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Abstract. This paper introduces a new multi-view reconstruction problem called
approximate N -view stereo. The goal of this problem is to recover a one-
parameter family of volumes that are increasingly tighter supersets of an unknown,
arbitrarily-shaped 3D scene. By studying 3D shapes that reproduce the input pho-
tographs up to a special image transformation called a shuffle transformation, we
prove that (1) these shapes can be organized hierarchically into nested supersets of
the scene, and (2) they can be computed using a simple algorithm called Approxi-
mate Space Carving that is provably-correct for arbitrary discrete scenes (i.e., for
unknown, arbitrarily-shaped Lambertian scenes that are defined by a finite set of
voxels and are viewed from N arbitrarily-distributed viewpoints inside or around
them). The approach is specifically designed to attack practical reconstruction
problems, including (1) recovering shape from images with inaccurate calibration
information, and (2) building coarse scene models from multiple views.

1 Introduction

The reconstruction of 3D objects and environments from photographs is becoming a key
element in many applications that simulate physical interaction with the real world (e.g.,
[1]). Unfortunately, despite significant recent progress on the topic of N-view stereo [1–
9], there are many practical reconstruction problems for which a general solution is
beyond the current state of the art. Examples include (1) reconstructing an unknown
scene from images with inaccurate calibration information [10, 11], (2) reconstructing
a scene that is not perfectly stationary (e.g., a person that moved slightly between each
snapshot [11]), and (3) recovering a coarse scene model either for efficiency reasons
[12, 13], or because the scene’s geometry is exceedingly complex (e.g., a tree full of
leaves, viewed from a distance).

As a first step toward addressing this limitation, in this paper we consider a new
multi-view reconstruction problem called approximate N -view stereo. The goal of this
problem is to recover a one-parameter family of volumes that are increasingly tighter
supersets of the true scene. Working from first principles, we show that each of the above
reconstruction tasks can be thought of as instances of the approximate N -view stereo
problem and, as such, they can be solved by recovering approximate, rather than exact,
3D shapes from multiple views. Moreover, we provide a detailed geometrical analysis
of the approximate N -view stereo problem and describe a computational framework
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for provably solving it for discrete scenes in the general case (i.e., for an unknown,
arbitrarily-shaped Lambertian scene that is viewed fromN arbitrarily-distributed view-
points inside or around it). Experimental results illustrating the applicability of our
theoretical development are given for real scenes of complex geometry.

Our approach is motivated by the general question of how to recover 3D scene
approximations from multiple views. We argue that any answer to this question should
be evaluated according to the following criteria:

– Direct recovery: The approximation should be computable directly from the input
images, i.e., without first computing an exact reconstruction.

– Generality: Computations should rely as little as possible on assumptions about
the distribution of the input viewpoints (e.g., nearby views or minimal occlusion),
about the scene’s true shape, or about the existence of specific image features in the
input views (e.g., edges, points, lines, contours, texture, or color).

– Level-of-detail control: It should be possible to control the degree to which the
recovered shape approximates the shape of the true scene (to the extent allowed by
the image data).

– Shape determinism:It should be possible to quantify the geometric relationship
between the recovered approximation and the shape of the true scene.

– Reconstructibility conditions: It should possible to state the conditions under
which the approximation process is valid and/or breaks down.

– Robustness:Approximate reconstruction should be possible even when ideal stereo
conditions (e.g., good calibration, scene rigidity) are not satisfied.

Unfortunately, serious difficulties arise when attempting to fulfill the above criteria using
existing approaches.

First, current theories for 3D shape approximation (e.g., scale space [14], mesh
simplification [15], wavelet descriptions [16], and hierarchical volume representations
[17]) define the notion of an “approximate 3D shape” in terms of the exact geometry
of the shape being approximated. These theories are therefore not directly applicable
when exact reconstructions are unavailable.

Second, even though recent approaches to N -view stereo have demonstrated good
results even under very general conditions about the scene and the input viewpoints
[5, 6, 8], they cannot be easily extended to achieve approximate reconstruction. Key to
their success is the use of provably-correct algorithms to determine the scene points
visible in each view. Little is known, however, about whether visibility determination
is well defined and tractable when recovering approximate shapes from images. This
is because even a small deviation from the shape of the true scene can imply dramatic
changes in visibility [18], and because the input images will not be consistent, in general,
with point visibilities defined by an approximate shape.

