) :
[�S�(x)]ig of a point x with visibility state �S�(x). We use I to denote the set of images
obtained from the n cameras, and I(x; �S�) to denote a sample of the random vector
proj(x), i.e., the vector of image RGB values observed at x’s projections.

1 See the Appendix for proof sketches of some of the paper’s main results. Complete proofs can
be found in [22].



3.2 Photo-Consistency

Given only �S�(v) and I(v; �S�), what can we say about whether or not v belongs to
S
�? To answer this question we formulate two generative models that characterize the

distribution of the set of observations, I(v; �S�), that corresponds to v.
The foreground model captures the fact that if v lies on the surface and � S�(v) is

v’s correct visibility state, then all radiances in proj(v) are identical since they arise
from the same location on the surface:

Observation 1 (Foreground Model) Ifv 2 S
� and k = jI(v; �S�)j is the number of cameras

for which v is visible, then (1) the distribution of proj(v) conditioned on the actual radiance,
r(v), is a multi-variate Gaussian

proj(v) j r(v) � N k
(r(v); �2

n
) ; and (3)

(2) the sample variance of the RGB measurements, V ar [I(v; �S�)], will converge to the noise
variance �2

n
as k tends to infinity.

In practice, k is finite. It follows from Eq. (3) that the observation likelihood,
p [V ar [I(v; �S�)] j v 2 S

�], is a �2 density with 3(k � 1) degrees of freedom.
If v is not a voxel on S

�, the color at each of its k projections is due to a dis-
tinct scene voxel vj (Figure 2c), with projj(v) = r(vj) + n for j = 1; : : : ; k. This,
along with the radiance independence assumption, that radiances at different voxels are
independent, leads to our simple background model:

Observation 2 (Background Model) If v 62 S
�, the distribution of proj(v) conditioned on

the actual radiances is given by

proj(v) j fr(vj )gkj=1 �
kY

j=1

N (r(vj ); �2
n
); (4)

the sample variance of which, V ar [I(v; �S�)], converges to V ar [r] + �
2
n

as k tends to infinity.

In practice, with finite cameras and an unknown background distribution, we model the
likelihood p [V ar [I(v; �S�)] j v 62 S

�], using the input photos themselves: we gener-
ate 106 sets of pixels, each of size jI(v; �S�)j, whose pixels are drawn randomly from
distinct photos. This collection of variances is used to model the distribution of sample
variances for voxels that do not lie on the surface.

We can now use Bayes’ rule to derive the probability that a voxel is on the scene’s
surface given a set of image measurements associated with its visibility state �:

p [v 2 S
� j V ar [I(v; �)]] =

p [V ar [I(v; �)] j v 2 S
�]

p [V ar [I(v; �)] j v 2 S�] + p [V ar [I(v; �)] j v 62 S�]
: (5)

Note that this particular formulation of the foreground and background likelihoods
was chosen for simplicity; other models (e.g., see [21]) could be substituted without
altering the theoretical development below.

Finally, by defining the voxel photo-consistency probability to be the probability
that v is consistent with the scene surface conditioned on visibility, i.e.,

p [PhotoC(v; I; �S) j I; �S(v)]
def

= p [v 2 S
� j V ar [I(v; �S(v))]] ;

we obtain the factored form for the shape photo-consistency probability in Lemma 1.



Figure 3. Visualizing voxel visibility strings and carving sequences. The carving sequence � =
hv1 � � �vmi defines a sequence of m shapes, where the (i� 1)-th shape determines the visibility
of the i-th voxel and S(�; i� 1) = V �fv1;v2; : : : ;vi�1g. Voxels in V �S and S are shown
as light and dark gray, respectively. Also shown is the shape-space path defined by �.

