Supplementary Material for Multi-Task Bayesian Optimization

Kevin Swersky Department of Computer Science University of Toronto kswersky@cs.toronto.edu Jasper Snoek* School of Engineering and Applied Sciences Harvard University jsnoek@seas.harvard.edu

Ryan P. Adams School of Engineering and Applied Sciences Harvard University rpa@seas.harvard.edu

Cold Start Experiment Details

Logistic regression

This experiment uses a simple logistic regression classifier taking the pixels as input and is trained with stochastic gradient descent.

Best hyperparameter settings							
Dataset	Learning rate	ℓ_2 penalty	Batch size	Epochs			
USPS	0.0002	0.0032	560	161			
MNIST	0.1435	0.0	206	685			

Cuda-Convnet

We used the default architecture from the Cuda-Convnet package. This is a network that consists of two convolutional layers and two densely connected layers. When performing the transfer experiment, the epochs are scaled so that the same number of weight updates are applied to the model for both datasets. In this case, 18 epochs on SVHN is equivalent to 450 epochs on CIFAR-10. The small version of SVHN does not scale epochs, so it is only allowed to use up to 10% of the weight updates of the other models. The correlation between SVHN and CIFAR-10 was measured at 0.59 ± 0.22 while the correlation between SVHN and its small counterpart was measured at 0.62 ± 0.24 .

More information on this architecture can be found on the package website: https://code.google.com/p/cuda-convnet/.

Best hyperparameter settings							
Dataset	Learning rate	ℓ_2 penalty (4 layers)	Size	Scale	Pow	Epochs	
CIFAR-10	0.0009	0.0003, 0.0075, 0.0089, 0.0028	3	0.0480	0.2136	321	
SVHN	0.0044	0.0, 0.0, 0.0, 0.0037	3	0.0788	0.2700	18	
SVHN (small)	0.0039	0.0, 0.0, 0.0, 0.01	2	0.1	0.0902	18	

^{*}Research was performed while at the University of Toronto.

Deepnet on k-means features

We first extract n k-means features, where $n \in \{400, 1000\}$, from whitened image patches extracted from the STL-10 unsupervised image set. These are then combined using max-pooling into a $m \times m$ grid, where $m \in \{5, 7, 9\}$ resulting in a $m \times m \times n$ set of features. A convolutional neural network containing one convolutional hidden layer and one densely connected hidden layer is then applied to these. In this case, n would be analogous to color channels. Each trial was allowed to use 100000 weight updates with a batch size of 128 and the final set of weights are used for classification. The correlation between datasets was measured at 0.5 ± 0.28 .

The Deepnet package can be found at https://github.com/nitishsrivastava/ deepnet and the full model specifications will be posted on the authors website.

Best hyperparameter settings							
		Max pooling	Number of	Number of	Weight norm	Dropout	
Dataset	Learning rates	grid size	k-means features	hidden units	constraints	probabilities	
CIFAR-10	0.0031, 0.0034, 0.0007	9x9	400	1000, 2000	0.25, 8.0, 2.441	0.7035, 0.1955, 0.4915	
STL-10	0.1, 0.1, 1e-5	7x7	1000	2000, 1100	0.25, 3.221, 0.25	0.5925, 0.7185, 0.9	