
CSC418 / CSCD18 / CSC2504 Introduction to Graphics

1 Introduction to Graphics

1.1 Raster Displays

The screen is represented by a 2D array of locations calledpixels.

Zooming in on an image made up of pixels

The convention in these notes will follow that of OpenGL, placing the origin in the lower left
corner, with that pixel being at location(0, 0). Be aware that placing the origin in the upper left is
another common convention.

One of2N intensities or colors are associated with each pixel, whereN is the number of bits per
pixel. Greyscale typically has one byte per pixel, for28 = 256 intensities. Color often requires
one byte per channel, with three color channels per pixel: red, green, and blue.

Color data is stored in aframe buffer . This is sometimes called an image map or bitmap.

Primitive operations:

• setpixel(x, y, color)

Sets the pixel at position(x, y) to the given color.

• getpixel(x, y)

Gets the color at the pixel at position(x, y).

Scan conversionis the process of converting basic, low level objects into their corresponding
pixel map representations. This is often an approximation to the object, since the frame buffer is a
discrete grid.

Copyright c© 2005 David Fleet and Aaron Hertzmann 1



CSC418 / CSCD18 / CSC2504 Introduction to Graphics

Scan conversion of a circle

1.2 Basic Line Drawing

Set the color of pixels to approximate the appearance of a line from(x0, y0) to (x1, y1).

It should be

• “straight” and pass through the end points.

• independent of point order.

• uniformly bright, independent of slope.

The explicit equation for a line isy = mx + b.

Note:
Given two points(x0, y0) and(x1, y1) that lie on a line, we can solve form andb for
the line. Considery0 = mx0 + b andy1 = mx1 + b.
Subtracty0 from y1 to solve form = y1−y0

x1−x0
andb = y0 − mx0.

Substituting in the value forb, this equation can be written asy = m(x − x0) + y0.

Copyright c© 2005 David Fleet and Aaron Hertzmann 2



CSC418 / CSCD18 / CSC2504 Introduction to Graphics

Consider this simple line drawing algorithm:

int x
float m, y
m = (y1 - y0) / (x1 - x0)
for (x = x0; x <= x1; ++x) {

y = m * (x - x0) + y0
setpixel(x, round(y), linecolor)

}

Problems with this algorithm:

• If x1 < x0 nothing is drawn.
Solution: Switch the order of the points ifx1 < x0.

• Consider the cases whenm < 1 andm > 1:

(a) m < 1 (b) m > 1

A different number of pixels are on, which implies different brightness between the two.
Solution: Whenm > 1, loop overy = y0 . . . y1 instead ofx, thenx = 1

m
(y − y0) + x0.

• Inefficient because of the number of operations and the use of floating point numbers.
Solution: A more advanced algorithm, called Bresenham’s Line Drawing Algorithm.

1.3 Bresenham’s Algorithm

Bresenham’s Algorithm is an efficient incremental integer algorithm for line rasterization. It is
based on themidpoint rule . Midpoint rule states that if true line atxi + 1 is above midpoint
M = (xi +1, yi +

1
2
) (closer toyi +1) then(xi + 1, yi + 1) should be drawn, otherwise if true line

atxi + 1 is bellow midpointM (closer toyi) then(xi + 1, yi) should be drawn.

Copyright c© 2005 David Fleet and Aaron Hertzmann 3



CSC418 / CSCD18 / CSC2504 Introduction to Graphics

x+1x

y+1

y
M=(x+1, y+0.5)

How do we check if the true line is above or bellow the midpoint using only integer operations?
We use implicit equation for the line,

y =
H

W
(x − x0) + y0 (1)

Wy = H(x − x0) + Wy0 (2)

f(x, y) = 0 = 2H(x − x0) − 2W (y − y0) (3)

whereH = y1−y0 andW = x1−x0 is the numerator and denominator of the slope (W ≥ H > 0).
All we need to do is evaluatef(xi, yi) at the midpoint (i.e.f(xi + 1, yi + 0.5)).

Note:
if f(x, y) = 0 then(x, y) on the line
if f(x, y) < 0 then(x, y) above the line
if f(x, y) > 0 then(x, y) below the line

This can be checked by holding thex fixed and changingy up or down.

Since all we need to do is keep track off(x, y) at the midpoints, this can be done incrementally:

• f(x + 1, y) = f(x, y) + 2H (wheny stays the same)

• f(x + 1, y) = f(x, y) + 2(H −W ) (wheny changes)

The algorithm for the line drawing in the first quadrant and with slope< 1 is:

int y, H, W, f
y = y0

Copyright c© 2005 David Fleet and Aaron Hertzmann 4



CSC418 / CSCD18 / CSC2504 Introduction to Graphics

H = (y1 - y0)
W = (x1 - x0)
f = 2 * H - W
for (x = x0; x <= x1; ++x) {

setpixel(x, y, linecolor)
if (f < 0) {

f += 2 * H // y stays the same
} else {

y++ // y increases
f += 2 * (H - W)

}
}

Note:
Initially f(x0, y0) = 0, so first test is atf(x0 + 1, y0 + 1

2
).

1.4 Triangle Rasterization

Find pixels on inside of the triangleP = {(x0, y0), (x1, y1), (x2, y2)} and fill them with a given
color.

Solution: For each horizontal scanlineL find intersection ofL with P , store the sorted (by increas-
ing values ofx) intersections in the active edge list (AEL), and fill in pixel runs between pairs of
intersections.

for each edge [(x0, y0), (x1, y1)]
double x, m
x = x0
m = (y1 - y0) / (x1 - x0)
for (y = y0; y <= y1; ++y) {

x += 1 / m
place (round(x), y) in AEL

}
}

Problems with this algorithm:

• Horizontal edges are not handled properly.
Solution: Simply ignore horizontal edges.

Copyright c© 2005 David Fleet and Aaron Hertzmann 5



CSC418 / CSCD18 / CSC2504 Introduction to Graphics

Note:
This algorithm will also work for general polygons, except for a few special cases that
only happen at vertices of the polygon. All the special cases are about the ownership
convention and can be handled by only resterizing the edges (i.e. by looping overy
from y0 to y1 − 1 (instead of toy1).

Copyright c© 2005 David Fleet and Aaron Hertzmann 6