4 Probabilistic Modeling of Emptiness

Unlike photo-consistency, the definition of emptiness of region V � S does not de-
pend only on the shape S; it requires that no photo-consistent shape in 2 V intersects
that region. In order to express this probability in terms of individual pixel measure-
ments, we follow an approach analogous to the previous section: we apply the visibility-
conditioning principle to evaluate p [Empty(V � S; I) j V; I ], the emptiness probabil-
ity of a volume V �S, as a product of individual voxel-specific probabilities. But what
voxel visibilities do we condition upon? The difficulty here is that we cannot assign
a unique visibility state to a voxel in V � S because its visibility depends on which
shape in 2V we are considering. To overcome this difficulty, we introduce the concept
of voxel visibility strings. These strings provide a convenient way to express the space
of all possible visibility assignments for voxels in V � S. Importantly, they allow us to
reduce the estimation of emptiness and photo hull probabilities to a string manipulation
problem:

Definition 3 (Voxel Visibility String) (1) A voxel visibility string, � = hq1 � � � qj�ji, is a
string of symbols from the set fv;v j v 2 V g. (2) The shape S(�; i) induced by the first i
elements of the visibility string � is obtained by removing from V all voxels in the sub-string
hq1 � � � qii that occur in their v-form. (3) The visibility state of the voxel v corresponding to string
element qi is determined by the shape S(�; i� 1), i.e., it is the bit vector �S(�;i�1)(v). (4) The
value function, F (�), of string � is the product

F (�) =

j�jY
i=1

f(qi); with f(qi) =

(
p
�
PhotoC(v; I; �S(�;i�1)) j I; �S(�;i�1)(v)

�
(qi = v)

1� p
�
PhotoC(v; I; �S(�;i�1)) j I; �S(�;i�1)(v)

�
(qi = v)

(5) A voxel visibility string that is a permutation of the voxels in V � S, each of which appears
in its v-form, is called a carving sequence.

Note that the set of voxel visibility strings is infinite since voxels can appear more
than once in a string. Carving sequences, on the other hand, are always of length jV �Sj
and have an intuitive interpretation (Figure 3): a carving sequence � = hv 1 � � �vmi

can be thought of as a path in 2V that “joins” V to S. That is, beginning with the
initial volume, V , every time we encounter a string element with a bar we remove the



corresponding voxel and thereby generate a new shape. When we reach the end of the
string we will have generated the desired shape S. Thus, the set of all carving sequences
for a shape S gives us all the possible ways of obtaining S by carving voxels from V .

Carving sequences provide an avenue for relating the emptiness of space to the non-
photo-consistency of individual voxels in V � S. This is because the order of voxels in
a carving sequence assigns a unique visibility state to every voxel it contains, allowing
us to apply the visibility-conditioning principle through the following definition:

Definition 4 (�-Non-Photo-Consistency Event) We use NPhotoC(V �S; I;�) to denote the
event that V �S is non-photo-consistent with respect to carving sequence � = hv1 � � �vmi. This
is the event that no voxel v in � is photo-consistent when its visibility state is given by �:

NPhotoC(V � S; I;�) ()
m̂

i=1

:PhotoC(vi; I; �S(�;i�1)) :

Using this definition, it is easy to show that the non-photo-consistency of the volume
V � S, when conditioned on the visibilities induced by a carving sequence, is simply
the product of the non-photo-consistency probabilities of its constituent voxels:

p [NPhotoC(V � S; I;�) j V; I;�] = F (�):

To fully specify the emptiness probability of the volume V � S it therefore suffices to
establish a relation between the events NPhotoC(V � S; I;�) and Empty(V � S; I).
The following proposition gives us a partial answer to this problem:

Lemma 2 (Empty-Space Event) If a non-photo-consistent carving sequence exists, V � S is
empty: _

�2C(V;S)

NPhotoC(V � S; I;�) =) Empty(V � S; I):

where C (V; S) is the set of all carving sequences that map V to S.
Lemma 2 suggests a rule to establish a volume’s emptiness without exhaustive enu-

meration of all photo-consistent shapes. It tells us that it suffices to find just one carving
sequence whose voxels are all non-photo-consistent. While this rule is sufficient, it is
not a necessary one: it is possible for V � S to be empty without any of the events
NPhotoC(V � S; I;�) being true. This seemingly counter-intuitive fact can be proven
by contradiction because it leads to an expression for the Photo Hull Probability that
is not a distribution,2 i.e.,

P
S22V p [Hull(S; V; I) j V; I ] < 1. From an informal stand-

point, this occurs because the set of voxel visibility strings that are carving sequences
does not adequately cover the space of all possible visibility assignments for voxels
in V � S, resulting in an under-estimation of the “probability mass” for the event
Empty(V � S; I). Fortunately, the following proposition tells us that this mass can
be correctly accounted for by a slightly expanded set of voxel visibility strings, all of
which are mutually disjoint, which consider all sets of visibility assignments for voxels
in V � S and contain every voxel in V � S at most jV � Sj times:

2 A simple way to verify this fact is to expand the sum in Eq. (7) for a 2-voxel initial volume V .
Details are provided in Appendix A.3.



