Topic 13:

Radiometry

e The Light Transport Cycle

The Basic “Light Transport” Path
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One Step Along Path: Directional Integration
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Topic 13:

Radiometry

e The Bidirectional Reflectance Distribution Function

General Light Transport Cycle: Closing the
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Definition: The BRDF of a Point

BRDE - P_(O\\"do> = Mfe—_iﬁ——\iw divection OTb
= \N‘O\d\ow\c&\ due o £lux orriving_

o im?\'wﬁ*ﬁ%im\
selid angle acound §'
U

do

Wobke/(srn)

\ .
@ rodiance LCE,do)
ewmivred Frowm fiwidesimal R wakls 2
qucok ok UN diveckion dg ® radance HEF) o an

mfinitesivnal potch due Fo
ligwt recoived alw\cj o

or wore (or o Cortimmouw oR)
diveckong

Definition: The BRDF of a Point

’EQ.’D{: 4 P-(d\:,(ﬂo> = Mﬂj——\lw C(I'V\ecjr)'oy\ OT:;
2

trroud ances
e = due o Llux ()\fri\/(%%’_

fom qn Mﬂz\'w'\lrm\;rv@\
Qo“d O\V\g'\ﬁ Q(‘OMV\dd—‘
v

do

\vtjtm](rmm The BRDFE Hells us howo lovkgk{“
P wtl appeo i? viewed! a\o«ﬂ% 3o
when 1t receives light From o small

cone of direckions alowca_ C—J\)L




Definition: The BRDF of a Point
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Radiance Due to a Point Light Source
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Radiance Due to an Extended Source
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The BRDF of a Diffuse Point
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The BRDF of a Diffuse Point
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Radiance of a Diffuse Point Due to Extended
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Radiance of Diffuse Point due to Point Light
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| Distribution Ray Tracing

= In Whitted Ray Tracing we computed lighting very
crudely
o Phong + specular global lighting

= In Distributed Ray Tracing we want to compute the
lighting as accurately as possible
o Use the formalism of Radiometry
o Compute irradiance at each pixel (by integrating all the
incoming light)
o Since integrals are can not be done analytically, we will
employ numeric approximations

| Benefits of Distribution Ray Tracing

Better global diffuse lighting
o Color bleeding
o Bouncing highlights

Extended light sources
Anti-aliasing

Motion blur

Depth of field
Subsurface scattering




‘ Radiance at a Point
= Recall that radiance (shading) at a surface point is

given by _ = S e
L(p.d,) = [p(d,.d)L(p.-d,) i -d,) do
Q

T —

= If we parameterize directions in spherical coordinates
and assume small differential solid angle, we get
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‘ Radiance at a Point
= Recall that radiance (shading) at a surface point is

Gvenby | ) { [P d)L(p-d,) (3-d,) do
Q

= |f we parameterize directions in spherical coordinates
all differential solid angle, we get

)(d..d, (@,0))L(p.-d, (¢,0))-d, ($.6) sin6do do

]
/ ni®gral is over all incoming direction
(hemisphere)




‘ Irradiance at a Pixel

= To compute the color of the pixel, we need to compute
total light energy (flux) passing through the pixel
(rectangle) (i.e. we need to compute the total irradiance
at a pixel)

i = JW(aB)doap
Ghin 05 Buin BB (ncnOtn | rf 0QAOREL
Integrals is over the extent

of the pixel

‘ Numerical Integration (1D Case)

= Remember: integral is an area under the curve

= We can approximate any integral numerically as
follows
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| Numerical Integration (1D Case)

= Remember: integral is an area under the curve
= We can approximate any integral numerically as
follows

X;
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‘ Numerical Integration (1D Case)

= Problem: what if we are really unlucky and our
signal has the same structure as sampling?

