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Distance Metric Learning

Distance metrics are everywhere.

But they're arbitrary! Dimensions are scaled weirdly, and
even if they're normalized, it's not clear that Euclidean

distance means much.

So learning sounds nice, but what you learn should depend
on the task.

A really common task is KNN. Let's look at how to learn
distance metrics for that.



Popular Approaches for Distance Metric Learning
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Some satisfying properties
e Based on local structure (doesn’t have to pull all points
into one region)

Some unsatisfying properties

* Initial choice of target neighbors is difficult

* Choice of objective function has reasonable forces
(pushes and pulls), but beyond that, it is pretty heuristic.
* No probabilistic interpretation.

Large margin nearest neighbors (LMNN
[Weinberger et al., NIPS 2006]



Probabilistic Formulations for Distance Metric
Learning

Our goal: give a probabilistic interpretation of kNN
and properly learn a model based upon this
interpretation.

Related work that kind of does this: Neighborhood
Components Analysis (NCA). Our approach is a
direct generalization.



Generative Model
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O
O O

O

e
o O
O OO
5 O
O



Generative Model

2. Project into P dimensional space via A € RP*¥
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FEcRV*XP = XA
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Neighborhood Component Analysis (NCA)
[Goldberger et al., 2004]

Given a query point i. Q*\fifi ,,Q
We select neighbors i

- @ O
randomly according to d. () ) ag

Question: what is the
probability that a randomly
selected neighbor will belong
to the correct (blue) class?



Neighborhood Component Analysis (NCA)
[Goldberger et al., 2004]
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Neighborhood Component Analysis (NCA)
[Goldberger et al., 2004]
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Neighborhood Component Analysis (NCA)
[Goldberger et al., 2004]
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Neighborhood Component Analysis (NCA)
[Goldberger et al., 2004]

Another way to write this: (5 )
P = Z Pijlyi = y;| ) .
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(y are the class labels)



Neighborhood Component Analysis (NCA)
[Goldberger et al., 2004]

Objective: maximize the - ,f 7
log-likelihood of stochastically | ﬂ
selecting neighbors of the U

same class. e» V

L = Zlog(z Piilyi = y;])

1 JF£1



After Learning
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We might hope to learn a projection
that looks like this.




Problem with 1-NCA
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NCA is happy if points pair up and ignore global
structure. This is not ideal if we want k > 1.



k-Neighborhood Component Analysis (k-NCA)

NCA: P’L p— Z PZ] [yz — y]] []is the identity function
J71

kNCA: Pi= ) Pi(s)[Maj(ys) = yil
SES:|s|=k
(S is all sets of k neighbors of point i)

ZSESZ|S|:]€ eXp(_ Zjés dl])[Ma](yS) — y’t]

ZSESZ|S|:]€ eXp(_ ZjEs d’LJ)

Setting k=1 recovers NCA.



k-Neighborhood Component Analysis (k-NCA)

Computing the numerator of the distribution P;

O

Stochastically choose k neighbors such that
the majority is blue.
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k-Neighborhood Component Analysis (k-NCA)

Computing the numerator of the distribution P;
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k-Neighborhood Component Analysis (k-NCA)

Computing the denominator of the distribution P;
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Stochastically choose subsets of k neighbors.



k-Neighborhood Component Analysis (k-NCA)

Computing the denominator of the distribution P;
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Stochastically choose subsets of k neighbors.



k-NCA Intuition
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k-NCA puts more pressure on points to form
bigger clusters.



k-NCA Objective

Given: inputs X, labels y, neighborhood size k.

Zlog ZP s|A; k) [Maj(ys) = yi))

sES;

Learning: find A that (locally) maximizes this.

oL
Technical challenge: efficiently compute £(4) and 5



Factor Graph Formulation
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Factor Graph Formulation

Zs:|s|:k exp{ — Zjes dij(A)} - HMAI(y,) = yi}
vy ey ZS;|S|:k exp{ — Zjes dij(A)}

Step 1: Split Majority function into cases.

Switch(k'=|y, = v,I1) // # neighbors w/ label vy,
Maj(y,) =1 1ff forall ¢ != vy, ly.,=c| < k'

Step 2: Constrain total # neighbors chosen to be k.



2 si)s|=k P12 jes dij(A)y - MMAI(Y,) = i)

D s | s|= keXP{ Zjes dij(A)}

SRR be chosen

ors are chosen

At this point, everything is just a matter of
inference in these factor graphs

* Partition functions: give objective
* Marginals: give gradients

Assume y. = 'blue”




Sum-Product Inference

= 2

Lower level messages: O(k) time each
Upper level messages: O(k?) time each

Total runtime: O(Nk + C k2)*

* Although slightly better is possible asymptotically. See Tarlow et al., UAI 2012.
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Alternative Version

* Instead of Majority(y.)=y, function, use All(y,)=y..
— Computation gets a little easier (just one k' needed)
— Loses the kNN interpretation.

— Exerts more pressure for homogeneity; tries to
create a larger margin between classes.

— Usually works a little better.



Unsupervised Learning with t-SNE
[van der Maaten and Hinton, 2008]

Visualize the structure of data in a 2D embedding.

[van der Maaten & Hinton, JMLR 2008] [Turian, http://metaoptimize.com/projects/wordreprs/]

* Each input point x maps to an embedding point e.
 SNE tries to preserve relative pairwise distances
as faithfully as possible.



Problem with t-SNE (also based on k=1)
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Unsupervised Learning with t-SNE
[van der Maaten and Hinton, 2008]

Data distribution: £%;; o< exp(—dfj)
Embedding distribution: ();; o exp(—dgj)

Objective (minimize wrt e):

Y KL(P|Qi) == » PijlogQij; + const

|
|z — 25|

t-SNE:  df; = S df = (L e —e*) 7

0;




kt-SNE

Data distribution: oc exp Z d
VISE

Embedding distribution: (Q;(s) o< exp(— Z d?.
1€s

Objective: Z Z P;(s)log Q;(s)

i s€S:|s|=

Minimize objective wrt e



kt-SNE

* kt-SNE can potentially lead to better higher order
structure preservation (exponentially many more
distance constraints).

e G@Gives another “dial to turn” in order to obtain
better visualizations.



Experiments



WINE embeddings

“Majority” Method
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IRIS—worst kNCA relative performance (full D)
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ION—best kNCA relative performance (full D)
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USPS kNN Classification (0% noise, 2D)
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kNN accuracy

USPS kNN Classification (25% noise, 2D)
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kNN accuracy

USPS kNN Classification (50% noise, 2D)
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NCA Objective Analysis on Noisy USPS
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t-SNE vs kt-SNE

kNN Accuracy

k=1 k=5 k=9 k=13
t-SNE | 0.934 0.925 0916 0.914
5t-SNE | 0.928 0.946 0.953 0.949




Discussion

Local is good, but 1-NCA is too local.

Not quite expected kNN accuracy, but doesn’t
seem to change results.

Expected Majority computation may be useful
elsewhere?



