
Background
Applying and Generalizing Score Matching

Experiments using the mPoT Model
Conclusion

On Autoencoders and Score Matching for Energy
Based Models

Kevin Swersky Marc’Aurelio Ranzato David Buchman
Benjamin M. Marlin Nando de Freitas

Toronto Machine Learning Group Meeting, 2011

Swersky, Ranzato, Buchman, Marlin and de Freitas Autoencoders and Score Matching



Background
Applying and Generalizing Score Matching

Experiments using the mPoT Model
Conclusion

Motivation
Models
Learning

Goal: Unsupervised Feature Learning

Automatically learn features from data
Useful for modeling images, speech, text, etc. without
requiring lots of prior knowledge
Many models and algorithms, we will focus on two commonly
used ones
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Motivation

Autoencoders and energy based models represent the
state-of-the-art for feature learning in several domains
We provide some unifying theory for these model families
This will allow us to derive new autoencoder architectures
from energy based models
It will also give us an interesting way to regularize these
autoencoders
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Latent Energy Based Models

A probability distribution over data
vectors v , with latent variables h
and parameters θ

Defined using an energy function
Eθ (v ,h) as:

Pθ (v) =
exp(−Eθ (v ,h))

Z (θ)

Normalized by the partition
function
Z (θ) =

∫
v
∫
h exp(−Eθ (v ,h))dhdv

Z (θ) is usually not analytical
Features given by h

...

...h1 h2 hnh

v1 v2 vnv

Restricted Boltzmann
Machine

...h1 h2 hnh

...v1 v2 vnv ...v1 v2 vnv

Factored EBM (e.g. mPoT)
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Example: Gaussian-Bernoulli RBM

An Gaussian-Bernoulli restricted Boltzmann machine is an energy
based model with visible (observed) variables v ∈ RD , hidden
(latent) variables h ∈ {0,1}K , and parameters θ = {W }. The
energy is given by:

Eθ (v ,h) =
1
2
vT v − vTWh

The free-energy is obtained by marginalizing over the hidden
variables:

Fθ (v) =
1
2
vT v −

K

∑
j=1

log
(
1+ exp

(
vTWj

))
Where Wj represents the j th column of W .
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Autoencoders

A feed-forward neural network designed to
reconstruct its input

Encoding function: gθ (v)

Reconstruction function: fθ (gθ (v))

Minimizes reconstruction error:

θ̂ =argmin
θ

||fθ (gθ (v))− v ||2

Features given by gθ (v)

v

fθ(gθ(v))

gθ(v)
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Example: One-Layer Autoencoder

A commonly used autoencoder architecture maps inputs v ∈ RD to
outputs v̂ ∈ RD through a deterministic hidden layer ĥ ∈ [0,1]K

using parameters θ = {W } by the following system:

v̂ =fθ (gθ (v)) = Wĥ

ĥ =gθ (v) = σ(W T v)

Where σ(x) = 1
1+exp(−x) .

We train this by minimizing the reconstruction error:

`(θ) =
D

∑
i=1

1
2

(vi − v̂i )
2
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Comparison

Energy based models Autoencoders

Undirected
Probabilistic
Slow inference
Intractable objective
function

Directed
Deterministic
Fast inference
Tractable objective
function

Unifying these model families lets us leverage the advantages
of each
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Maximum Likelihood for EBMs

Minimize KL divergence between empirical data distribution
P̃(v) and model distribution Pθ (v):

θ̂ =argmin
θ

Ep̃(v)

[
log(P̃(v))− log(Pθ (v))

]

v

lo
g(
P
(v
))

P(v)
Pθ(v)

~

Requires that we know Z (θ)
Idea: Approximate Z (θ) with samples from Pθ (v)

Uses MCMC
Contrastive divergence (CD), persistent contrastive divergence
(PCD), fast PCD (FPCD)
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Score Matching (Hyvarinen, 2006)

Intuition: If two functions have the same derivatives
everywhere, then they are the same functions up to a constant
We match ∂

∂vi
log
(
P̃(v)

)
and ∂

∂vi
log (Pθ (v))

The constraint
∫
v P(v)dv = 1 means that the distributions

must be equal if their derivatives are perfectly matched
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Score Matching (2)

Minimize distance between the score functions ∇v log(P̃(v))
and ∇v log(Pθ (v)):