Third, existing stereo methods rely on the assumption that under ideal conditions,
every point on a reconstructed 3D shape should project to points that can be matched
across views. Unfortunately, this assumption cannot be used as a basis for designing
approximate shape recovery algorithms because it breaks down in that case. Hence, even
though recent particle- and mesh-based stereo techniques allow level-of-detail control
[9, 11, 19, 20], their reliance on regularization criteria that enforce this assumption makes



it impossible to analyze their behavior during approximate reconstruction (e.g., existence
of local minima, convergence properties, shape determinism).

Fourth, existing attempts to recover approximate shapes from multiple views rely
exclusively on a two-step method that involves (1) reducing the resolution of the input
views, and (2) recovering low-resolution shapes from the reduced images [12, 13]. In
general, it is impossible to guarantee that low-resolution pixels spanning large depth or
color discontinuities will be matched across views [12]. Approaches that rely on this
method are therefore largely heuristic.

Fifth, with the exception of [11], no previous techniques have recognized the tight
inter-dependence between the problem of approximate reconstruction and that of recon-
struction in the presence of calibration errors. As a result, only partial studies exist for
handling these problems.1

In order to overcome the limitations of existing approaches, our work is based on
a simple idea: rather than define the notion of an “approximate 3D shape” directly in
terms of 3D geometry, we define it indirectly, in terms of its appearance. To make this
idea concrete, we use a class of image transformations suitable for describing a process
of “controlled image approximation,” and define approximate 3D shapes to be volumes
in space that reproduce the input photographs up to a transformation in this class.

The two crucial questions one must address to exploit this idea are (1) how to
relate these implicitly-defined approximate shapes to the geometry of the true scene,
and (2) how to recover such shapes from images of arbitrarily-shaped scenes. Here
we show that both questions can be answered with the help of a special class of image
transformations called shuffle transformations. These transformations describe arbitrary
bounded re-arrangements of points in an image and have a unique property—the views of
the true scene are always related to the views of its supersets by a shuffle transformation.
Moreover, we can use these transformations to arrange a scene’s supersets into a one-
parameter family of nested volumes, called the Photo-Consistency Scale Space, whose
appearance converges to the input views and whose shapes provide increasingly tighter
bounds on the true scene. Importantly, we show that shapes from this scale space can
be computed using a simple, efficient and provably-correct volumetric algorithm that
fulfills our stated evaluation criteria to a great degree. To our knowledge, this is the only
algorithm with this property.

In the following we consider a scene to be an arbitrary, bounded, and opaque volume
V that is viewed from arbitrary viewpoints in<3�V . To simplify our exposition, we first
focus on the case where volumes are not finite, i.e., they are open subsets of<3 bounded
by closed surfaces [21]; where images are functions of color or intensity defined over a
continuous domain [0; H ] � [0;W ]; where pixels are infinitesimally-small points; and
where no pixel noise is present. We then consider finite volumes in Section 5 and discrete
images in Section 6 and in the Appendix.

1 For instance, the shape distortion analysis in [10] cannot be extended from 2 to N erroneously-
calibrated views because no single 3D shape will be consistent, in general, with N such
views—in such cases, only approximate shapes can be recovered. Similarly, the coarse-to-fine
reconstruction method of Prock and Dyer [12] still requires accurate calibration.
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Figure 1.Shuffle transformations. (a) A 1-shuffle corresponding to a piecewise-continuous image
translation. (b) A 1-shuffle corresponding to a non-parametric image transformation; this example
shows that r-shuffles can model the process of “ignoring” a subset of the pixels in an input image.
(c),(d) A randomized 10-shuffle: the image in (d) was created by displacing every pixel in (c)
to a randomly-selected position inside a 21x21 pixel window centered at the pixel. Note that (d)
appears “blurred” even though no modification of colors or intensities has taken place.

2 Approximate N-View Stereo

A basic step in our method for recovering approximate 3D shapes is to apply in a novel
way the principle of transformation-invariant reconstruction [22]: given a collection of
input photographs, recover a 3D shape that is defined up to an a priori specified class
of transformations. Below we apply this principle in an appearance based way by (1)
defining the class of shuffle image transformations, and (2) defining approximate recon-
struction as the problem of recovering a volume that reproduces the input photographs
up to a shuffle transformation.

2.1 Shuffle Transformations

We use the term shuffle transformation to denote any image transformation (continuous
or otherwise) that causes the bounded repositioning of pixels in an image. Shuffle
transformations are defined implicitly, in terms of their effect on a source image:

Definition 1 (r-Shuffle) A 2D transformation T : I1 ! I2 is called an r-shuffle if for
every point in image I2 we can find a point of identical color within a disk of radius r
in I1. The constant r � 0 is called the dispersion radius of T .