Proposition 1 (Emptiness Probability)

p [Empty(V � S; I) j V; I] =
1

jV � Sj!

X
�2C(V;S)

F (�)+
X

�2C(V;S)

X
P2P(�)�C(V;S)

R(P )G(P ) (6)

where P(�) is the set of strings P = hp1 � � � pli with the following properties: (1) P is created
by adding voxels in their v-form to a carving sequence �, (2) each voxel vi occurs at most once
between any two successive voxels appearing in their v-form, (3) no voxel in P can occur in its
v-form after it has occurred in its v-form; and G(P ) and R(P ) are given by

G(P ) =

jP jY
i=1

g(pi) ;where g(pi) =

8>>>>><
>>>>>:

f(pi) (1st occurrence)
f(pi)=f(pj) (voxel occurs in v-form,

previous occurrence at pj)
[f(pi) + f(pj)� 1] =f(pj) (voxel occurs in v-form,

previous occurrence at pj)

R(P ) =
(m� l1)!

m!

(m� 1� l2)!

(m� 1)!
:::

(2� lm�1)!

2!

where m = jV � Sj; and lj is the number of voxels, vj inclusive, that exist in P between two
voxels vj�1 and vj that are consecutive in �.

Proposition 1 tells us that the “extra” mass needed to establish the emptiness of a re-
gion consists of the G(P )-terms in Eq. (6). This result is somewhat surprising, since it
suggests that we can capture all relevant visibility configurations of voxels in V � S

by only considering a very constrained set of voxel visibility strings, whose length is

at most jV�Sj2+jV�Sj

2
. Moreover, it not only leads to a probability distribution for the

photo hull but, as shown in Section 6, it leads to a simple stochastic algorithm that pro-
duces fair samples from the photo hull distribution. We consider the implications of this
proposition below.

5 The Photo Hull Distribution Theorem

One of the key consequences of our probabilistic analysis is that despite the many intri-
cate dependencies between global shape, visibility, emptiness, and photo-consistency,
the expression of a shape’s photo hull probability in terms of image measurements has
a surprisingly simple form. This expression is given to us by the following theorem that
re-states Eq. (1) in terms of image measurements by bringing together the expressions
in Lemma 1 and Proposition 1. It tells us that for a shape S, this probability is a sum of
products of individual voxel photo-consistency or non-photo-consistency probabilities;
each voxel in S contributes exactly one voxel photo-consistency factor to the product,
while each voxel in V � S contributes multiple non-photo-consistency factors.

Theorem 2 (Photo Hull Distribution Theorem) (1) If every pixel observation in I takes RGB
values over a continuous domain, the probability that shape S � V is the photo hull H(V; I) is

p [Hull(S; V; I) j V; I] =
X

�2C(V;S)

X
P2P(�)

G(P jj�) R(P ); (7)

where � is a string corresponding to an arbitrary permutation of the voxels in S, all of which
appear in their v-form; C (V; S) ;P(�) and G(�); R(�) are defined in Proposition 1; and “jj”
denotes string concatenation. (2) Eq. (7) defines a probability distribution function, i.e.,P

S22V
p [Hull(S; V; I) j V; I] = 1.



6 Probabilistic Occupancy by Fair Stochastic Carving

Even though the photo hull probability of a shape S has a relatively simple form, it
is impractical to compute because of the combinatorial number of terms in Eq. (7).
Fortunately, while the Photo Hull Distribution cannot be computed directly, we can
draw fair samples from it (i.e., complete 3D photo hulls) using a stochastic variant of the
space carving algorithm [19]. Moreover, by computing a set of 3D photo hulls through
repeated applications of this algorithm, we can approximate the occupancy probability
of every voxel in V according to Definition 2.