θ̂ = argmin
θ

J(θ) =Ep̃(v)

[
||∇v log(P̃(v))−∇v log(Pθ (v))||2

]
Equivalent to (Hyvarinen, 2006):

J(θ) =Ep̃(v)

[
D

∑
i=1

1
2

(
∂ log (Pθ (v))

∂vi

)2

+
∂ 2 log (Pθ (v))

∂v2
i

]
+ const

Does not depend on Z (θ) since ∇vZ (θ) = 0
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Score Matching (3)

Score matching is not as statistically efficient as maximum
likelihood

It is in fact an approximation to pseudolikelihood (Hyvarinen,
2006)

Statistical efficiency is only beneficial if you can actually find
good parameters
We trade efficiency for the ability to find better parameters
with more powerful optimization
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Denoising Score Matching (Vincent, 2011)

Rough idea:
1 Apply a kernel qβ (v |v ′) to P̃(v) get a smoothed distribution

qβ (v) =
∫

qβ (v |v ′)P̃(v ′)dv ′
2 Apply score matching to qβ (v)

Faster than ordinary score matching (no 2nd derivatives)
Includes denoising autoencoders (for continuous data) as a
special case

Data

Li
ke
lih
oo
d

P̃θ (v)
Data

Li
ke
lih
oo
d

qβ (v)
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Score Matching Recipe

1 Write down energy function Eθ (v ,h)

2 Marginalize over latent variables to form Fθ (v)

3 Derive score matching objective J(θ)

In practice, use Theano to do this step!

Eθ(v,h) Fθ(v) J(θ)
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Example: RBM with All Gaussian Units

If both v and h are Gaussian-distributed, we have the following
energy and free-energy:

Eθ (v ,h) =
1
2
vT v +

1
2
hTh− vTWh

Fθ (v) =
1
2
vT
(
I−WW T

)
v

J(θ) =
D

∑
i=1

1
2

(
vi −

K

∑
j=1

Wij

(
W T

j v
))2

+
K

∑
j=1

W 2
ij


This is a linear autoencoder with weight-decay regularization
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Example: RBM with All Gaussian Units (2)

With denoising score matching:

J(θ) =
D

∑
i=1

1
2

(
vi −

K

∑
j=1

Wij

(
W T

j x
))2

x ∼N(v ,σ2I)

Adding noise to the input is roughly equivalent to
weight-decay (Bishop, 1994)
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Example: Gaussian-Bernoulli RBMs

We apply score matching to the GBRBM model:

J(θ) =const +
D

∑
i=1

[
1
2

(vi − v̂i )
2 +

K

∑
j=1

W 2
ij ĥj

(
1− ĥj

)]

This is also a regularized autoencoder
The regularizer is a sum of weighted variances of the Bernoulli
random variables h conditioned on v
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Example: mPoT (Warning: lots of equations!)

The GBRBM is bad at modelling heavy-tailed distributions,
and capturing covariance structure in v
We can use more sophisticated energy-based models to
overcome these limitations

The mPoT is an energy based model with Gaussian-distributed
visible units, Gamma-distributed hidden units hc ∈ R+K , and
Bernoulli-distributed hidden units hm ∈ {0,1}M with parameters
θ = {C ,W }.

Eθ (v ,hm,hc) =
K

∑
k=1

[
hc
k(1+

1
2

(CT
k v)2) + (1− γ) log(hc

k)

]
+

1
2
vT v −vTWhm

Fθ (v) =
K

∑
k=1

γ log(1+
1
2

(φ
c
k )2)−

M

∑
j=1

log(1+ eφm
j ) +

1
2
vT v

φ
c
k =CT

k v

φ
m
j =W T

j v
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Example: mPoT (2) (Warning: lots of equations!)