Shuffle transformations affect only the arrangement of pixels in an image, not their
actual colors or intensities (Figure 1a). Because these transformations encompass a
wide range of distortions, algorithms that can recover shape from images known up
to an r-shuffle are by definition invariant to bounded parametric, non-parametric, and
statistically-defined image distortions (Figure 1b-d).

2.2 Reconstruction Using Photo-Consistency

Before we can make precise the approximate reconstruction problem, we need to relate
the set of input views of an unknown scene to the 3D reconstructions they give rise to



in the ideal case, i.e., when an exact 3D reconstruction is sought. We use the photo-
consistency theory of Kutulakos and Seitz [6] for this purpose, briefly summarized
below.

The notion of photo-consistency is based on the idea that a reconstructed 3D shape
should reproduce a scene’s input photographs exactly if it is to be considered a valid
geometric description of that scene. This leads to a geometric constraint satisfaction
problem, where every input photograph can be thought of as a constraint that restricts
the space of all possible 3D shapes to only those shapes that could have possibly
produced that photograph. When many such photographs are available, each taken from
a known position ci, they define an equivalence class of 3D shape solutions called photo-
consistent shapes whose views are identical to the input photographs when viewed from
the photographs’ viewpoints (Figure 2a):

Definition 2 (Photo-Consistent 3D Shape)An arbitrary finite and opaque volume V
is photo-consistent if there is an assignment of radiances (colors) to every point on its
surface such that V’s projection along the known viewpoints c1; : : : ; cN is identical to
the corresponding input photographs.

Using this definition as a starting point, photo-consistency theory studies the recon-
struction of photo-consistent shapes from N arbitrarily-distributed views that are taken
from known positions in space. In particular, Kutulakos and Seitz proved the following:

Theorem 1 (Photo Hull Theorem) For every volume V that contains the true scene,
there exists a unique shape, called the Photo Hull, that is the union of all photo-consistent
subsets ofV . Moreover, this shape contains the true scene and is itself a photo-consistent
shape.

The notion of the photo hull plays a key role in our approach for three reasons. First,
it provides a direct mathematical link between a scene’s appearance in N images and
the reconstruction(s) these images can give rise to. Second, it defines in an algorithm-
independent way the tightest possible superset of the true scene that we can ever recover
from N photographs, in the absence of a priori scene information. This is because it is
impossible to decide, based on the photographs alone, which photo-consistent subset of
this maximal shape is the true scene. The notion of the photo hull is therefore especially
important in order to evaluate the results of our approximate reconstruction approach.
Third, it leads to a simple, efficient, and provably-correct volumetric algorithm for
computing this shape—starting from an arbitrary superset V of the scene itself (e.g., an
arbitrary “bounding box” that surrounds a physical 3D object), the algorithm iteratively
“carves” voxels away from this superset until the carved volume converges to the
photo hull. As such, photo-consistency theory leads to algorithms that satisfy both the
Generality and Shape Determinism criteria posed in Section 1.

2.3 Approximation Using Shuffle Transformations

Unfortunately, despite its useful features, photo-consistency theory relies on precise
knowledge of the input viewpoints and provides no mechanism for approximate shape
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Figure 2. (a) Photo-consistent shapes. The color and intensity at the projection of every point on
their surface must be identical to the input photographs. (b) r-consistent shapes. The color and
intensity at the projection of every point on their surface must be identical to that of a pixel within
a disk of radius r in the input photographs (shown in gray).

recovery. We therefore relax the definition of a photo-consistent 3D shape in a way that
makes 3D shape approximation a mathematically tractable problem:

Definition 3 (r-Consistent 3D Shape)A volume V is r-consistent if for every input
photograph Ii there exists an r-shuffle Ti : Ii ! I 0i that makes V photo-consistent with
the photographs I 0

1
; : : : ; I 0N .

r-consistent shapes are the central concept in approximate N -view stereo. Intu-
itively, these shapes satisfy two seemingly-incompatible requirements. On one hand, a
valid 3D scene approximation must be globally consistent with the input photographs,
i.e., every point on its surface must conform to the textures, discontinuities, and occlu-
sion relationships captured by the entire set of the input views. On the other, such an
approximation cannot reproduce the input views exactly since it only approximates the
scene itself.