Occupancy Field Reconstruction Algorithm

– Set trial = 1 and run the following algorithm until trial = K:
Stochastic Space Carving Algorithm

Initialization Set Strial = V and repeatedly perform the following two steps.
Voxel Selection Randomly choose a voxel v 2 Strial that either has not been

selected or whose visibility state changed from � to �0 since its last selection.
Stochastic Carving If no such voxel exists, set trial = trial + 1 and terminate.

Otherwise, carve v from Strial with probability

p [PhotoC(v; I; �) j I; �]� p [PhotoC(v; I; �0) j I; �0]
p [PhotoC(v; I; �) j I; �]

– For every v 2 V , set p [Occ(v; V; I) j V; I] = L=K where L is the number of carved shapes
in fS1; : : : ; SKg containing v.

From a superficial point of view, the Stochastic Space Carving Algorithm in the
above inner loop is almost a trivial extension of standard space carving—the only es-
sential difference is the stochastic nature of the carving operation, which does not de-
pend on a pure threshold any more. This carving operation and the precise definition of
the carving probability are extremely important, however. This is because if carving is
performed according to the above rule, the algorithm is guaranteed to draw fair samples
from the Photo Hull Distribution of Theorem 2. In the limit, this guarantees that the
occupancy probabilities computed by the algorithm will converge to the theoretically-
established values for this probability:

Proposition 2 (Algorithm Fairness) When the number of trials goes to infinity, the frequency
by which the Stochastic Carving Algorithm generates shape S will tend to p [Hull(S; V; I) j V; I].

A second feature of the Stochastic Space Carving Algorithm, which becomes ev-
ident from the proof of Proposition 2 in the Appendix, is that it provides us with an
approximate means for comparing the likelihoods of two photo hulls it generates: since
each run of the algorithm corresponds to a single term in the sum of Eq. (7), i.e., a
particular combination of the�;P;� strings, and since we can compute this term from
the algorithm’s trace as it examines, re-examines and removes voxels, we can compare
two photo hulls by simply comparing the value of these terms. This effectively allows
us to develop an approximate method for selecting a maximum-likelihood photo hull
from a set of generated candidate shapes.3

3 Note that this method is approximate because we can only compute a single term in the sum
in Eq. (7) that defines p [Hull(S; V; I) j V; I], not the probability itself.
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Figure 4. Cactus: Raw views of the occupancy field were created by computing at each pixel, the
average over all voxels that project to it and have non-zero occupancy probability. Each image
in the last row compares the recovered occupancy field to volumes obtained from standard space
carving, shown directly above it. A light (dark) gray pixel indicates that at least one voxel in
the occupancy field with non-zero probability projects to it, and that no (at least one) voxel in the
carved volume projects to it. Intuitively, light gray pixels mark regions that the standard algorithm
“over-carves” , i.e., regions that were carved even though they have a non-negligible probability
of being in the photo hull. Here, PF and P

B correspond to the foreground and background
likelihoods in Section 3.2.

7 Experimental Results

To demonstrate the practical utility of our formulation, we applied the algorithm of
Section 6 to different scenes of varying complexity and structure. 4

The cactus dataset (from [18]) is especially challenging because of the drastic changes
in visibility between photos, the complex scene geometry, and because the images con-
tain many “mixed” pixels, quantization errors, and 1-4 pixel calibration errors that make

4 The complete input sequences are available at http://www.cs.toronto.edu/˜kyros/research/occupancy/.



pixel matching difficult. The carving probabilities in the Stochastic Carving Step of the
algorithm require foreground and background likelihoods (denoted P F and PB in Fig-
ure 4). The foreground likelihood was given by a � 2 density with � = 20. The back-
ground likelihood was modeled from the input photos as described in Section 3.2. The
resulting plots in Figure 4 (bottom left) show these likelihoods. When the number of in-
put views is small, the carving probability changes slowly as a function of the variance
of a voxel’s projections. For many views, where a coincidental pixel match across views
is unlikely, it approaches a step function and carving becomes almost deterministic.