X

e £(x)

"\ ‘

ff(x)dx =~ i%f(xi)




| Monte Carlo Integration
= Idea: randomize points x; to avoid structured noise
(e.g. du?, to periodic texture) Co ﬂﬂ

X; f(x)

D Xx

= Draw N random samples x; independently from
uniform distribution Q(x)=U[0,D] (i.e. Q(x) =1/D is the
uniform probability density function)

= Then approximation to the integral becomes

VA
sz(x)dx jo@@@/

= We can also use other Q’s for efficiency !!! (a.k.a.
importance sampling)

‘ Monte Carlo Integration Q( () Meblh
s S

X X\ at 4
rO\-e]-{

f(x)

1 D:X

= Then approximation to the integral becomes
1
— x.)= [f(x)dx ,for w[=, =
) = 0
= We can also use other Q’s for efficiency !!! (a.k.a.
importance sampling)




‘ Stratified Sampling
= ldea: combination of uniform sampling plus random
jitter
= Break domain into T intervals of widths d.and N,
samples in interval t

“i £(x)

N N

= Integral apprOX|mated using the following:

N,

1
d f(x,.)
Z Nt J= ol

‘ Stratified Sampling

= If intervals are uniform d, = D/T and there are same
number of samples in each interval N, = N/T then this

T

approximation reduces to: XD
PP > )

= The interval size and the # of samples can vary !!!

y % \
\/ £(x)

= Integral apprOX|mated usmg the foIIowmQ X
—Sd f(x,)




| Back to Distribution Ray Tracing

= Based on one of the approximate integration approaches
we need to compute
o Let’s try uniform sampling
L@Pdy= [ [pld.d.0))lp.-d.0))i-d .0 kinododp

¢0,27] 6670,7/2]

.6, 0,-0,) ) (5.,(6,..6,))3-3,(0,.0,)in0 20 a0

where

1 n/2
0,=|n-—|A0O AO=——

%-(-5) T

1 2n

=lm-—=|A Ap=—

. =(m- Joo 0=

midpoint of the interval (sample point) Interval width

Importance Sampling in Distribution Ray
Tracing

= Problem: Uniform sampling is too expensive (e.g.
100 samples/hemisphere with depth of ray recursion
of 4 =>_1ﬂ)_4amples per pixel ... with 105 pixels
=>10'> samples)

= Solution: Sample more densely (using importance

sampling) where we know ffects will be most
significant %

o Direction toward point or

significa

sded light source are

-axis sp@lar are significant
o Texture/lightness gradients are significant
o Sample less with greater depth of recursion




| Importance Sampling

Idea: randomize points x; to avoid structured noise
(e.g. due to periodic texture)

Xj

X¢)

—

— f(x)

u 1 I '

1
N O W) = [fodx for wi@

| Benefits of Distribution Ray Tracing

Better global diffuse lighting
o Color bleeding
o Bouncing highlights

Extended light sources
Anti-aliasing

Motion blur

Depth of field
Subsurface scattering




| Shadows in Ray Tracing

= Recall, we shoot a ray towards a light source and
see if it is intercepted

Images from the slides by Durand and Cutler

| Anti-aliasing in Distribution Ray Tracer
= Lets shoot multiple rays from the same point and attenuate the color
based on how many rays are intercepted

Same works for
anti-aliasing of
Textures !!!

Images from the slides by Durand and Cutler




Anti-aliasing by Deterministic Integration

= ldea: Use multiple rays for every pixel

= Algorithm
o Subdivide pixel (i,j) into squares
o Cast ray through square centers
o Average the obtained light

= Susceptible to structured noise, repeating textures

Anti-aliasing by Monte Carlo Integration

= ldea: Use multiple rays for every pixel

= Algorithm
o Randomly sample point inside the pixel (i,j)
o Cast ray through point
o Average the obtained light

= Does not suffer from structured noise, repeating
textures

10



| How many rays do you need?

1 ray/light 10 ray/light 20 ray/light 50 ray/light

Images taken from http://web.cs.wpi.edu/~matt/courses/cs563/talks/dist_ray/dist.html

Soft Shadows with Distribution Ray Tracing

= Lets shoot multiple rays from the same point and attenuate the color
based on how many rays are intercepted

Images from the slides by Durand and Cutler
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‘ Antialiasing — Supersampling

jaggies w/ antialiasing

point light

- ‘

Images from the slides by Durand and Cutler

| Specular Retlections

= Recall, we had to shoot a ray in a perfect specular
reflection direction (with respect to the camera) and get
the radiance at the resulting hit point
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| Specular Reflections with DRT

= Same, but shoot multiple rays

Spread is dictated

by BRDF
S 3
~
<
>
Q
Perfect Reflections Perfect Reflections
(Metal) (glossy polished surface)

‘ Depth of Field

= So far with our Ray Tracers we only considered
pinhole camera model (no lens)
o or alternatively, lens, but tiny aperture

Plane Lens

-

-
-
-
-
-
-
-

- --—= optical axis

-
—-_— e = ——
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‘ Depth of Field

= So far with our Ray Tracers we only considered
pinhole camera model (no lens)
o or alternatively, lens, but tiny aperture

= What happens if we put a lens into our “camera”
o orincrease the aperture

= Remember the thin lens equation?