When a point on an r-consistent shape is projected into a pair of photographs in
which the point is visible, it induces an implicit correspondence between a pair of disks
(Figures 2b, 3a). This correspondence can be interpreted in terms of a simple criterion
for matching two or more sets of pixels:

Definition 4 (Color Equivalence of Pixel Sets)Two pixel sets are color equivalent if
there is a pixel color that appears in both.

r-consistent shapes can therefore be thought of as integrating into a global, N -
view stereo framework elements from recent non-parametric [23–25] and robust [26]
approaches to image matching.

3 The Photo-Consistency Scale Space

Our definition of r-consistency leads directly to a hierarchy of 3D scene approxima-
tions in which the dispersion radius, r, controls how well the appearance of the 3D



approximation matches that of the true scene. To use this hierarchy as a framework for
developing reconstruction algorithms, however, we must establish the 3D relationship
between an r-consistent shape and the true scene.

We make this relationship precise with the following theorem which suggests that
the dispersion radius can be thought of as a “scale” parameter that controls the detail in
an r-consistent shape. Theorem 2 shows that the relationship between representations
of the same scene at different scales is one of containment, i.e., r-consistent shapes at
coarse scales are guaranteed to contain counterparts at finer scales (Figure 3a): 2

Theorem 2 (Nesting Theorem)Let V be an arbitrary bounded superset of the scene:

1. 0-consistency is equivalent to photo-consistency;
2. r-consistency implies r1-consistency for every r1 > r;
3. every superset of the scene is r-consistent for some r > 0;
4. if Vr � V is an r-consistent shape that contains the scene, then for every r1 � r we

can find an r1-consistent subset of V ; equivalently, for every 0 � r2 � r, we can
find an r2-consistent superset of the scene that is contained in Vr.
The Nesting Theorem has three implications for approximate shape recovery. First,

it suggests that the recovery of a photo-consistent or an r-consistent shape from pho-
tographs can always be formulated as a “coarse-to-fine” reconstruction process in which
r-consistent shapes of increasingly smaller dispersion radius are recovered at each step,
starting from an arbitrary initial volume that bounds the scene. Second, it shows that
this process provides a way to reconstruct “controlled” scene approximations that (1)
always bound the true scene, and (2) provide an increasingly accurate representation of
both a scene’s 3D shape and of its appearance. Third, it suggests that we can establish an
explicit bound on a scene’s 3D shape even from images that do not correspond to exact
views of a rigid 3D scene. This is because the images of an r-consistent shape are defined
only up to a shuffle transformation, and hence, any collection of r-shuffle-transformed
views of a rigid scene are sufficient to determine such a shape.

4 Reconstruction Using Free-Space Queries

Our goal is to recover r-consistent shapes from multiple views of an arbitrary scene. To
do this, we exploit the Nesting Theorem by repeatedly applying to an arbitrary superset
of the scene an operation akin to “space carving:” given an r1-consistent superset with
r1 � r, remove selected portions of this volume so that the resulting “carved” shape
becomes r-consistent. In this section, we show how to perform this carving operation
with the help of a provably-correct criterion for testing whether a portion of a non
r-consistent volume is completely devoid of scene points.

The key observation we exploit to define this criterion is that even though r-
consistency was defined in a purely appearance-based way, the r-consistency and non

2 The reader should note that our approach differs from existing scale space theories (e.g., [14])
in two significant ways: (1) unlike previous formulations, the mapping between r-consistent
shapes at different scales is not continuous in general, and (2) this mapping is defined in terms
of the shapes’ appearance rather than their geometry.



r-consistency of a shape provides explicit 3D geometric information about the under-
lying scene. In particular, let V be an arbitrary non r-consistent superset of the scene.
By its definition, V must contain a point p on its surface such that (1) p is visible from
a subset fc1; : : : ; ckg of the input viewpoints, 3 and (2) the disks, D1; : : : ; Dk, that
are centered at p’s projection in the corresponding photographs are not color equiva-
lent. Let Ri; i = 1; : : : ; k be the interior of the conical volumes defined by ci and Di,
respectively. We use the following theorem (Figures 3c,d):

Theorem 3 (Free-Space Query Theorem)(1) If the volume RF =
Tk

i=1Ri is not
occluded by V � RF from any of the viewpoints ci; i = 1; : : : ; k, RF \ V is free
of scene points. (2) If R0

F is the subset of RF that is unoccluded by V � RF from
ci; i = 1; : : : ; k, the volumeR0

F \ V is free of scene points.

Theorem 3 gives a deterministic sufficiency criterion for “querying” the free space
inside a non r-consistent volume by simply comparing disks around the projection of a
single point on the volume’s surface:

Corollary 1 (Free-Space Query Criterion) If the disksD1; : : : ; Dn are not color equiv-
alent, there exists an identifiable volume VF � V that contains no scene points.