We ran the algorithm forK = 400 iterations on a cubical, 1283-voxel initial volume
V , generating 400 distinct photo hulls that were used to compute the occupancy field
shown in Figure 4 (top right). Each iteration took about 17 minutes on an R12000 SGI
O2. Views of two of the 400 photo hulls are shown in Figure 4 (top middle). Despite
the large number of stochastic carving decisions made by the algorithm, the generated
photo hulls are similar in both shape and appearance, with volumes differing by less
than 3% from hull to hull. The number of voxels with non-zero probability in the final
occupancy field was only 7% more than the voxels in a single sample, suggesting that
despite the high dimensionality of shape-space, the Photo Hull Distribution is “highly
peaked” for this dataset. In Figure 4 (bottom right) we compare the occupancy field to
photo hulls obtained from the standard space carving algorithm [19] for different vari-
ance thresholds. Note that the standard space carving algorithm fails catastrophically
for lower values of �. Even at � = 35, standard space carving results in a volume that
appears over-carved and has artifacts. This behavior of standard space carving over a
wide range of variance thresholds shows that it fails to model the uncertainty in the data
set. The occupancy field represents this uncertainty quite well: the volume correspond-
ing to the pot base has voxel occupancies close to 1, while near the top of the tallest
cactus, where detail is highest, voxels have lower occupancy probabilities.

Results withK = 400 for a second dataset (the gargoyle from [19]) are summarized
in Figure 5. Each iteration took about 6 minutes. The gargoyle statuette has more struc-
ture than the earlier example and the resulting occupancy field is less diffuse. However,
as each voxel is visible in at most 7 of the 16 input images, the voxel probability distri-
bution has a gentler slope, and the occupancy field shows a smoother gradation of voxel
occupancy probabilities moving inwards of the object, most noticeably in regions with
discontinuities and irregularities on the surface, and in the cavity between the gargoyle’s
hands and body (Figure 5, bottom row).

8 Concluding Remarks

This paper introduced a novel, probabilistic theory for analyzing the 3D occupancy
computation problem from multiple images. We have shown that the theory enables
a complete analysis of the complex probabilistic dependencies inherent in occupancy
calculations, provides an expression for the tightest occupancy bound recoverable from
noisy images, and leads to an algorithm with provable properties and good performance
on complex scenes. Despite these features, however, our framework relies on a shape
representation that is discrete and on a radiance independence assumption that does not
hold for scenes with smoothly-varying textures. Overcoming these limitations will be
a major focus of future work. Additional topics will include (1) providing a mecha-
nism for introducing shape priors, (2) developing efficient strategies for sampling the
Photo Hull Distribution and for computing likely Photo Hulls, and (3) developing fast,
sampling-free approximation algorithms for occupancy field computation.
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Figure 5. Gargoyle dataset (input images not shown): (Top) 3 of 400 sample hulls generated and
the occupancy field obtained by combining them. (Bottom) Vertical slices of the occupancy field.
The bar at the bottom shows the mapping from voxel occupancy probabilities to gray levels.
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A Proof Sketches

A.1 Lemma 1: Photo-consistency Probability

We rely on the following result which is stated here without proof (see [22] for details):

Proposition 3 (Conditional Independence of Photo-consistency and Emptiness) If every pixel
observation in I takes RGB values over a continuous domain, the photo-consistency probability
of S, conditioned on the visibility function �S , is independent of the emptiness of V � S:

p [PhotoC(S; I) j Empty(V � S; I); V; I] = p [PhotoC(S; I) j I; �S] : (8)

To prove the lemma, it therefore suffices to derive an expression for the right-hand side of Eq. (8).
A shape is photo-consistent if and only if every voxel v 2 S is photo-consistent. Considering

an arbitrary voxel v1 2 S and applying the chain rule gives

p [PhotoC(S; I) j I; �S ] = p

"^
v2S

PhotoC(v; I; �S) j I; �S

#
=

p

2
4PhotoC(v1; I; �S) j

^
v2S�fv1g

PhotoC(v; I; �S); I; �S

3
5 p
2
4 ^
v2S�fv1g

PhotoC(v; I; �S) j I; �S

3
5 :