1
Image —
Plane Lens f z, z

I ﬂ Tl optical axis
S S ~ <~

Depth of Field

= So far with our Ray Tracers we only considered
pinhole camera model (no lens)
o or alternatively, lens, but tiny aperture
= What happens if we put a lens into our “camera”
o orincrease the aperture
= Remember the thin lens equation?
1 1 1

Image —_— =4 —
Plane Lens f Z, 1z,

<I77 ﬂ P optical axis
s S~ o
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| Changing the focal-length in DRT

increasing focal length

*=dist in focus -3. *=dist in focus -3. *=dist in focus *=dist in focus

220x400 pixels
144 samples per pixel
~4.5 minutes to render

‘ Changing the aperture in DRT

decreasing aperture

*=dist in focus

*=dist in focus 2. *=dist in focus -5. *=dist in focus

220x400 pixels
- -ﬂ- ~ optical axis 144 samples per pixel
< = S~

~4.5 minutes to render
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‘ Depth of Field

P. Haeberli
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‘ Depth of Field

Depth of Field
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| Depth of Field : %

Closed

= We ignored the fact that it takes time to form the image
o We ignored this for radiometry

= During that time the shutter is open and light is collected
o We need to integrate temporally, not only spatially

fffH(a,B,t)dadB dt

toaf
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‘ Motion Blur

Cook, Porter & Carpenter

Motion Blur

Long Exposure Photography
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| Motion Blur (long exposures)

Golden Gate Bridge Bodie State Park
30 sec. exposure @ 4 30 min. exposure @ 4

Motion Blur (short exposures)

Doc Edgerton, 1926
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{ M‘Ovs 2

‘ Sub-surface Scattering SN o

‘ Sub-surface Scattering

Bidirectional Surface Scattering Reflectance Distribution Function

H. W. Jensen
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‘ Bidirectional Surface Scattering
Reflectance Distribution Function

3‘"5 BRDF i: BSSRDF
"l G i

[Images taken from Wikipedia]

‘ Semi-Transparencies

Image form http://www.graphics.cornell.edu/online/tutorial/raytrace/
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Texture-mapping and Bump-mapping in
Ray Tracer

Image form http://www.graphics.cornell.edu/online/tutorial/raytrace/

‘ Caustics

= Hard to do in Distribution Ray Tracing
o Why?

23



‘ Caustics

= Hard to do in Distribution Ray Tracing
o Why?

Hard to come up with a good importance function for sampling,
Hence, VERY VERY slow

‘ Caustics

= Often done using bi-directional ray tracing (a.k.a.
photon mapping)
o Shoot light rays from light sources
o Accumulate the amount of light (radiance) at each surface

o Shoot rays through image plane pixels to “look-up” the
radiance (and integrate irradiance over the area of the

24



| Photon Mapping

Simulates individual photons
o In DRT we were simulating radiance (flux)

Photons are emitted from light sources
Photons bounce off of specular surfaces
Photons are deposited on diffuse surfaces

o Held in a 3-D spatial data structure
o Surfaces need not be parameterized

Photons collected by ray tracing from eye

‘ Photons

= A photon is a particle of light that carries flux, which
is encoded as follows

o magnitude (in Watts) and color of the flux it carries, stored as
an RGB triple

o location of the photon (on a diffuse surface)
o the incident direction (used to compute irradiance)

= Example (point light source, photons emitted
uniformly)
o Power of source (in Watts) distributed evenly among photons

o Flux of each photon equal to source power divided by total #
of photons

o 60W light bulb would sending 100 photons, will result in 0.6
W per photon

25



| How does this actually work?

Special data structures are required to do fast look-up (KD-trees)

| Photon Mapping Results

Radiance estimate using 50 photons Radiance estimate using 500 photons
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