5 The Approximate Space Carving Algorithm

The Free Space Query criterion leads directly to a simple volumetric reconstruction
algorithm that, given a dispersion radius r and an arbitrary superset V of the scene,
iteratively removes portions of that volume until it becomes r-consistent.

In particular, the Free Space Theorem tells us that if there is a point p on V’s surface
that satisfies this criterion, the volume V 0 = V � VF must still contain the scene.
Furthermore, the Nesting Theorem guarantees the existence of an r-consistent superset
of the scene in the volume V 0. Hence, if the scene consists of a finite set of points (e.g.,
voxels) and only the points in VF are removed at each iteration, the carved volume will
converge to an r-consistent shape. These considerations lead to the following algorithm
for computing an r-consistent shape:

Approximate Space Carving Algorithm

Step 1: Initialize V to a superset of the scene.
Step 2: Repeat the following until no surface point p can be selected in Step 2b:

a. Project p to all viewpoints c1; : : : ; cj in which it is visible and let D1; : : : ; Dj be
disks of radius r around p’s projection in the corresponding photographs.

b. Select p if no single pixel color appears in all disks.
Step 3: Let VF be the largest volume in V that contains p, is fully visible in c1; : : : ; cj ,

and projects to the interior of D1; : : : ; Dj , respectively.
Step 4: Set V = V � VF , and continue with Step 2.

3 More formally, we consider p 2 V to be visible to a set of cameras fc1; : : : ; ckg if there exists
a volume V0

� V around p whose occluders lie entirely in V0. That is, for every q 2 V
0, the

open line segment qci does not intersect V � V
0 for any camera ci in the set.
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Figure 3. (a) Illustration of r-consistency for a shape V (shown in yellow) that contains the true
scene. The scene’s volume is shown in black. If the distance between the projection of p and q
in the right-hand image is d, V will be r-consistent for every r > d=2. (b) Illustration of the
Nesting Theorem. The blue volume represents the Photo Hull. (c)-(d) Illustrations of the Free-
Space Theorem. (c) The intersectionRF = R1 \R2 is unoccluded by V; the volume VF , shown
in dark blue, must be free of scene points—if it were not, at least one scene point would be visible
to both cameras, forcing the color equivalence of the disks D1; D2. (d) The intersectionR1 \R2

is occluded by V; the volume VF is restricted to the intersection of the visible portion of RF .

(a) (b) (c) (d)

Figure 4. (a)-(b) Illustration of the Calibration Reconstructibility Theorem. (a) The initial volume
V , shown in yellow, is a bounding box of the scene. Yellow cameras indicate the true viewpoints,
ci. If the incorrect viewpoints ĉi, shown in red, do not cross the dotted lines, the volume V
contains a reconstructible r-consistent shape. The theorem also provides an easily-computable
reconstructibility test: if V itself is not r-consistent for any r, we cannot use the Approximate
Space Carving Algorithm to reconstruct the scene. (b) Another application of the theorem. The
circles around each camera are a priori bounds on the calibration error of the input views. An
r-consistent shape can be recovered from the circular initial volume, V , by allowing the red
camera to contribute to the carving of V only around surface points outside the red regions, i.e.,
points whose visibility is not affected by calibration errors. (c)-(d) Handling discrete images. (c)
The difference between the values of the corresponding red pixels, whose footprints contain no
irradiance discontinuities, tends to zero with increasing image resolution. On the other hand, even
though the middle pixels in the left and right image form a corresponding stereo pair, their actual
values will be arbitrary mixtures of red and green and their similarity cannot be guaranteed for any
image resolution. (d) Relating a discrete image to a 2-pixel-shuffle of its continuous counterpart.
For every pixel in the discrete image whose footprint does not span a discontinuity, there is a point
in the continuous image that has identical value and falls inside the footprint (circle). Hence, we
obtain a 2-pixel-shuffle of the continuous image by replacing the value of every corrupted pixel
in the discrete image by that of an adjacent pixel that does not lie on a discontinuity.



6 Applications of the Theory

Reconstruction in the Presence of Calibration Errors Because r-consistent recon-
struction is invariant to shuffle transformations of the input images, it leads to algorithms
that operate with predictable performance even when these views are not perfectly cali-
brated. More specifically, let V be an arbitrary superset of the true scene, let c1; : : : ; cN
be the viewpoints from which the input photographs were taken, and let ĉ1; : : : ; ĉN be
incorrect estimates for these viewpoints, respectively.

