CSC2503: Foundations of Computer Vision

Object Recognition

Most slides are modified from the excellent course notes and tutorials by Antonio Torralba, Fei-Fei Li and Rob Fergus.

What’s involved in visual recognition?
Verification

Is this a lamp?
Detection

Are there people in the image?
Identification

Is this Potala Palace?
Category recognition

- mountain
- tree
- building
- banner
- street lamp
- people
- vendor
Scene and context categorization

- outdoor
- city
- daytime
- ...

![Image of outdoor city scene with daytime setting]
Viewpoint and space

Are the distances large or small?

How far are the distant buildings?
Activity recognition

What is this person doing?

What are these two doing?
Perception, categories and function?

- Gestalt perception (1920-40)
- Direct perception & affordances (Gibson 1950-60)
- Mediated perception (categorization)

Some aspects of object function can be perceived directly (container, supporting surface, ...)

It does not seem easy to sit-upon this...

Sittable-upon

Sittable-upon

Sittable-upon

JJ Gibson
Perception, categories and function?

Some aspects of function are observer dependent
Perception, categories and function?

Objects with similar structure might have very different functions.

Not all functions seem to be available from direct visual information only. Here the functions are the same at some level: we can put things inside in both and somebody will come later to empty them. However, we are not expected to put inside the same kinds of things…
Is recognition really that hard?

Find the chair in this image

This is a chair

Normalized correlation
Is recognition really that hard?

Find the chair in this image

Will template matching work?
What makes object recognition hard?
Challenges: Viewpoint

Michelangelo 1475-1564
Challenges: Illumination

slide credit: S. Ullman
Challenges: Occlusion

Magritte, 1957
Challenges: Scale
Challenges: Deformation

Xu, Beihong 1943
Challenges: Background clutter

Klimt, 1913
Challenges: Intra-class variation
Blocks World

1960s-70s: Constrained 3D scene models to allow object recognition from very simple image features (Lambertian, trihedral objects), edge labeling (junction analysis), and object recognition.
Geometric Matching

D Lowe circa 1985
Generalized Cylinders

1970s-80s: Designing languages for representing 3D shapes and parts, e.g., in terms of “Generalized Cylinders” (cylinders modulated w/ sweeping rule)

T. Binford
Recognition by parts

Late 1980s: Vocabulary for shape parts, estimated from images via rules of “perceptual organization” (e.g., collinearity, symmetry, parallelism, ...)

I. Biederman

Unfamiliar fictional objects are consistently perceived in terms of parts, with similarity to familiar objects (“a hot dog cart”).
Recognition by parts

Geons: Shape primitives + deformations, with predictable edge properties under perspective.

I. Biederman, 1987

Recognition by parts

Geons: Shape primitives + deformations, with predictable edge properties under perspective.
Recognition by parts

<table>
<thead>
<tr>
<th>Proportion Contour Deleted</th>
<th>Locus of Deletion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At Midsegment</td>
<td>At Vertex</td>
</tr>
<tr>
<td>25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recoverable Unrecoverable

Parsing based on contours, non-accidental properties & concavities
Parts + Spatial Configurations

There is more to shape than just the right part primitives. Spatial relationships are also important.

[Fischler & Elschlager 73]
1995+: Lose the 3D ... just find things in 2D.
The “Margaret Thatcher Illusion”, by Peter Thompson
View-based models

Turk and Pentland: Face detection using eigen-faces