UNIVERSITY OF TORONTO
Faculty of Arts and Science

APRIL / MAY 2004 EXAMINATIONS

 CSC418H1S: Computer GraphicsDuration: 3 hours
No aids allowed
There are 14 pages total (including this page)

Family name: \qquad
Given names: \qquad
Student number: \qquad

Question	Marks	
1	$/ 8$	
2	$/ 11$	
3	$/ 12$	
4	$/ 16$	
5	$/ 10$	
6	$/ 12$	
7	$/ 10$	
8	$/ 15$	
9		

1 Euler Angles

(a) [3 marks] What is the homogeneous matrix $\mathbf{R}_{x}(\theta)$ for a rotation in three dimensions counterclockwise about the x axis by an angle of θ ?

$$
\mathbf{R}_{x}(\theta)=
$$

What is the homogeneous matrix $\mathbf{R}_{y}(\phi)$ for a counterclockwise rotation about the y axis by an angle of ϕ ?

$$
\mathbf{R}_{y}(\phi)=
$$

What is the homogeneous matrix $\mathbf{R}_{z}(\psi)$ for a counterclockwise rotation about the z axis by an angle of ψ ?

$$
\mathbf{R}_{z}(\psi)=
$$

(b) [2 marks] The angles θ, ϕ, and ψ are known as Euler angles. How would you combine the above elementary rotation matrices $\mathbf{R}_{x}, \mathbf{R}_{y}$, and \mathbf{R}_{z} to specify a matrix $\mathbf{R}(\theta, \phi, \psi)$ that rotates an object by arbitrary Euler angles?
$\mathbf{R}(\theta, \phi, \psi)=$
(c) [3 marks] To animate a 3D model, we often want to rotate about small "incremental" angles from frame to frame. Using the "small angle approximations" $\sin \psi \approx \psi$ and $\cos \psi \approx 1$, the so-called "incremental rotation matrix" about the z axis is

$$
\begin{array}{cccc}
1 & -\theta & 0 & 0 \\
\theta & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}
$$

Does this matrix specify a true rotation transformation?
Answer "Yes" or "No": \qquad
If you answered "Yes", briefly explain why it is a rotation matrix; if you answered "No", briefly explain why it is not:

What is the drawback of trying to rotate objects by repeatedly applying this transformation many times?
(Hint: Consider points a unit distance from the origin.)

2 Sweep Surface

(a) [3 marks] Consider the line segment defined by the endpoints $\mathbf{p}_{1}=[0,0,0]^{T}$ and $\mathbf{p}_{2}=$ $[1,0,0]^{T}$. Write the parametric equation $\mathbf{l}(\alpha)$, for $0 \leq \alpha \leq 1$, of this line segment in homogeneous form.
(b) [5 marks] Let us create a spiral-staircase-like surface, called a "line sweep surface", by translating the above line by 2 units along the z-axis, while rotating it counterclockwise about the z-axis through an angle of 2π radians. The surface generated can be written parametrically as $\mathbf{s}(\alpha, \beta)$. The homogeneous transformation matrix $\mathbf{M}(\beta)$, parameterized by $0 \leq \beta \leq 1$, that accomplishes this sweep can be written in terms of a homogeneous translation matrix $\mathbf{T}(\beta)$ and a homogeneous rotation matrix $\mathbf{R}(\beta)$. Specify $\mathbf{T}(\beta)$ and $\mathbf{R}(\beta)$, and write $\mathbf{M}(\beta)$ in terms of these matrices.
(c) [3 marks] What are the homogeneous coordinates of the point $\mathbf{s}(0.5,0.5)$ on the line sweep surface? Show your work.

3 Reflectance

[12 marks] Using the Phong reflectance model, give the mathematical expression for the reflectance toward a camera eye (center of projection) at location \mathbf{e} from a surface point \mathbf{p} with unit normal n, given a point light source at location l. Define any other variables needed by the model, and express all directions in terms of $\mathbf{p}, \mathbf{n}, \mathbf{e}$, and \mathbf{l}.

4 Ray Intersections

Consider a hemispherical object; i.e., a sphere of unit radius that is cut by a plane passing through the centre of the sphere (like half an orange). The surface of the object comprises two parts, the quadratic hemisphere and the planar base.
(a) [6 marks] Express this object model mathematically in implicit form using constraints.
(b) [10 marks] Using this mathematical model, find the intersections (if any) of the object surface and a ray $\mathbf{r}(\lambda)=\mathbf{a}+\lambda \mathbf{b}$, assuming that the ray originates outside the object.

5 Ray Tracing: Motion Blur

(a) [2 marks] In one or two sentences, describe what causes motion blur.
(b) [2 marks] Suppose you have a function $f(p, t)$ that traces a ray in an animated scene, for pixel p at time t, and returns the intensity along that ray. Write a definite integral that describes the intensity of pixel p for a given image.
(c) [2 marks] In one or two sentences, describe one way that a photographer can reduce motion blur by changing the camera settings. How does this correspond to changing the above variables?
(d) [4 marks] Describe, briefly in words and/or pseudocode, how you could simulate motion blur using an OpenGL-like renderer (i.e., not a raytracer). The system does not need to run in real-time.