The visibility function �S defines the visibility state for all voxels in S, including v1. Now,
the photo-consistency probability of v1, when conditioned on v1’s visibility state in S, is inde-
pendent of the photo-consistency probability of all other voxels in S:

p

2
4PhotoC(v1; I; �S) j

^
v2S�fv1g

PhotoC(v; I; �S); I; �S

3
5 = p [PhotoC(v1; I; �S) j I; �S(v1)] :

This equation is a precise statement of the visibility conditioning principle. When applied to all
voxels in S and combined with Eq. (8), it yields the desired factorization:

p [PhotoC(S; I) j Empty(V � S; I); V; I] =
Y
v2S

p [PhotoC(v; I; �S) j I; �S(v)] : ut (9)
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Figure 6. A two voxel initial volume, V = fv1;v2g, viewed by cameras L and R.

A.2 Lemma 2: Empty Space Events

We prove the lemma by contradiction. In particular, we show that if V � S intersects a photo-
consistent shape, i.e., if Empty(V � S) is false, no carving sequence � 2 C (V; S) exists for
which NPhotoC(V � S; I;�) is true.

Suppose V �S intersects a photo-consistent shape and let S1; S2 be the shape’s intersections
with V � S and S, respectively. We partition the set of carving sequences, C (V; S), into two
subsets C1; C2 as follows. Let C1 be the set of those carving sequences in C (V; S) where every
voxel in S1 appears after the entire set of voxels in V � (S [ S1), and let C2 = C (V; S)� C1.

Now consider any carving sequence �� 2 C1. If voxel vk is the first voxel in S1 to appear in
�
�, this voxel will be photo-consistent with respect to the visibility state �Sk , where Sk = S1[S.

This is because the cameras that view vk according to �Sk are a subset of the cameras that view
it when vk lies on the shape S1 [ S2, which is both a subset of Sk and is photo-consistent.
Therefore, NPhotoC(V � S; I;�

�) is not true.
Moreover, voxel vk will be photo-consistent in every carving sequence in C2 in which it

appears before every other voxel in S1. This is because in that case vk will be visible from even
fewer cameras than those that view vk in ��. It follows that the above argument is true for every
carving sequence in C1 and can be extended to cover every sequence in C2 as well. It follows that
the event NPhotoC(V � S; I;�) is not satisfied for any carving sequence in C (V; S). ut

A.3 Emptiness and Inadequacy of Carving Sequences

If it were possible to define the emptiness of a volume V �S simply by the event that at least one
carving sequence is not photo-consistent, i.e., Empty(V �S; I) ()

W
�2C(V;S)

NPhotoC(V �
S; I;�), the expression for the photo-hull probability of S would reduce to

p [Hull(S; V; I) j V; I] =
X

�2C(V;S)

G(� jj �)R(�); (10)

where � is a voxel visibility string corresponding to an arbitrary permutation of voxels in S, all
of which appear in their v-form. Eq. (10) is obtained by setting P(�) = f�g in Eq. (7). Despite
the fact that Eq. (10) may seem intuitively correct, this equation does not hold in general. This is
because the emptiness of V � S does not imply the existence of a non-photo-consistent carving
sequence. We prove this fact by contradiction, by showing that the photo-hull probability defined
by Eq. (10) is not a distribution in general, i.e.,

P
S22V

p [Hull(S; V; I) j V; I] < 1.
Consider the volume and viewing geometry illustrated in Figure 6. Let V = fv1;v2g,

viewed by two cameras L and R. Voxel v1 is always visible from L and is occluded from R

by v2, while v2 is always visible from R and is occluded from L by v1. The shape space con-
sists of S1 = V , S2 = fv1g, S3 = fv2g, and S4 = ;. From Eq. (10), we get the following
expressions for the photo-hull probability of these shapes:

p [Hull(S1; V; I) j V; I] = G(; jj v1v2)R(;);

p [Hull(S2; V; I) j V; I] = G(v2 jj v1)R(v2);

p [Hull(S3; V; I) j V; I] = G(v1 jj v2)R(v1); and

p [Hull(S4; V; I) j V; I] = G(v1 v2 jj ;)R(v1 v2) +G(v2 v1 jj ;)R(v2 v1)