Theorem 4 (Calibration Reconstructibility Theorem) An r-consistent subset of V
exists for some r � 0 if the following condition holds for all i = 1; : : : ; N :

VisV(ci) = VisV(ĉi); (1)

where VisV(c) is the set of points on V that are visible from c.

Theorem 4 tells us that Approximate Space Carving can provably handle arbitrarily
large calibration errors, as long as these errors do not affect the visibility of the initial
volume given as input to the algorithm. This result is important because the conditions
it sets are independent of the true scene—they only depend on the shape V , which is
known in advance (Figure 4).4 In practice, even though large calibration errors may
allow reconstruction of an r-consistent shape, they affect the minimum r for which
this can happen. Hence, good information about a camera’s calibration parameters is
still needed to obtain r-consistent shapes that tightly bound the true scene. A key open
question is whether it is possible to employ the approximate correspondences defined
by an r-consistent shape to achieve self-calibration, i.e., improve camera calibration
and recover even tighter bounds on the true scene [11, 27].

Reconstruction from Discrete Images In practice, pixels have a finite spatial extent
and hence their color is an integral of the image irradiance over a non-zero solid
angle. This makes it difficult to match individual pixels across views in a principled
way, especially when the pixels span irradiance discontinuities (Figure 4c). Typical
approaches use a threshold for pixel matching that is large enough to account for
variations in the appearance of such “corrupted” pixels [8, 12]. Unfortunately, these
variations depend on the radiance properties of the individual scene, they do not conform
to simple models of image noise (e.g., Gaussian), and cannot be bounded for any finite
image resolution. Unlike existing techniques, approximate N -view stereo puts forth
an alternative approach: rather than attempting to model the appearance of corrupted
pixels to match them across frames [3], we simply ignore these pixels altogether by
recovering r-consistent shapes from the input views. Intuitively, this works because
(1) a view of an r-consistent shape must agree with its corresponding discrete input
image only up to a shuffle transformation, and (2) shuffle transformations are powerful
enough to model the elimination of corrupted pixels from an input view by “pushing”

4 It is possible to analyze in a similar way shape recovery when the scene moves between
snapshots—reconstruction then involves computing r-consistent supersets of both the original
and the new scene volume.



all discontinuities to pixel boundaries (Figures 1b and 4d). This behavior can be thought
of as a generalization of the neiborhood-based method of Birchfield and Tomasi [28]
where pixel (dis)similiarities are evaluated by comparing sets of intensities within their
neighborhoods along an epipolar line. From a technical point of view, it is possible
to establish a resolution criterion that is a sufficient condition for reconstructing r-
consistent shapes from discrete images. This criterion formalizes the conditions under
which the reasoning of Figure 4d is valid; it is omitted here due to lack of space. Coarse-

to-Fine Reconstruction While the Approximate Space Carving Algorithm in Section
5 can be thought of as operating in a continuous domain, it can be easily converted into
an algorithm that recovers volumetric scene models in a coarse-to-fine fashion [17].
The algorithm works by imposing a coarse discretization on the initial volume V and
iteratively carving voxels away from it. The key question one must address is how to
decide whether or not to carve a “coarse voxel” away. Figures 4c,d suggest that using
lower-resolution images to achieve this [12, 13] will only aggravate the correspondence-
finding process, and may lead to wrong reconstructions (i.e., coarse volumes that do not
contain the scene). Instead, we apply the Free-Space Query Theorem: to decide whether
or not to carve away a voxel v, we pick a dispersion radius r that is specific for that
voxel and is large enough to guarantee that volume VF contains v in its interior. Hence,
carving coarse models simply requires establishing the color equivalence of disks in
each image that are of the appropriate size. Moreover, the Nesting Theorem tells us
that this approach not only guarantees that coarse reconstructions contain the scene; it
also ensures that they can be used to derive higher-resolution ones by simply removing
high-resolution voxels.

7 Experimental Results

To demonstrate the applicability of our approach, we performed several experiments
with real image sequences. In all examples, we used a coarse-to-fine volumetric imple-
mentation of the Approximate Space Carving Algorithm as outlined in Section 6. No
background subtraction was performed on any of the input sequences. We relied on the
algorithm in the Appendix to test the color equivalence of disks across views. Voxels
were assigned a color whose RGB values led to component successin this test.