6 Ray Tracing: Shadows, Advanced Phenomena

(a) [1 marks] Under what condition will shadows become "soft"; i.e., exhibit umbral and penumbral regions?
(b) [5 marks] List 5 factors that determine the shape of these regions in the final rendered image.
(c) [6 marks] Apart from motion blur and soft shadows, name and describe each in one or two sentences, 3 other phenomena that are NOT captured by basic ray tracing (i.e., Whitted ray tracing in which rays only reflect specularly, are refracted, and are directed at point light sources).

7 Splines

(a) [6 marks] It is possible to define Bézier curves to have different degrees of continuity and to be closed. For a Bézier curve on five control points $p_{0}, p_{1}, p_{2}, p_{3}$, and p_{4}, answer the following (with figures to help illustrate your answers):

1. Specify a necessary condition on the control points for the curve to exhibit no continuity at its end points (i.e., not to be a closed curve):
2. Specify a necessary condition on the control points for the curve to be C^{0} continuous everywhere (i.e., to be a closed curve):
3. Specify a necessary condition on the control points for the curve to be C^{1} continuous everywhere (i.e., to be a smooth, closed curve):

8 Spherical Patches

The parametric representation of a unit sphere is

$$
\begin{aligned}
x & =\cos \theta \sin \phi \\
y & =\sin \theta \sin \phi \\
z & =\cos \phi
\end{aligned}
$$

We can define a quadrilateral spherical surface patch by restricting the parametric coordinates to $\theta_{1} \leq \theta \leq \theta_{2}$ and $\phi_{1} \leq \phi \leq \phi_{2}$.
(a) [4 marks] What are the tangent vectors in the direction of each of the parametric coordinates at any point on this spherical patch (i.e., as a function of θ and ϕ)?
(b) [4 marks] What is the normal vector at any point on the patch?
(c) [2 marks] The "isoparametric curves" are the curves of constant θ (latitude) and the curves of constant ϕ (longitude) on the patch. Show that these curves cross orthogonally to one another. (Hint: Consider the tangent vector directions.)

9 Mass-Spring Systems

Consider the simple mass-spring system in the diagram. Assume that the particle can only move in the vertical direction; hence, vectors are unnecessary in what follows. Let t denote time. The particle's position $x(t)$ is measured as shown (positive x is in the downward direction). We know from Newton's second law of motion that the acceleration $a(t)$ of the particle is related to the total force $f(t)$ that acts on it, according to the formula $f=m a$, where m is the mass of the particle. We also know that $a=\frac{d v}{d t}$, where $v(t)$ is the particle's velocity, and that $v=\frac{d x}{d t}$.

(a) [3 marks] The natural length of the spring is 0 (zero) and its elasticity constant (spring stiffness) is c. What is the spring force $s(t)$ that acts on the particle?

$$
\begin{equation*}
s(t)= \tag{1}
\end{equation*}
$$

The particle is retarded by a velocity-dependent damping force, with associated damping constant γ. What is the damping force $d(t)$ that acts on the particle?

$$
\begin{equation*}
d(t)= \tag{2}
\end{equation*}
$$

The force of gravity, which acts downward, is given by the constant g. What then is the total force $f(t)$ that acts on the particle?

$$
\begin{equation*}
f(t)= \tag{3}
\end{equation*}
$$

(b) [6 marks] Let us discretize the position, velocity, and acceleration of the particle in time as follows:

$$
x_{i}=x(i \Delta t), \quad v_{i}=v(i \Delta t), \quad a_{i}=a(i \Delta t), \quad \text { for } i=0,1,2, \ldots,
$$

where Δt is a small time-step. Replacing continuous time-derivatives with finite differences, write the forward finite difference approximation of the acceleration a_{i} in terms of the velocity variables v_{i} :

$$
\begin{equation*}
\frac{d v(t)}{d t} \approx a_{i}= \tag{4}
\end{equation*}
$$

Write the backward finite difference approximation of v_{i} in terms of the position variables x_{i} :

$$
\begin{equation*}
\frac{d x(t)}{d t} \approx v_{i}= \tag{5}
\end{equation*}
$$

Combining equations (4) and (5), write the central finite difference approximation of a_{i} in terms of x_{i+1}, x_{i}, and x_{i-1} :

$$
\begin{equation*}
a_{i}= \tag{6}
\end{equation*}
$$

(c) [5 marks] Discretizing the force expression in equation (3), we define $f_{i}=f(i \Delta t)$. Use the central finite difference approximation of a_{i} obtained in equation (6), and use equation (5) as necessary, to write the discrete equation of motion $a_{i}=f_{i} / m$ of the particle in terms of x_{i+1}, x_{i}, and x_{i-1} :
(Hint: The equation will also involve the constants $c, g, \gamma, \Delta t$ and, of course, m.)
(d) [1 marks] Rearranging this discrete equation of motion yields a second-order explicit Euler method for numerically integrating the equation through time starting from some initial position $x(0)=x_{0}$ and velocity $v(0)=v_{0}$ (i.e., $x_{1}=x_{0}+v_{0} \Delta t$) for the particle. Write this iterative integration formula, which gives the next position x_{i+1} of the particle in terms of its current position x_{i} and its previous position x_{i-1} :

$$
x_{i+1}=
$$

END OF EXAM