Using Definition 3, the equations above, and the following notational shorthand

p
�S
v

= p [PhotoC(v; I; �S) j I; �S(v)] ;



the sum of photo-hull probabilities of all shapes in the shape space is given byX
S22V

p [Hull(S; V; I) j V; I] = p
�S1
v1

p
�S1
v2

+ (1 � p
�S1
v2

)p
�S2
v1

+ (1 � p
�S1
v1

)p
�S3
v2

+
1

2
(1� p

�S1
v1

)(1� p
�S3
v2

) +
1

2
(1� p

�S1
v2

)(1 � p
�S2
v1

)

= 1 �
1

2
(1� p

�S1
v1

)(p
�S1
v2

� p
�S3
v2

)�
1

2
(1� p

�S1
v2

)(p
�S1
v1

� p
�S2
v1

):

The second and third “residual” terms in the final expression of the above sum will be non-
zero in general. This means that

P
S22V

p [Hull(S; V; I) j V; I] < 1, implying that the photo-
hull probability of shapes S � V in Eq. (10) is underestimated. Hence, the emptiness probability
of V � S is not completely explained by the non-photo-consistency of the carving sequences in
C (V; S). The two residual terms correspond to the voxel visibility strings v2 v1 v2 and v1 v2 v1,
respectively. These strings belong to [�2C(V;S4)P(�), but were omitted when Eq. (7) was re-
duced to Eq. (10).

A.4 Proposition 2: Algorithm Fairness

Proof (Sketch). The proof involves four steps: (1) showing that each run of the algorithm is
described by a voxel visibility string T of bounded length; (2) defining an onto mapping � be-
tween voxel visibility strings that characterize a run of the algorithm and voxel visibility strings
hP jj �i in Theorem 2; (3) showing that G(T ) = G(�(T )); and (4) using the above steps to
prove fairness.

Sketch of Step 1: Define string T to be the exact trace of voxels selected by the algorithm’s
Voxel Selection Step, where a voxel appears in its v-form if it was selected and not carved in the
Stochastic Carving Step immediately following it, or in its v-form if it was carved in that step.
The algorithm terminates when all surface voxels have been examined and no visibility transitions
have occurred for these voxels. Since carving can only increase the number of cameras viewing
a voxel, the total number of visibility transitions is njV j. This gives an upper bound on jT j.

Sketch of Step 2: Let S be the shape computed by the algorithm and let T be its trace. To
construct the string �(T ) we change T as follows: (i) delete from T all but the last occurrence of
every voxel in S, creating string T1; (ii) move the voxels in S to the end of the string, creating T2;
and (iii) define �(T ) = T2. String �(T ) will be of the form hP jj�i, with P 2 P(�) for some
� 2 C (V; S). This mapping is onto since every string in P(�) is a valid trace of the algorithm.

Sketch of Step 3: (i) The visibility state of points in � that is induced by the string �(T ) =
hP jj�i is identical to the one assigned by the visibility function �S . It follows that G(�) =
F (�) = p [PhotoC(S; I) j Empty(V � S; I); V; I]. (ii) Since the voxels in T that are contained
in � always occur in their v-form, their position in T does not affect the visibilities induced
by T to those voxels in T that belong to P . Hence, G(T2) = G(T1). (iii) If a voxel in V � S

appears multiple times in T , this means that it was examined and left uncarved for all but its last
occurrence in T . It now follows from the definition of G(:) that G(T ) = G(T2).

Sketch of Step 4: The frequency that the algorithm arrives at shape S is equal to the probability
that the algorithm produces a trace in [�2C(V;S)P(�). It can be shown that Steps 1-3 now imply
that the probability the algorithm produces a trace T is equal to G(�(T ))R(�(T )), where R(:)
is defined in Proposition 1. Intuitively, the R(�(T )) factor accounts for the portion of all traces T
that map to the same �(T ). Since each trial of the algorithm is independent of all previous ones,
it follows that the probability that the algorithm generates shape S is equal to the shape’s photo
hull probability, as defined in Theorem 2. ut