Coarse-to-fine reconstruction:We first ran the Approximate Space Carving Algo-
rithm on 16 images of a gargoyle sculpture, using a small threshold of 4% for the color
equivalence test. This threshold, along with the voxel size and the 3D coordinates of a
bounding box containing the object were the only parameters given as input to our im-
plementation. The sub-pixel calibration error in this sequence enabled a high-resolution
reconstruction that was carved out of a 2563 voxel volume. The maximum dispersion
radius was approximately two pixels. Figure 5 also shows coarse reconstructions of the
same scene carved out of 1283; 643, and 323 voxel volumes. The only parameter changed
to obtain these volumes was the voxel size. Note that the reconstructions preserve the



object’s overall shape and appearance despite the large dispersion radii associated with
them (over 40 pixels for the 323 reconstruction).

Invariance under bounded image distortions:To test the algorithm’s ability to re-
construct 3D shapes from “approximate” images, we ran the approximate space carving
algorithm on artificially-modified versions of the gargoyle sequence. In the first such
experiment, we shifted each input image by a random 2D translation of maximum
length d along each axis. These modifications result in a maximum dispersion error
of 2

p
2d for corresponding pixels. The modified images can be thought of either (1)

as erroneously-calibrated input images, whose viewpoint contains a translation error
parallel to the image plane, or (2) as snapshots of a moving object taken at different
time instants. Figure 5 shows a 1283 reconstruction obtained for d = 3 in which the
approximate space carving algorithm was applied with exactly the same parameters as
those used for the original images. Despite the large dispersion errors, the recovered
shape is almost identical to that of the “error-free” case, even though the algorithm was
run without modifying any of the input parameters. This is precisely as predicted by our
theory: since the dispersion radius associated with each voxel is larger than 8.5 pixels,
the recovered r-consistent shape is guaranteed to be invariant to such errors. A 643

reconstruction for d = 10 is also shown in the figure, corresponding to dispersion errors
of over 22 pixels. In a second experiment, we individually shifted every pixel within
a 21 � 21-pixel window, for every image of the gargoyle sequence (Figure 1d shows
one image from the modified sequence). Figure 5 shows a 643 reconstruction from
this sequence that was obtained by running the approximate space carving algorithm
with exactly the same parameters as those used to obtained the 643 reconstruction for
the original sequence. These results suggest that our approach can handle very large
errors and image distortions without requiring any assumptions about the scene’s shape,
its appearance, or the input viewpoints, and without having to control any additional
parameters to achieve this.

Reconstruction from images with mixed pixels: In order to test our algorithm’s
performance on sequences where many of the image pixels span color and intensity
discontinuities, we ran the algorithm on 30 calibrated images of four cactus plants. The
complex geometry of the cacti creates a difficult stereo problem in which the frequent
discontinuities and discretization effects become significant. Our results show that the
dispersion radius implied by a 1283 volume results in a good reconstruction of the scene
using a low 7% RGB component error. Despite the presence of a significant number
of “mixed” pixels in the input data, which make stereo correspondences difficult to
establish, the reconstruction does not show evidence of “over-carving” (Figure 5).

Reconstruction from images with calibration errors: To test invariance against cal-
ibration errors, we ran the approximate space carving algorithm on 45 images of an
African violet. While calibration information for each of these views was available, it
was not extremely accurate, resulting in correspondence errors of between 1 and 3 pixels



in the input views.5 Figure 6 shows results of the reconstructed 3D shape, achieved by
reconstructing a 1283 volume from the input views. This result suggests that the dis-
persion radius implied by the 1283 reconstruction was sufficient to handle inaccuracies
in the calibration of each view. An important future direction for our work will be to
examine how to use this approximately-reconstructed shape for self-calibration, i.e., for
further improving the calibration information of each view and, hence, increasing the
maximum attainable resolution of the recovered shape.

Comparison to standard space carving:In a final set of experiments, we compared
our approach to a volumetric reconstruction algorithm that does not incorporate an
error-tolerance model. To achieve this, we applied an implementation of the space carv-
ing algorithm [6] to the same sequences of images used in the above experiments,
with exactly the same parameters. To obtain a coarse scene reconstruction of the gar-
goyle, we ran the space carving algorithm on a volumetric grid of the desired resolution
(i.e., a cube of 1283 voxels for a 1283 reconstruction). In all of our coarse reconstruc-
tion runs at 1283; 643; 323 resolutions, the space carving algorithm completely failed
to reconstruct the scene; instead, the entire set of voxels in the starting volume was
carved away resulting in empty reconstructions. Intuitively, since larger voxels project
to larger regions in the input views, their projection spans pixels with significant inten-
sity variation, invalidating the voxel consistency criterion employed by that algorithm.
Our approximate reconstruction technique, on the other hand, not only produces valid
coarse reconstructions, but does so even when the input views are distorted significantly.