J(θ) =
D

∑
i=1

1
2

ψi (pθ (v))2 +
K

∑
k=1

(
ρ(ĥc

k)D2
ik + ĥc

kKik

)
+

M

∑
j=1

(
ĥm
j (1− ĥm

j )W 2
ij

)
−1

ψi (pθ (v)) =
K

∑
k=1

ĥc
kDik +

M

∑
j=1

ĥm
j Wij −vi

Kik =
K

∑
k=1
−C 2

ik

Dik =
K

∑
k=1

(
−
(
CT

k v
)
Cik
)

ĥc
k =

γ

1+ 1
2 (φ c

k )2

ĥm
j =sigm(φ

m
j )

ρ(x) =x2
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Score Matching for General Latent EBMs

Score matching can produce complicated and difficult to
interpret objective functions
Our solution is to apply score matching to latent EBMs
without directly specifying Eθ (v ,h)
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Score Matching for General Latent EBMs (2)

Theorem
The score matching objective for a latent EBM can be expressed
succinctly in terms of expectations of the energy with respect to
the conditional distribution Pθ (h|v).

J(θ) = Ep̃(v)

[
nv

∑
i=1

1
2

(
Epθ (h|v)

[
∂Eθ (v ,h)

∂vi

])2

+ varpθ (h|v)

[
∂Eθ (v ,h)

∂vi

]
−Epθ (h|v)

[
∂ 2Eθ (v ,h)

∂v2
i

]]
.

The score matching objective for a latent EBM always consists
of 3 terms:

1 Squared error
2 Variance of error
3 Curvature

Variance and curvature can be seen as regularizers
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Visualization

Data

Li
ke
lih
oo
d

Model probability before learning

Vari-
ance
and
Cur-
va-
ture
shape
the
dis-
tri-
bu-
tion

Squared
er-
ror
cen-
ters
mass
on
data
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Visualization

Data
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Model probability before learning
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Squared error centers mass on data
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Visualization

Data

Li
ke
lih
oo
d

Model probability before learning

Data

Li
ke
lih
oo
d

Variance and Curvature shape the
distribution

Data

Li
ke
lih
oo
d

Squared error centers mass on data
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Gradient Steps on the Free Energy

Consider taking a gradient step along the free-energy with step
size ε :

v (t+1)
i =v (t)

i − ε
∂Fθ (v)

∂vi

When Fθ (v) = F̃θ (v) + 1
2vT v term, we get:

v (t+1)
i =v (t)

i − ε

(
v (t)
i +

∂ F̃θ(v)

∂vi

)

Setting ε to 1:

v (t+1)
i =

∂ F̃θ(v)

∂vi

An autoencoder can be thought of as performing a
reconstruction by taking a gradient step along its free energy
with a step-size of 1
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Gaussian Energy Functions

If the energy function forms a Gaussian distribution in v :

Eθ (v ,h) =1
2(v −µh)T Ωh(v −µh) + const

Then the squared error will take the form:

1
2

(
Epθ (h|v) [Ωh(v −µh)]

)2
This corresponds to a more general autoencoder
reconstruction error
For a GBRBM: Ωh = I
If Ωh 6= I then the autoencoder will also model covariance in v
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Can we learn good features with richer autoencoder models?
How do score matching estimators compare to maximum
likelihood estimators?
What are the effects of regularization in a score
matching-based autoencoder?
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Learned Features

Covariance filters
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Learned Features (2)

Mean filters
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Denoising

Reconstruct an image from a blurry version
Finds a nearby image that has a high likelihood
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Classification on CIFAR-10

CD PCD FPCD SM SMD AE
64.6% 64.7% 65.5% 65.0% 64.7% 57.6%

Most methods are comparable
mPoT autoencoder without regularization does significantly
worse
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Effect of Regularizers on mPoT Autoencoder

Score matching mPoT autoencoder
(×104)
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Curve

Autoencoder with no regularization

Total (blue curve) is the sum of the other curves
Other curves represent the 3 score matching terms
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Quick Mention: Memisevic, 2011

Roland Memisevic, a recent U of T grad published a paper in
this year’s ICCV
He derived the same models through the idea of relating two
different inputs using an autoencoder
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Conclusion

Score matching provides a unifying theory for autoencoders
and latent energy based models
It reveals novel regularizers for some models
We can derive novel autoencoders that model richer structure
We provide an interpretation of the score matching objective
for all latent EBMs
Properly shaping the implied energy of an autoencoder is one
key to learning good features

This is done implicitly when noise is added to the input
Perhaps also done implicity with sparsity penalties, etc.
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Future Work

We can model other kinds of data with higher-order features
by simply changing the loss function
Extend higher-order models to deeper layers
Apply Hessian-free optimization to EBMs and related
autoencoders
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