We next ran the standard space carving algorithm on the cactus sequence. In this
case, even a reconstruction of 2563, where every voxel projects to approximately one
pixel, led to over-carving in some parts of the scene (Figure 7). Attempts to reconstruct
lower-resolution volumes with the algorithm led to almost complete carving of the
input volume. A similar behavior was exhibited with the violet sequence. In this case,
calibration errors in the input views led to significant over-carving even for the highest-
possible volume resolution of 2563, where every voxel projects to about one pixel. This
suggests that our approximate reconstruction algorithm does not suffer from the original
algorithm’s sensitivity to even relatively small calibration errors.

8 Concluding Remarks

Despite our encouraging results, several important questions still remain unanswered.
These include (1) how to determine the minimum dispersion radius that leads to
valid scene reconstructions, (2) how to apply our analysis to the problem of joint
reconstruction/self-calibration from N views, and (3) how to develop adaptive, multi-
resolution reconstruction methods in which different parts of the same scene are ap-
proximated to different degrees.

While invariance under shuffle transformations leads to increased robustness against
calibration errors and discretization effects, we believe that shuffle-invariant reconstruc-
tion is only a first step toward a general theory of approximate shape recovery. This is

5 This error range was established a posteriori from images of a test pattern that was viewed
from approximately the same camera positions but that was not used for calibration.



because calibration errors and image distortions are “structured” to some extent, and
rarely correspond to truly arbitrary bounded pixel repositionings. As such, our current
investigation can be thought of as treating a worst-case formulation of the approximate
N-view stereo problem. The question of how to limit the class of acceptable image dis-
tortions without compromising robustness in the shape recovery process is a key aspect
of our ongoing research.

Appendix: Implementation of the Color Equivalence Test Step 2b of the Approx-
imate Space Carving Algorithm requires determining whether two or more sets of n
pixels share a common color. This requires O(n2) pixel comparisons for two n-pixel
disks (i.e., examining every possible pixel pair (q1; q2) with q1 2 D1 and q2 2 D2). To
improve efficiency, we use the following algorithm, which requires only O(kn logn)
pixel comparisons for k disks:

Step 0 Return successif and only if Steps 1-3 return component successfor every
color component C = fR;G;Bg. In this case, assign color (�R; �G; �B) to the
associated voxel.

Step 1 Let Ri; i = 1; : : : ; k be the array of values for componentC in the pixels of Di.
Step 2 Sort R1 and repeat for each disk Di; i = 2; : : : ; k:

a. sort Ri;
b. for every value R1[j], find its closest value, Rji , in Ri.

Step 3 For every value R1[j], compute the standard deviation, �j , of the values in the
set fR1[j]; R

j
2
; : : : ; R

j

kg.
Step 4 If minj �j < � , where � is a threshold, return the mean, �C , of the component

values along wtih component success; otherwise, return failure .

This algorithm is equivalent to the Color Equivalence Test when D1 degenerates to a
pixel and weakens with increasing disk size. The threshold � is chosen by assuming
Gaussian noise of known standard deviation �0 for every pixel component. Specifically,
the sample variance, �2j , follows a �2 distribution with k � 1 degrees of freedom in
the case of component success. The threshold can therefore be chosen to ensure that
component successis returned with high probability when the disks share a common
value for component C [29].
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Figure 5. Experimental results. Also shown are the number of surface voxels, V , as well as the
computation time, T , in seconds.



Input views (4 out of 46) 1283 (V = 239K; T = 3129s)

Figure 6. Reconstruction in the presence of calibration errors. Four out of 46 images of the
sequence are shown. A view of the reconstructed 3D shape is shown on the right, obtained after
full convergence of the approximate space carving algorithm.

2563 , std. space carving

1283 , std. space carving

1283 , approx. space carving

2563 , std. space carving

Figure 7. Comparing reconstructions computed with the standard and approximate space carving
algorithm. Left column: Views of the reconstructed cacti. Over-carving is noticeable in the upper-
right part of the recovered volume. Right columns, top row: More views of the reconstruction
shown in Figure 6. Right columns, bottom row: Volume generated by standard space carving
before the algorithm reached complete convergence. Note that even at this stage, significant over-
carving is evident throughout the volume; the final reconstruction contains even fewer voxels,
because over-carved regions cause errors in the algorithm’s visibility computations.


